
GLASNIK MATEMATIČKI
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FINITE p-GROUPS ALL OF WHOSE PROPER SUBGROUPS

HAVE ITS DERIVED SUBGROUP OF ORDER AT MOST p

Zvonimir Janko

University of Heidelberg, Germany

Abstract. We give in Theorem 7 a complete characterization of the
title groups.

Here we give a complete characterization of the title groups. This result
is important for the structure theory of finite p-groups and also it solves the
Problem 39 stated by Y. Berkovich in [1]. In the proofs we use partly some

ideas of J. Q. Zhang and X. H. Li ([5, Proposition 3]) and V. Ćepulić and
O. Pylyavska ([4, Proposition 5]). To facilitate the proof of the main result
(Theorem 7), we shall first prove some auxiliary results.

Our notation is standard (see [1]) and we consider here only finite p-
groups.

Proposition 1. Let G be a title group. Then for all x, y ∈ G such that
〈x, y〉 < G we have o([x, y]) ≤ p and [x, y] ∈ Z(G).

Proof. Suppose that [x, y] 6= 1. Let X be a maximal subgroup of G
containing 〈x, y〉. Then X ′ = 〈[x, y]〉 E G with o([x, y]) = p and so [x, y] ∈
Z(G).

Proposition 2. If G is a title group, then G′ is abelian of order ≤ p3.

Proof. We may assume that G is nonabelian. Let X 6= Y be two
maximal subgroups of G. Then |X ′| ≤ p and |Y ′| ≤ p. By a result of A.
Mann (Exercise 1.69(a) in [1]), |G′ : (X ′Y ′)| ≤ p and so |G′| ≤ p3. If G′

would be nonabelian, then |G′| = p3 and Z(G′) (being of order p) is cyclic
and so (by an elementary result of W. Burnside, see Lemma 1.4 in [1]) G′ is
also cyclic, a contradiction. Hence G′ is abelian.

2010 Mathematics Subject Classification. 20D15.
Key words and phrases. Finite p-groups, minimal nonabelian p-groups, commutator

subgroups, nilpotency class of p-groups.

351



352 Z. JANKO

Proposition 3 (Zhang and Li). If G is a title group and |G′| ≥ p2, then
d(G) ≤ 3.

Proof. Assume that |G′| ≥ p2. Then G is not minimal nonabelian and
so there exists a maximal subgroup A with |A′| = p and we have A′ E G.
Suppose that M ′ ≤ A′ for each maximal subgroup M of G. Then G/A′ is
minimal nonabelian. But then d(G/A′) = 2, A′ ≤ Φ(G) and so d(G) = 2 and
we are done in this case.

We may assume that G has a maximal subgroup B such that B′ 6≤ A′.
We get |A′| = |B′| = p and A′ ∩B′ = {1}. Let a1, a2 ∈ A and a3, a4 ∈ B be
such that A′ = 〈[a1, a2]〉 and B′ = 〈[a3, a4]〉. Since |〈a1, a2, a3, a4〉

′| ≥ p2, we
get 〈a1, a2, a3, a4〉 = G and so d(G) ≤ 4.

We assume, by a way of contradiction, that d(G) = 4. By Proposition 1,
for any x, y ∈ G we have o([x, y]) ≤ p and [x, y] ∈ Z(G). This implies that G′

is elementary abelian and G′ ≤ Z(G). In particular, G is of class 2.
For any k ∈ {1, 2} and l ∈ {3, 4}, we have 〈a1, a2, al〉 < G and

〈ak, a3, a4〉 < G and so 〈a1, a2, al〉
′ = 〈[a1, a2]〉 and 〈ak, a3, a4〉

′ = 〈[a3, a4]〉. It
follows that

[ak, al] ∈ 〈[a1, a2]〉 ∩ 〈[a3, a4]〉 = {1}.

This implies

[a1, a2a3] = [a1, a2][a1, a3] = [a1, a2] and [a2a3, a4] = [a2, a4][a3, a4] = [a3, a4].

But then 〈a1, a2a3, a4〉 is a proper subgroup ofG and we have |〈a1, a2a3, a4〉
′| ≥

p2, a contradiction. Our proposition is proved.

Proposition 4 (Y. Berkovich). Suppose that G is a nonabelian p-group.
If d(G) = 2, then H ′ < G′ for each H < G.

Proof. Let R < G′ be a G-invariant subgroup of index p in G′. Then
|(G/R)′| = p and d(G/R) = 2. This implies that G/R is minimal nonabelian.
For each maximal subgroup H of G, H ′ ≤ R < G′ and we are done.

Proposition 5 (Ćepulić and Pylyavska). Let G be a title p-group with
p > 2. Then for any a, b ∈ G, we have [ap, b] = [a, bp] = [a, b]p.

Proof. We set g = [a, b]. If g commutes with a, then for each n ≥ 1 we
prove by induction that [an, b] = [a, b]n. Indeed, for n > 1,

[an, b] = [aan−1, b] = [a, b]a
n−1

[an−1, b]

= [a, b][an−1, b] = [a, b][a, b]n−1 = [a, b]n.

In particular, we have [ap, b] = [a, b]p.
We assume now that [g, a] = z 6= 1. Since 〈g, a〉 < G, Proposition 1

implies that o(z) = p and z ∈ Z(G). We note that

ga = a−1ga = g(g−1a−1ga) = g[g, a] = gz and so ga
i

= gzi
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for all i ≥ 1. We have

[ap, b] = [a · ap−1, b] = [a, b]a
p−1

[ap−1, b] = [a, b]a
p−1

[a · ap−2, b]

= [a, b]a
p−1

[a, b]a
p−2

[ap−2, b]

and so continuing we get finally:

[ap, b] = [a, b]a
p−1

[a, b]a
p−2

...[a, b]a[a, b]

= ga
p−1

ga
p−2

...gag = (gzp−1)(gzp−2)...(gz)g

= gpz(p−1)+(p−2)+...+1 = gpz(p−1) p

2 = gp = [a, b]p,

where we have used the fact that p > 2. We have proved that in any case
we get [ap, b] = [a, b]p. Now, [a, bp] = [bp, a]−1 = [b, a]−p = [a, b]p, and so our
proposition is proved.

Proposition 6. Suppose that G is a p-group which has one of the
following properties:

(a) |G′| ≤ p;
(b) d(G) = 2, |G′| = p2;
(c) p > 2, d(G) = 2, cl(G) = 3, G′ ∼= Ep3 , ℧1(G) ≤ Z(G);
(d) d(G) = 3, cl(G) = 2, G′ ∼= Ep3 or Ep2 .

Then G has the title property, i.e., |H ′| ≤ p for each proper subgroup H of G.

Proof. If G is a p-group in (a), then obviously G has the title property.
Suppose that G is a p-group in (b). By Proposition 4, for each H < G we
have H ′ < G′ and so G has the title property.

Now assume that G is a p-group in (c). Since cl(G) = 3, we have {1} 6=
K3(G) ≤ Z(G). But d(G) = 2 and so {1} 6= G′/K3(G) is cyclic and therefore
K3(G) ∼= Ep2 . We have ℧1(G) ≤ Z(G) and so Φ(G) = ℧1(G)G′ is abelian and
G/Φ(G) ∼= Ep2 . Also, ℧1(G)K3(G) ≤ Z(G) and in fact ℧1(G)K3(G) = Z(G).
Indeed, if ℧1(G)K3(G) < Z(G), then G/Z(G) ∼= Ep2 . But in that case G has
p+1 abelian maximal subgroups and this implies (Exercise P1 in [3]) |G′| = p,
a contradiction. LetM be any maximal subgroup ofG so that |M : Φ(G)| = p.
Then M is either abelian or Z(G) = Z(M) and M/Z(M) ∼= Ep2 . In the second
case we may use Lemma 1.1 in [1] since Φ(G) is an abelian maximal subgroup
of M . From |M | = p|Z(M)||M ′|, we get |M ′| = p. We have proved that in
this case G has the title property.

Suppose that G is a p-group in (d). For any x, y ∈ G we have [xp, y] =
[x, y]p = 1 and so ℧1(G) ≤ Z(G). It follows that Φ(G) = ℧1(G)G′ ≤ Z(G) and
G/Φ(G) ∼= Ep3 . LetM be any maximal subgroup ofG so thatM/Φ(G) ∼= Ep2 .
It follows that p+1 maximal subgroups of M which contain Φ(G) are abelian.
This implies that |M ′| ≤ p and we are done.
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Theorem 7. A p-group G has the property that each proper subgroup of
G has its derived subgroup of order at most p if and only if one of the following
holds:

(a) |G′| ≤ p;
(b) d(G) = 2, |G′| = p2;
(c) p > 2, d(G) = 2, cl(G) = 3, G′ ∼= Ep3 , ℧1(G) ≤ Z(G)

(note that such p-groups exist. See for example A2-groups of order p5,
p > 2, in Proposition 71.5(b) in [2] );

(d) d(G) = 3, cl(G) = 2, G′ ∼= Ep3 or Ep2 . Here we have Φ(G) = Z(G).

Proof. If G is a p-group in (a), (b), (c) or (d), then Proposition 6 implies
|H ′| ≤ p for each subgroup H < G.

Suppose that G is a p-group all of whose proper subgroups have its derived
subgroup of order ≤ p. If |G′| ≤ p, then we have the groups in part (a) of our
theorem. In what follows we assume that |G′| ≥ p2. By Proposition 2, G′ is
abelian of order p2 or p3. By Proposition 3, we have d(G) ≤ 3.

(i) First assume d(G) = 2. If |G′| = p2, then we have obtained the groups
in part (b) of our theorem. In the sequel we shall assume here |G′| = p3. By
a result of A. Mann (Exercise 1.69(a) in [1]), all p+1 maximal subgroups Mi

(i = 1, 2, ..., p+ 1) of G are nonabelian, |M ′

i | = p and for any i 6= j we have
M ′

i ∩M ′

j = {1} so that M ′

i ×M ′

j
∼= Ep2 and M ′

i ×M ′

j ≤ Z(G). If cl(G) = 2,

then d(G) = 2 would imply that G′ is cyclic, contrary to the existence of the
subgroup M ′

i ×M ′

j
∼= Ep2 . Hence cl(G) ≥ 3. But {1} 6= K3(G) = [G,G′] ≤

M ′

i ×M ′

j ≤ Z(G) and so cl(G) = 3. We set E = M ′

i ×M ′

j = G′ ∩Z(G) ∼= Ep2 .
Whenever a, b ∈ G are such that 〈a, b〉 = G, then [a, b] ∈ G′ − E. Indeed,
if 1 6= [a, b] ∈ E, then o([a, b]) = p and [a, b] ∈ Z(G). But then G/〈[a, b]〉 is
abelian and so G′ = 〈[a, b]〉 is of order p, a contradiction. Let g = [a, b], where
〈a, b〉 = G and g ∈ G′ −E. For any x ∈ G we have gx = ge with some e ∈ E.

Then gx
i

= gei and so gx
p

= g. It follows that ℧1(G) centralizes G′ and so
Φ(G) = ℧1(G)G′ centralizes G′.

(i1) Now assume p > 2. Suppose in addition that G′ is not elementary
abelian. Then E = Ω1(G

′) and set {1} 6= ℧1(G
′) = 〈s〉 < E so that G′/〈s〉 ∼=

Ep2 . If K3(G) = [G,G′] = 〈s〉, then G/〈s〉 is of class 2 so that d(G/〈s〉) = 2
would imply that G′/〈s〉 = (G/〈s〉)′ is cyclic, a contradiction. Hence there is
an element c ∈ G − Φ(G) such that gc = gl with l = [g, c] ∈ E − 〈s〉. Let
d ∈ G−Φ(G) be such that 〈c, d〉 = G so that [c, d] ∈ G′ −E. By Proposition
5, [c, dp] = [c, d]p = sj , where j 6≡ 0 (mod p). Consider the maximal subgroup
C = 〈Φ(G), c〉. Since g, c, dp ∈ C, we have C′ ≥ 〈[g, c], [c, dp]〉 = 〈l, sj〉 = E ∼=
Ep2 , a contradiction. We have proved that G′ ∼= Ep3 . For any x, y ∈ G we
get by Proposition 5, [xp, y] = [x, y]p = 1 and so ℧1(G) ≤ Z(G). We have
obtained the groups given in part (c) of our theorem.

(i2) It remains to consider the case p = 2. Assume in addition that
{1} 6= K3(G) = [G,G′] < E and set [G,G′] = 〈u〉, where u is an involution



FINITE p-GROUPS 355

in E ≤ Z(G). Note that Φ(G) centralizes G′ and for each x ∈ G− Φ(G) and
y ∈ G′ − E we have yx = yu′ with u′ ∈ 〈u〉. Set G0 = CG(G

′) so that we
have |G : G0| = |G0 : Φ(G)| = 2. Since G/〈u〉 is of class 2 and d(G/〈u〉) = 2,
we have G′/〈u〉 is cyclic. Hence if g ∈ G′ − E, then g2 = v is an involution
in E − 〈u〉 and therefore E = Ω1(G

′) = 〈u, v〉 and ℧1(G
′) = 〈v〉. Take some

elements a ∈ G0 − Φ(G) and b ∈ G − G0. Then 〈a, b〉 = G and therefore
[a, b] = h ∈ G′ − E with h2 = v, ha = h and hb = hu. Consider the maximal
subgroup H = 〈Φ(G), b〉. Since

[a2, b] = [a, b]a[a, b] = hah = h2 = v and [h, b] = u,

we get H ′ ≥ 〈u, v〉 = E ∼= E4, a contradiction.
We have proved that K3(G) = [G,G′] = E = G′ ∩ Z(G) ∼= E4. Let

a, b ∈ G−Φ(G) be such that 〈a, b〉 = G. Then g = [a, b] ∈ G′ −E, [g, a] = c1,
[g, b] = c2, where 〈c1, c2〉 = E = K3(G). We set c3 = c1c2 and get

[g, ab] = [g, b][g, a]b = [g, b][g, a] = c2c1 = c3.

We compute the commutator subgroups of our three nonabelian maximal
subgroups X1 = 〈Φ(G), a〉, X2 = 〈Φ(G), b〉 and X3 = 〈Φ(G), ab〉, where we
note that we must have |X ′

i| = 2 for i = 1, 2, 3.
Since [g, a] = c1 and

[a, b2] = [a, b][a, b]b = ggb = g · gc2 = g2c2,

we have X ′

1 = 〈c1〉 and so we must have g2c2 ∈ 〈c1〉. This forces either g
2 = c2

or g2 = c3.
Since [g, b] = c2 and

[a2, b] = [a, b]a[a, b] = gag = gc1 · g = g2c1,

we have X ′

2 = 〈c2〉 and so we must have g2c1 ∈ 〈c2〉. This forces either g
2 = c1

or g2 = c3. With the above we get exactly g2 = c3.
Since [g, ab] = c3 and

[a2, ab] = [a, ab]a[a, ab] = gag = gc1 · g = g2c1,

(where we have used the fact that [a, ab] = [a, b]) we have X ′

3 = 〈c3〉 and so
we must have g2c1 ∈ 〈c3〉. But we know that g2 = c3 and so g2c1 = c3c1 =
c2 ∈ 〈c3〉, a contradiction. We have proved that such 2-groups do not exist!

(ii) Finally, assume that d(G) = 3. For any x, y ∈ G we have 〈x, y〉 <
G and so Proposition 1 implies that o([x, y]) ≤ p and [x, y] ∈ Z(G). But
then G′ is elementary abelian (of order p2 or p3) and G′ ≤ Z(G) and so we
have obtained the groups from part (d) of our theorem. For any a, b ∈ G,
[ap, b] = [a, b]p = 1 and so Φ(G) ≤ Z(G). If Z(G) 6≤ Φ(G), then there is a
maximal subgroup M of G such that G = 〈M,x〉, where x ∈ Z(G). But then
G′ = M ′ and so |G′| = 2, a contradiction. Hence Φ(G) = Z(G). Theorem 7
is completely proved.
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