FINITE p-GROUPS ALL OF WHOSE PROPER SUBGROUPS HAVE ITS DERIVED SUBGROUP OF ORDER AT MOST p

Zvonimir Janko
University of Heidelberg, Germany

Abstract

We give in Theorem 7 a complete characterization of the title groups.

Here we give a complete characterization of the title groups. This result is important for the structure theory of finite p-groups and also it solves the Problem 39 stated by Y. Berkovich in [1]. In the proofs we use partly some ideas of J. Q. Zhang and X. H. Li ([5, Proposition 3]) and V. Ćepulić and O. Pylyavska ([4, Proposition 5]). To facilitate the proof of the main result (Theorem 7), we shall first prove some auxiliary results.

Our notation is standard (see [1]) and we consider here only finite p groups.

Proposition 1. Let G be a title group. Then for all $x, y \in G$ such that $\langle x, y\rangle<G$ we have $\mathrm{o}([x, y]) \leq p$ and $[x, y] \in \mathrm{Z}(G)$.

Proof. Suppose that $[x, y] \neq 1$. Let X be a maximal subgroup of G containing $\langle x, y\rangle$. Then $X^{\prime}=\langle[x, y]\rangle \unlhd G$ with $\mathrm{o}([x, y])=p$ and so $[x, y] \in$ $\mathrm{Z}(G)$.

Proposition 2. If G is a title group, then G^{\prime} is abelian of order $\leq p^{3}$.
Proof. We may assume that G is nonabelian. Let $X \neq Y$ be two maximal subgroups of G. Then $\left|X^{\prime}\right| \leq p$ and $\left|Y^{\prime}\right| \leq p$. By a result of A. Mann (Exercise 1.69(a) in [1]), $\left|G^{\prime}:\left(X^{\prime} Y^{\prime}\right)\right| \leq p$ and so $\left|G^{\prime}\right| \leq p^{3}$. If G^{\prime} would be nonabelian, then $\left|G^{\prime}\right|=p^{3}$ and $\mathrm{Z}\left(G^{\prime}\right)$ (being of order p) is cyclic and so (by an elementary result of W. Burnside, see Lemma 1.4 in [1]) G^{\prime} is also cyclic, a contradiction. Hence G^{\prime} is abelian.

[^0]Proposition 3 (Zhang and Li). If G is a title group and $\left|G^{\prime}\right| \geq p^{2}$, then $\mathrm{d}(G) \leq 3$.

Proof. Assume that $\left|G^{\prime}\right| \geq p^{2}$. Then G is not minimal nonabelian and so there exists a maximal subgroup A with $\left|A^{\prime}\right|=p$ and we have $A^{\prime} \unlhd G$. Suppose that $M^{\prime} \leq A^{\prime}$ for each maximal subgroup M of G. Then G / A^{\prime} is minimal nonabelian. But then $\mathrm{d}\left(G / A^{\prime}\right)=2, A^{\prime} \leq \Phi(G)$ and so $\mathrm{d}(G)=2$ and we are done in this case.

We may assume that G has a maximal subgroup B such that $B^{\prime} \notin A^{\prime}$. We get $\left|A^{\prime}\right|=\left|B^{\prime}\right|=p$ and $A^{\prime} \cap B^{\prime}=\{1\}$. Let $a_{1}, a_{2} \in A$ and $a_{3}, a_{4} \in B$ be such that $A^{\prime}=\left\langle\left[a_{1}, a_{2}\right]\right\rangle$ and $B^{\prime}=\left\langle\left[a_{3}, a_{4}\right]\right\rangle$. Since $\left|\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle^{\prime}\right| \geq p^{2}$, we get $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle=G$ and so $\mathrm{d}(G) \leq 4$.

We assume, by a way of contradiction, that $\mathrm{d}(G)=4$. By Proposition 1, for any $x, y \in G$ we have $\mathrm{o}([x, y]) \leq p$ and $[x, y] \in \mathrm{Z}(G)$. This implies that G^{\prime} is elementary abelian and $G^{\prime} \leq \mathrm{Z}(G)$. In particular, G is of class 2.

For any $k \in\{1,2\}$ and $l \in\{3,4\}$, we have $\left\langle a_{1}, a_{2}, a_{l}\right\rangle<G$ and $\left\langle a_{k}, a_{3}, a_{4}\right\rangle<G$ and so $\left\langle a_{1}, a_{2}, a_{l}\right\rangle^{\prime}=\left\langle\left[a_{1}, a_{2}\right]\right\rangle$ and $\left\langle a_{k}, a_{3}, a_{4}\right\rangle^{\prime}=\left\langle\left[a_{3}, a_{4}\right]\right\rangle$. It follows that

$$
\left[a_{k}, a_{l}\right] \in\left\langle\left[a_{1}, a_{2}\right]\right\rangle \cap\left\langle\left[a_{3}, a_{4}\right]\right\rangle=\{1\}
$$

This implies

$$
\left[a_{1}, a_{2} a_{3}\right]=\left[a_{1}, a_{2}\right]\left[a_{1}, a_{3}\right]=\left[a_{1}, a_{2}\right] \text { and }\left[a_{2} a_{3}, a_{4}\right]=\left[a_{2}, a_{4}\right]\left[a_{3}, a_{4}\right]=\left[a_{3}, a_{4}\right]
$$

But then $\left\langle a_{1}, a_{2} a_{3}, a_{4}\right\rangle$ is a proper subgroup of G and we have $\left|\left\langle a_{1}, a_{2} a_{3}, a_{4}\right\rangle^{\prime}\right| \geq$ p^{2}, a contradiction. Our proposition is proved.

Proposition 4 (Y. Berkovich). Suppose that G is a nonabelian p-group. If $\mathrm{d}(G)=2$, then $H^{\prime}<G^{\prime}$ for each $H<G$.

Proof. Let $R<G^{\prime}$ be a G-invariant subgroup of index p in G^{\prime}. Then $\left|(G / R)^{\prime}\right|=p$ and $\mathrm{d}(G / R)=2$. This implies that G / R is minimal nonabelian. For each maximal subgroup H of $G, H^{\prime} \leq R<G^{\prime}$ and we are done.

Proposition 5 (Ćepulić and Pylyavska). Let G be a title p-group with $p>2$. Then for any $a, b \in G$, we have $\left[a^{p}, b\right]=\left[a, b^{p}\right]=[a, b]^{p}$.

Proof. We set $g=[a, b]$. If g commutes with a, then for each $n \geq 1$ we prove by induction that $\left[a^{n}, b\right]=[a, b]^{n}$. Indeed, for $n>1$,

$$
\begin{aligned}
{\left[a^{n}, b\right] } & =\left[a a^{n-1}, b\right]=[a, b]^{a^{n-1}}\left[a^{n-1}, b\right] \\
& =[a, b]\left[a^{n-1}, b\right]=[a, b][a, b]^{n-1}=[a, b]^{n} .
\end{aligned}
$$

In particular, we have $\left[a^{p}, b\right]=[a, b]^{p}$.
We assume now that $[g, a]=z \neq 1$. Since $\langle g, a\rangle<G$, Proposition 1 implies that $\mathrm{o}(z)=p$ and $z \in \mathrm{Z}(G)$. We note that

$$
g^{a}=a^{-1} g a=g\left(g^{-1} a^{-1} g a\right)=g[g, a]=g z \text { and so } g^{a^{i}}=g z^{i}
$$

for all $i \geq 1$. We have

$$
\begin{aligned}
{\left[a^{p}, b\right] } & =\left[a \cdot a^{p-1}, b\right]=[a, b]^{a^{p-1}}\left[a^{p-1}, b\right]=[a, b]^{a^{p-1}}\left[a \cdot a^{p-2}, b\right] \\
& =[a, b]^{a^{p-1}}[a, b]^{a^{p-2}}\left[a^{p-2}, b\right]
\end{aligned}
$$

and so continuing we get finally:

$$
\begin{aligned}
{\left[a^{p}, b\right] } & =[a, b]^{a^{p-1}}[a, b]^{a^{p-2}} \ldots[a, b]^{a}[a, b] \\
& =g^{a^{p-1}} g^{a^{p-2}} \ldots g^{a} g=\left(g z^{p-1}\right)\left(g z^{p-2}\right) \ldots(g z) g \\
& =g^{p} z^{(p-1)+(p-2)+\ldots+1}=g^{p} z^{(p-1) \frac{p}{2}}=g^{p}=[a, b]^{p}
\end{aligned}
$$

where we have used the fact that $p>2$. We have proved that in any case we get $\left[a^{p}, b\right]=[a, b]^{p}$. Now, $\left[a, b^{p}\right]=\left[b^{p}, a\right]^{-1}=[b, a]^{-p}=[a, b]^{p}$, and so our proposition is proved.

Proposition 6. Suppose that G is a p-group which has one of the following properties:
(a) $\left|G^{\prime}\right| \leq p$;
(b) $\mathrm{d}(G)=2,\left|G^{\prime}\right|=p^{2}$;
(c) $p>2, \mathrm{~d}(G)=2, \mathrm{cl}(G)=3, G^{\prime} \cong \mathrm{E}_{p^{3}}, \mho_{1}(G) \leq \mathrm{Z}(G)$;
(d) $\mathrm{d}(G)=3, \operatorname{cl}(G)=2, G^{\prime} \cong \mathrm{E}_{p^{3}}$ or $\mathrm{E}_{p^{2}}$.

Then G has the title property, i.e., $\left|H^{\prime}\right| \leq p$ for each proper subgroup H of G.
Proof. If G is a p-group in (a), then obviously G has the title property. Suppose that G is a p-group in (b). By Proposition 4, for each $H<G$ we have $H^{\prime}<G^{\prime}$ and so G has the title property.

Now assume that G is a p-group in (c). Since $\operatorname{cl}(G)=3$, we have $\{1\} \neq$ $\mathrm{K}_{3}(G) \leq \mathrm{Z}(G)$. But $\mathrm{d}(G)=2$ and so $\{1\} \neq G^{\prime} / \mathrm{K}_{3}(G)$ is cyclic and therefore $\mathrm{K}_{3}(G) \cong \mathrm{E}_{p^{2}}$. We have $\mho_{1}(G) \leq \mathrm{Z}(G)$ and so $\Phi(G)=\mho_{1}(G) G^{\prime}$ is abelian and $G / \Phi(G) \cong \mathrm{E}_{p^{2}}$. Also, $\mho_{1}(G) \mathrm{K}_{3}(G) \leq \mathrm{Z}(G)$ and in fact $\mho_{1}(G) \mathrm{K}_{3}(G)=\mathrm{Z}(G)$. Indeed, if $\mho_{1}(G) \mathrm{K}_{3}(G)<\mathrm{Z}(G)$, then $G / \mathrm{Z}(G) \cong \mathrm{E}_{p^{2}}$. But in that case G has $p+1$ abelian maximal subgroups and this implies (Exercise P1 in [3]) $\left|G^{\prime}\right|=p$, a contradiction. Let M be any maximal subgroup of G so that $|M: \Phi(G)|=p$. Then M is either abelian or $\mathrm{Z}(G)=\mathrm{Z}(M)$ and $M / \mathrm{Z}(M) \cong \mathrm{E}_{p^{2}}$. In the second case we may use Lemma 1.1 in [1] since $\Phi(G)$ is an abelian maximal subgroup of M. From $|M|=p|\mathrm{Z}(M)|\left|M^{\prime}\right|$, we get $\left|M^{\prime}\right|=p$. We have proved that in this case G has the title property.

Suppose that G is a p-group in (d). For any $x, y \in G$ we have $\left[x^{p}, y\right]=$ $[x, y]^{p}=1$ and so $\mho_{1}(G) \leq \mathrm{Z}(G)$. It follows that $\Phi(G)=\mho_{1}(G) G^{\prime} \leq \mathrm{Z}(G)$ and $G / \Phi(G) \cong \mathrm{E}_{p^{3}}$. Let M be any maximal subgroup of G so that $M / \Phi(G) \cong \mathrm{E}_{p^{2}}$. It follows that $p+1$ maximal subgroups of M which contain $\Phi(G)$ are abelian. This implies that $\left|M^{\prime}\right| \leq p$ and we are done.

TheOrem 7. A p-group G has the property that each proper subgroup of G has its derived subgroup of order at most p if and only if one of the following holds:
(a) $\left|G^{\prime}\right| \leq p$;
(b) $\mathrm{d}(G)=2,\left|G^{\prime}\right|=p^{2}$;
(c) $p>2, \mathrm{~d}(G)=2, \operatorname{cl}(G)=3, G^{\prime} \cong \mathrm{E}_{p^{3}}, \mho_{1}(G) \leq \mathrm{Z}(G)$
(note that such p-groups exist. See for example A_{2}-groups of order p^{5}, $p>2$, in Proposition 71.5(b) in [2]);
(d) $\mathrm{d}(G)=3, \operatorname{cl}(G)=2, G^{\prime} \cong \mathrm{E}_{p^{3}}$ or $\mathrm{E}_{p^{2}}$. Here we have $\Phi(G)=\mathrm{Z}(G)$.

Proof. If G is a p-group in (a), (b), (c) or (d), then Proposition 6 implies $\left|H^{\prime}\right| \leq p$ for each subgroup $H<G$.

Suppose that G is a p-group all of whose proper subgroups have its derived subgroup of order $\leq p$. If $\left|G^{\prime}\right| \leq p$, then we have the groups in part (a) of our theorem. In what follows we assume that $\left|G^{\prime}\right| \geq p^{2}$. By Proposition 2, G^{\prime} is abelian of order p^{2} or p^{3}. By Proposition 3 , we have $\mathrm{d}(G) \leq 3$.
(i) First assume $\mathrm{d}(G)=2$. If $\left|G^{\prime}\right|=p^{2}$, then we have obtained the groups in part (b) of our theorem. In the sequel we shall assume here $\left|G^{\prime}\right|=p^{3}$. By a result of A. Mann (Exercise 1.69(a) in [1]), all $p+1$ maximal subgroups M_{i} $(i=1,2, \ldots, p+1)$ of G are nonabelian, $\left|M_{i}^{\prime}\right|=p$ and for any $i \neq j$ we have $M_{i}^{\prime} \cap M_{j}^{\prime}=\{1\}$ so that $M_{i}^{\prime} \times M_{j}^{\prime} \cong \mathrm{E}_{p^{2}}$ and $M_{i}^{\prime} \times M_{j}^{\prime} \leq \mathrm{Z}(G)$. If $\operatorname{cl}(G)=2$, then $\mathrm{d}(G)=2$ would imply that G^{\prime} is cyclic, contrary to the existence of the subgroup $M_{i}^{\prime} \times M_{j}^{\prime} \cong \mathrm{E}_{p^{2}}$. Hence $\operatorname{cl}(G) \geq 3$. But $\{1\} \neq \mathrm{K}_{3}(G)=\left[G, G^{\prime}\right] \leq$ $M_{i}^{\prime} \times M_{j}^{\prime} \leq \mathrm{Z}(G)$ and so $\operatorname{cl}(G)=3$. We set $E=M_{i}^{\prime} \times M_{j}^{\prime}=G^{\prime} \cap \mathrm{Z}(G) \cong \mathrm{E}_{p^{2}}$. Whenever $a, b \in G$ are such that $\langle a, b\rangle=G$, then $[a, b] \in G^{\prime}-E$. Indeed, if $1 \neq[a, b] \in E$, then $\mathrm{o}([a, b])=p$ and $[a, b] \in \mathrm{Z}(G)$. But then $G /\langle[a, b]\rangle$ is abelian and so $G^{\prime}=\langle[a, b]\rangle$ is of order p, a contradiction. Let $g=[a, b]$, where $\langle a, b\rangle=G$ and $g \in G^{\prime}-E$. For any $x \in G$ we have $g^{x}=g e$ with some $e \in E$. Then $g^{x^{i}}=g e^{i}$ and so $g^{x^{p}}=g$. It follows that $\mho_{1}(G)$ centralizes G^{\prime} and so $\Phi(G)=\mho_{1}(G) G^{\prime}$ centralizes G^{\prime}.
(i1) Now assume $p>2$. Suppose in addition that G^{\prime} is not elementary abelian. Then $E=\Omega_{1}\left(G^{\prime}\right)$ and set $\{1\} \neq \mho_{1}\left(G^{\prime}\right)=\langle s\rangle<E$ so that $G^{\prime} /\langle s\rangle \cong$ $\mathrm{E}_{p^{2}}$. If $\mathrm{K}_{3}(G)=\left[G, G^{\prime}\right]=\langle s\rangle$, then $G /\langle s\rangle$ is of class 2 so that $\mathrm{d}(G /\langle s\rangle)=2$ would imply that $G^{\prime} /\langle s\rangle=(G /\langle s\rangle)^{\prime}$ is cyclic, a contradiction. Hence there is an element $c \in G-\Phi(G)$ such that $g^{c}=g l$ with $l=[g, c] \in E-\langle s\rangle$. Let $d \in G-\Phi(G)$ be such that $\langle c, d\rangle=G$ so that $[c, d] \in G^{\prime}-E$. By Proposition $5,\left[c, d^{p}\right]=[c, d]^{p}=s^{j}$, where $j \not \equiv 0(\bmod p)$. Consider the maximal subgroup $C=\langle\Phi(G), c\rangle$. Since $g, c, d^{p} \in C$, we have $C^{\prime} \geq\left\langle[g, c],\left[c, d^{p}\right]\right\rangle=\left\langle l, s^{j}\right\rangle=E \cong$ $\mathrm{E}_{p^{2}}$, a contradiction. We have proved that $G^{\prime} \cong \mathrm{E}_{p^{3}}$. For any $x, y \in G$ we get by Proposition $5,\left[x^{p}, y\right]=[x, y]^{p}=1$ and so $\mho_{1}(G) \leq \mathrm{Z}(G)$. We have obtained the groups given in part (c) of our theorem.
(i2) It remains to consider the case $p=2$. Assume in addition that $\{1\} \neq \mathrm{K}_{3}(G)=\left[G, G^{\prime}\right]<E$ and set $\left[G, G^{\prime}\right]=\langle u\rangle$, where u is an involution
in $E \leq \mathrm{Z}(G)$. Note that $\Phi(G)$ centralizes G^{\prime} and for each $x \in G-\Phi(G)$ and $y \in G^{\prime}-E$ we have $y^{x}=y u^{\prime}$ with $u^{\prime} \in\langle u\rangle$. Set $G_{0}=\mathrm{C}_{G}\left(G^{\prime}\right)$ so that we have $\left|G: G_{0}\right|=\left|G_{0}: \Phi(G)\right|=2$. Since $G /\langle u\rangle$ is of class 2 and $\mathrm{d}(G /\langle u\rangle)=2$, we have $G^{\prime} /\langle u\rangle$ is cyclic. Hence if $g \in G^{\prime}-E$, then $g^{2}=v$ is an involution in $E-\langle u\rangle$ and therefore $E=\Omega_{1}\left(G^{\prime}\right)=\langle u, v\rangle$ and $\mho_{1}\left(G^{\prime}\right)=\langle v\rangle$. Take some elements $a \in G_{0}-\Phi(G)$ and $b \in G-G_{0}$. Then $\langle a, b\rangle=G$ and therefore $[a, b]=h \in G^{\prime}-E$ with $h^{2}=v, h^{a}=h$ and $h^{b}=h u$. Consider the maximal subgroup $H=\langle\Phi(G), b\rangle$. Since

$$
\left[a^{2}, b\right]=[a, b]^{a}[a, b]=h^{a} h=h^{2}=v \text { and }[h, b]=u,
$$

we get $H^{\prime} \geq\langle u, v\rangle=E \cong \mathrm{E}_{4}$, a contradiction.
We have proved that $\mathrm{K}_{3}(G)=\left[G, G^{\prime}\right]=E=G^{\prime} \cap \mathrm{Z}(G) \cong \mathrm{E}_{4}$. Let $a, b \in G-\Phi(G)$ be such that $\langle a, b\rangle=G$. Then $g=[a, b] \in G^{\prime}-E,[g, a]=c_{1}$, $[g, b]=c_{2}$, where $\left\langle c_{1}, c_{2}\right\rangle=E=\mathrm{K}_{3}(G)$. We set $c_{3}=c_{1} c_{2}$ and get

$$
[g, a b]=[g, b][g, a]^{b}=[g, b][g, a]=c_{2} c_{1}=c_{3} .
$$

We compute the commutator subgroups of our three nonabelian maximal subgroups $X_{1}=\langle\Phi(G), a\rangle, X_{2}=\langle\Phi(G), b\rangle$ and $X_{3}=\langle\Phi(G), a b\rangle$, where we note that we must have $\left|X_{i}^{\prime}\right|=2$ for $i=1,2,3$.

Since $[g, a]=c_{1}$ and

$$
\left[a, b^{2}\right]=[a, b][a, b]^{b}=g g^{b}=g \cdot g c_{2}=g^{2} c_{2}
$$

we have $X_{1}^{\prime}=\left\langle c_{1}\right\rangle$ and so we must have $g^{2} c_{2} \in\left\langle c_{1}\right\rangle$. This forces either $g^{2}=c_{2}$ or $g^{2}=c_{3}$.

Since $[g, b]=c_{2}$ and

$$
\left[a^{2}, b\right]=[a, b]^{a}[a, b]=g^{a} g=g c_{1} \cdot g=g^{2} c_{1}
$$

we have $X_{2}^{\prime}=\left\langle c_{2}\right\rangle$ and so we must have $g^{2} c_{1} \in\left\langle c_{2}\right\rangle$. This forces either $g^{2}=c_{1}$ or $g^{2}=c_{3}$. With the above we get exactly $g^{2}=c_{3}$.

Since $[g, a b]=c_{3}$ and

$$
\left[a^{2}, a b\right]=[a, a b]^{a}[a, a b]=g^{a} g=g c_{1} \cdot g=g^{2} c_{1}
$$

(where we have used the fact that $[a, a b]=[a, b]$) we have $X_{3}^{\prime}=\left\langle c_{3}\right\rangle$ and so we must have $g^{2} c_{1} \in\left\langle c_{3}\right\rangle$. But we know that $g^{2}=c_{3}$ and so $g^{2} c_{1}=c_{3} c_{1}=$ $c_{2} \in\left\langle c_{3}\right\rangle$, a contradiction. We have proved that such 2 -groups do not exist!
(ii) Finally, assume that $\mathrm{d}(G)=3$. For any $x, y \in G$ we have $\langle x, y\rangle<$ G and so Proposition 1 implies that $\mathrm{o}([x, y]) \leq p$ and $[x, y] \in \mathrm{Z}(G)$. But then G^{\prime} is elementary abelian (of order p^{2} or p^{3}) and $G^{\prime} \leq \mathrm{Z}(G)$ and so we have obtained the groups from part (d) of our theorem. For any $a, b \in G$, $\left[a^{p}, b\right]=[a, b]^{p}=1$ and so $\Phi(G) \leq \mathrm{Z}(G)$. If $\mathrm{Z}(G) \not \leq \Phi(G)$, then there is a maximal subgroup M of G such that $G=\langle M, x\rangle$, where $x \in \mathrm{Z}(G)$. But then $G^{\prime}=M^{\prime}$ and so $\left|G^{\prime}\right|=2$, a contradiction. Hence $\Phi(G)=\mathrm{Z}(G)$. Theorem 7 is completely proved.

References

[1] Y. Berkovich, Groups of prime power order, Vol. 1, Walter de Gruyter, Berlin, 2008.
[2] Y. Berkovich and Z. Janko, Groups of prime power order, Vol. 2, Walter de Gruyter, Berlin, 2008.
[3] Y. Berkovich and Z. Janko, Groups of prime power order, Vol. 3, Walter de Gruyter, Berlin, 2011.
[4] V. Ćepulić and O. Pylyavska, Determination of p-groups all of whose proper subgroups have a commutator subgroup of order equal or less than $p(p \geq 3)$, Naukovi zapysky, Kyyevo 39 (2005), 28-34.
[5] J. Q. Zhang and X. H. Li, Finite p-groups all of whose proper subgroups have small derived subgroups, Sci. China Math. 53 (2010), 1357-1362.
Z. Janko

Mathematical Institute
University of Heidelberg
69120 Heidelberg
Germany
E-mail: janko@mathi.uni-heidelberg.de
Received: 16.11.2010.
Revised: 1.12.2010.

[^0]: 2010 Mathematics Subject Classification. 20D15.
 Key words and phrases. Finite p-groups, minimal nonabelian p-groups, commutator subgroups, nilpotency class of p-groups.

