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FINITE p-GROUPS ALL OF WHOSE PROPER SUBGROUPS
HAVE ITS DERIVED SUBGROUP OF ORDER AT MOST p

ZVONIMIR JANKO
University of Heidelberg, Germany

ABSTRACT. We give in Theorem 7 a complete characterization of the
title groups.

Here we give a complete characterization of the title groups. This result
is important for the structure theory of finite p-groups and also it solves the
Problem 39 stated by Y. Berkovich in [1]. In the proofs we use partly some
ideas of J. Q. Zhang and X. H. Li ([5, Proposition 3]) and V. Cepuli¢ and
O. Pylyavska ([4, Proposition 5]). To facilitate the proof of the main result
(Theorem 7), we shall first prove some auxiliary results.

Our notation is standard (see [1]) and we consider here only finite p-
groups.

ProprosSITION 1. Let G be a title group. Then for all x,y € G such that
(x,y) < G we have o([z,y]) < p and [z,y] € Z(G).

PROOF. Suppose that [z,y] # 1. Let X be a maximal subgroup of G
containing (x,y). Then X' = ([z,y]) < G with o([z,y]) = p and so [z,y] €
Z(G). O

PROPOSITION 2. If G is a title group, then G’ is abelian of order < p>.

PrROOF. We may assume that G is nonabelian. Let X # Y be two
maximal subgroups of G. Then |X’| < p and |Y’| < p. By a result of A.
Mann (Exercise 1.69(a) in [1]), |G’ : (X'Y')| < p and so |G'| < p?. If G’
would be nonabelian, then |G’| = p3 and Z(G’) (being of order p) is cyclic
and so (by an elementary result of W. Burnside, see Lemma 1.4 in [1]) G’ is
also cyclic, a contradiction. Hence G’ is abelian. o
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PROPOSITION 3 (Zhang and Li). If G is a title group and |G'| > p?, then
d(G) < 3.

PROOF. Assume that |G’| > p?. Then G is not minimal nonabelian and
so there exists a maximal subgroup A with |A’| = p and we have A’ 9 G.
Suppose that M’ < A’ for each maximal subgroup M of G. Then G/A’ is
minimal nonabelian. But then d(G/A’) =2, A’ < ®(G) and so d(G) = 2 and
we are done in this case.

We may assume that G has a maximal subgroup B such that B’ £ A'.
We get |A'| = |B'| =pand AN B = {1}. Let a1,a2 € A and ag,as € B be
such that A’ = ([a1,az]) and B’ = {([as, a4]). Since |(a1,as,as,as)’| > p?, we
get (a1, as,as,a4) = G and so d(G) < 4.

We assume, by a way of contradiction, that d(G) = 4. By Proposition 1,
for any x,y € G we have o([z,y]) < p and [z, y] € Z(G). This implies that G’
is elementary abelian and G’ < Z(G). In particular, G is of class 2.

For any k € {1,2} and | € {3,4}, we have (a1,a2,a;) < G and
(ak,as,as) < G and so (a1, a2, a;) = ([a1, az2]) and (ag, a3, as)’ = ([as, a4]). It
follows that

lar, ai] € ([a1, az]) N ([as, as]) = {1}.

This implies
[a1,a2a3] = [a1, a2]a1, as] = [a1, az] and [azas, as] = [ag, a4]las, as] = [a3, ad].

But then (a1, azags, aq) is a proper subgroup of G and we have |{a1, azas, aq)’| >
p?, a contradiction. Our proposition is proved. O

ProposITION 4 (Y. Berkovich). Suppose that G is a nonabelian p-group.
If d(G) = 2, then H' < G’ for each H < G.

PRrROOF. Let R < G’ be a G-invariant subgroup of index p in G’. Then
|(G/R)'| = p and d(G/R) = 2. This implies that G/R is minimal nonabelian.
For each maximal subgroup H of G, H' < R < G’ and we are done. O

PRrRoPOSITION 5 (Cepulié and Pylyavska). Let G be a title p-group with
p > 2. Then for any a,b € G, we have [a?,b] = [a, bP] = [a, b]P.

PROOF. We set g = [a,b]. If g commutes with a, then for each n > 1 we
prove by induction that [a™,b] = [a, b]™. Indeed, for n > 1,

[a™,b] = [aa""*,b] = [a,b]*" [a™!,b]
= [av b] [anila b] = [av b] [aa b]nil = [av b]n

n—1

In particular, we have [aP, b] = [a, b]P.
We assume now that [g,a] = z # 1. Since (g,a) < G, Proposition 1
implies that o(z) = p and z € Z(G). We note that

9" =a"'ga=g(g~'a'ga) = glg,a] = gz andso g*" = g2'
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for all 7 > 1. We have
[a”,b] = [a-a?~ 18] = [a,0]" [a?71, 6] = [a,b]"" [a-aP~2,b]
= [a, 0" a,b"" (0?2,
and so continuing we get finally:

[@?,b] = [a,0]" ' [a,0]*" " ...[a,b][a, b]
p—1 _p—2 _ _
=9" 9% g9 = (92" ) (92" %) (92)g
= gPz (P DFE=2F 41 — g2, (0D = P — [g P,

where we have used the fact that p > 2. We have proved that in any case
we get [a?,b] = [a,b]P. Now, [a,b?] = [bP,a]~! = [b,a] P = [a,b]?, and so our
proposition is proved. O

PROPOSITION 6. Suppose that G is a p-group which has one of the
following properties:
(a) |G'| <p;
(b) d(G) =2, |G'| = p*;
(C) p>2, d(G) =2, Cl(G) =3,G" = Ep3a GI(G) < Z(G)z
(d) d(G) =3, cl(G) =2, G" 2 Eps or Epe.

Then G has the title property, i.e., |H'| < p for each proper subgroup H of G.

PRrROOF. If G is a p-group in (a), then obviously G has the title property.
Suppose that G is a p-group in (b). By Proposition 4, for each H < G we
have H' < G’ and so G has the title property.

Now assume that G is a p-group in (c¢). Since cl(G) = 3, we have {1} #
K3(G) < Z(G). But d(G) =2 and so {1} # G'/K3(G) is cyclic and therefore
K3(G) = E,2. We have U1(G) < Z(G) and so ®(G) = U1(G)G’ is abelian and
G/®(G) = Ep2. Also, U1(G)K3(G) < Z(G) and in fact U,(G)K3(G) = Z(G).
Indeed, if U1(G)K3(G) < Z(G), then G/Z(G) = E,2. But in that case G has
p+1 abelian maximal subgroups and this implies (Exercise P1 in [3]) |G| = p,
a contradiction. Let M be any maximal subgroup of G so that |M : ®(G)| = p.
Then M is either abelian or Z(G) = Z(M) and M/Z(M) = E,2. In the second
case we may use Lemma 1.1 in [1] since ®(G) is an abelian maximal subgroup
of M. From |M| = p|Z(M)||M’'|, we get |M'| = p. We have proved that in
this case G has the title property.

Suppose that G is a p-group in (d). For any z,y € G we have [2P,y] =
[z,y]P =1 and so U1(G) < Z(G). It follows that ®(G) = U1(G)G' < Z(G) and
G/®(G) = Eps. Let M be any maximal subgroup of G so that M/®(G) = E,.
It follows that p+ 1 maximal subgroups of M which contain ®(G) are abelian.
This implies that |M’| < p and we are done. O
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THEOREM 7. A p-group G has the property that each proper subgroup of
G has its derived subgroup of order at most p if and only if one of the following
holds:

(a) 1G] < p:
(b) d(G) =2, |G'| = p*;
(c) p>2,d(G) =2, cl(G) =3, G' ZEps, U1(G) < Z(G)
(note that such p-groups exist. See for example Aa-groups of order p®,
p > 2, in Proposition 71.5(b) in [2] );
(d) d(G) =3, cl(G) =2, G' 2 Es or Ej2. Here we have ®(G) = Z(G).

ProoOF. If G is a p-group in (a), (b), (c) or (d), then Proposition 6 implies
|H'| < p for each subgroup H < G.

Suppose that G is a p-group all of whose proper subgroups have its derived
subgroup of order < p. If |G’| < p, then we have the groups in part (a) of our
theorem. In what follows we assume that |G’| > p?. By Proposition 2, G’ is
abelian of order p? or p3. By Proposition 3, we have d(G) < 3.

(i) First assume d(G) = 2. If |G’| = p?, then we have obtained the groups
in part (b) of our theorem. In the sequel we shall assume here |G’| = p3. By
a result of A. Mann (Exercise 1.69(a) in [1]), all p+ 1 maximal subgroups M;
(1 =1,2,...,p+1) of G are nonabelian, |M/| = p and for any i # j we have
M} M; = {1} so that M] x M; = E,2 and M] x M} < Z(G). If cl(G) = 2,
then d(G) = 2 would imply that G’ is cyclic, contrary to the existence of the
subgroup M] x M} = E,2. Hence cl(G) > 3. But {1} # K3(G) = [G,G] <
M x M; <Z(G) and so cl(G) = 3. Weset &' = M x M} = G'NZ(G) = E,.
Whenever a,b € G are such that (a,b) = G, then [a,b] € G' — E. Indeed,
if 1 # [a,b] € E, then o([a,b]) = p and [a,b] € Z(G). But then G/{[a,b]) is
abelian and so G’ = ([a, b]) is of order p, a contradiction. Let g = [a, b], where
(a,by = G and g € G’ — E. For any x € G we have g* = ge with some e € E.
Then g*" = ge’ and so g*° = g. It follows that U;(G) centralizes G’ and so
O(G) = U1(G)G’ centralizes G'.

(i1) Now assume p > 2. Suppose in addition that G’ is not elementary
abelian. Then E = Q;(G’) and set {1} # U1(G’") = (s) < E so that G'/(s) =
Ep2. If K3(G) = [G,G'] = (s), then G/(s) is of class 2 so that d(G/(s)) = 2
would imply that G'/(s) = (G/(s))’ is cyclic, a contradiction. Hence there is
an element ¢ € G — ®(G) such that g¢ = gl with | = [g,c] € E — (s). Let
d € G — ®(G) be such that {(¢,d) = G so that [¢,d] € G' — E. By Proposition
5, [e,dP] = [e,d]P = s7, where j # 0 (mod p). Consider the maximal subgroup
C = (®(Q), ). Since g,c,d? € C, we have C' > ([g, ], [c,dP]) = (I, ') = E =
E,2, a contradiction. We have proved that G’ = E,s. For any z,y € G we
get by Proposition 5, [2P,y] = [z,y]? = 1 and so U1(G) < Z(G). We have
obtained the groups given in part (c) of our theorem.

(i2) It remains to consider the case p = 2. Assume in addition that
{1} # K3(G) = [G,G'] < E and set [G,G’'] = (u), where u is an involution
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in E <Z(G). Note that ®(G) centralizes G’ and for each x € G — ®(G) and
y € G’ — E we have y* = yu’ with v’ € (u). Set Go = C¢(G’) so that we
have |G : Gy| = |Gy : ®(G)| = 2. Since G/(u) is of class 2 and d(G/(u)) = 2,
we have G’/(u) is cyclic. Hence if g € G’ — E, then g? = v is an involution
in F — (u) and therefore £ = Q;(G’") = (u,v) and U1(G’) = (v). Take some
elements a € Gy — ®(G) and b € G — Gy. Then (a,b) = G and therefore
[a,b] = h € G' — E with h? = v, h® = h and h® = hu. Consider the maximal
subgroup H = (®(G),b). Since

[a?,b] = [a,b]*[a,b] = hh = h? = v and [h,b] = u,

we get H' > (u,v) = E = Ey, a contradiction.

We have proved that K3(G) = [G,G'] = E = G'NZ(G) = E4. Let
a,b € G —®(G) be such that (a,b) = G. Then g = [a,b] € G’ — E, [g,a] = ¢1,
[g,b] = ca, where (c1,c2) = E = K3(G). We set ¢3 = c1cp and get

[gvab] = [gvb][gva]b = [gab][gaa’] = C2C1 = C3.

We compute the commutator subgroups of our three nonabelian maximal
subgroups X7 = (®(G),a), X2 = (P(G),b) and X3 = (®(G), ab), where we
note that we must have |X/| =2 for i = 1,2, 3.

Since [g,a] = ¢; and

[aab2] = [aab][a7b]b = ggb =g-gc2 = 92025

we have X| = (c1) and so we must have g2cy € (c1). This forces either g% = ¢,
or g2 = cs.
Since [g,b] = ¢2 and

[a%,0] = [a,0]%[a,b] = g9 = ge1 - g = g%y,
we have X} = (c2) and so we must have g2c; € (c2). This forces either g2 = ¢;

or g2 = c3. With the above we get exactly g% = c3.
Since [g, ab] = c3 and

[a?,ab] = [a, ab]*[a, ab] = g"g = gc1 - g = g*c1,

(where we have used the fact that [a,ab] = [a,b]) we have X} = (c3) and so
we must have 92(31 € {c3). But we know that 92 = c¢3 and so 92(31 = c3c1 =
o € (c3), a contradiction. We have proved that such 2-groups do not exist!
(ii) Finally, assume that d(G) = 3. For any z,y € G we have (z,y) <
G and so Proposition 1 implies that o([z,y]) < p and [z,y] € Z(G). But
then G’ is elementary abelian (of order p? or p?) and G’ < Z(G) and so we
have obtained the groups from part (d) of our theorem. For any a,b € G,
[a?,b] = [a,b]P = 1 and so ®(G) < Z(G). If Z(G) £ ®(G), then there is a
maximal subgroup M of G such that G = (M, z), where x € Z(G). But then
G’ = M’ and so |G'| = 2, a contradiction. Hence ®(G) = Z(G). Theorem 7
is completely proved. O
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