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FINITE GROUPS WITH A NONLINEAR ITRREDUCIBLE

CHARACTER HAVING FEW ZEROS

EMMANUEL ZHMUD

ABSTRACT. We classify the finite groups with a nonlinear irreducible
character x such that the number of zeros ny of x satisfies a certain relation.

Let

G be a finite group,

Irr(G) be the set of irreducible characters of G,

Lin(G) be the set of linear characters of G,

Irr; (G) be the set of nonlinear irreducible characters of G,

x € Irr(G),

U, ={g € G| |x(g)| = 1}, the set of unitary elements of x (it is easy
to check that the set U, is invariant under G-conjugation),

T, ={g9 € G| x(g) = 0}, the set of zeros of x (it is easy to check that
the set T, is invariant under G-conjugation),

N, = (Ty), the subgroup generated by zeros of x (by the previous
paragraph, N, is a normal subgroup of G),

e n, = |T, |, the number of zeros of ¥,
e 7.(H)=|T, N H|, the number of zeros of x on a given subgroup H of

G,
Z(x) = {z € G | |x(x)] = x(1)} (Z(x) is normal in G and
Z(x)/ ker(x) = Z(G/ ker(x))-

A classical theorem by Burnside asserts that if x € Irr1(G), then the set
T, # 0.

One of the main results of this note is the following
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THEOREM A. If x € Irr1(G) and g € Ty, is of order m, then
ny > m+ p(m),
where ¢ is Euler’s totient function.

In Theorem A, as g, one can take an element of maximal order in the set
Ty.

DEFINITION 1. A group G is said to be an A-group provided it satisfies
(A) n, =m+p(m)

for some x € Irr(G) and g € T, of order m. A character x satisfying the
condition (A), is said to be an A-character.

Example: S3, the symmetric group of degree 3 is an A-group with respect
to x € Irr1(G) (of degree 2) and g € S3 of order m = 2 (all elements of the
set T, have the same order 2).

The A-groups are classified in the following

THEOREM B. If G is an A-group with respect to x € Irr1(G) and g € T,
of order m, then x(1) =2 and one of the following holds:

(a) G is a nonabelian 2-group of order 22T with a cyclic subgroup of index

In part (a) of Theorem B, we have two cases. (i) If G is of maximal
class, then x has kernel of index 8 in G, T, = G — ®(G), m = 2* and
n, =2 + 221 (i) Now let G = (a,b | a® = b2 =1, a® = a'+2" ). Here
is faithful, T, = G — ®(G), m = 2*, n, = 2* 42271,

In part (b) of Theorem B, y = 7%, where 7 € Lin(Cg(G")) is faithful,
Ty =G —Cg(G"), m=2" and n, = |G — Cg(G")| =2* + 21,

In part (¢) of Theorem B, x is faithful (G has exactly three faithful
irreducible characters and each of them can be taken as x), T, = G' —Z(G’),
m=4,n, =4+2.

Theorem B follows from a long series of lemmas.

The following theorem is cited many times in what follows.

THEOREM 2 (A. I. Veitsblit; see [BZ, Theorem 21.1]). If x € Irr1(G) and
H < G, then
Ty — H|
|H|
with equality if and only if G — H C T, UU,.
Note that |T, — H| = |Ty| — [Ty N H| =n, — 1, (H).
In what follows x is a fixed nonlinear irreducible character of the group

G.

(*) (X, xm) <1+
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LEMMA 3. If H < G, x € Irr1(GQ) and xu & Irr(H), then n, > |H|+
Ty (H) with equality if and only if

(1) (@) o xm) =2, (i) G = HC Ty UUy.
PROOF. See [BZ, Lemma 21.13]. O

LEMMA 4. Under the hypotheses of Lemma 3, if g € G — Z(x), then
ny > [Ca(g)l 4+ 12 (Calg))-
PROOF. See [BZ, Corollary 21.14]. O

LEMMA 5. Let x € Irr1(G), x(1) = 2. Then

(a) Ty ={g € G-Z(x) | 9° € Z(x)}.
(b) Uy={9€G-2(x)|¢* € Z(x)}-

PROOF. Let T' be an irreducible matrix representation affording the
character x and let («, 8) be the spectrum of the matrix I'(g). Then (a™, ™)
is the spectrum of the matrix I'(¢g"™) = I'(g)™ for every positive integer n.

(i) Suppose that g € G — Z(x) and g?> € Z(x). Since I'(g?) is a scalar
matrix, we have o® = 32 so a = 3. Since g € Z(x) (i.e., the matrix I'(g) is
non-scalar), we get o« = —f3 so that x(g) = tr(I'(g)) = a+ 6 =0, i.e., g € T,.

Conversely, if g € T, then o + = x(g9) =0, i.e., &« = —F. In this case,
a? = 2 so that I'(g?) is a scalar matrix, i.e., g> € Z(x), and (a) is proven.

(ii) Now suppose that g € G — Z(x) and ¢ € Z(x). Then o = 32 since
I'(¢g3) is a scalar matrix. Since g & Z(x), we get a # (3. Therefore, a = €f3,
where € is a primitive 3-th root of unity. Since 1 + ¢ + ¢ = 0, we get

x(g) =tr(T(g)) =a+B= (1468 =—€5.

Since f3 is a root of unity (indeed, 8! = 1), it follows that |x(g)| = 1, i.e.,
g € U,.

Conversely, suppose that g € U,. Then g € G — Z(x) since x(1) > 1.
Since |a+ 8| = |x(g)| = 1 then, setting a8~ = ¢, we get 1 = |B||1+¢€| = |1 +¢]
(recall that o and 3 are roots of 1). Let € = €'®, where ¢ = arg(e). Then it
follows from

Il=]1+eP=0Q+e)(1+6) =2+c+¢€

that cos¢p = —% so that ¢ = —% z%, a primitive third root of 1. Since
a = €f3, then o® = 33; in this case, I'(¢3) is a scalar matrix so that g3 € Z(x),

and the proof of (b) is complete. O

DEFINITION 6. Let x be an irreducible character of a group G. A proper
subgroup H of G is said to be weakly y-maximal in G provided x g & Irr(H)
andn, = |H|+71(H) (or, what is the same, xg & Irr(H) and |H| = |T,—H]).
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Lemma 3 shows that the weak y-maximality of H < G is equivalent
(under the assumption yg € Irr(H)) to condition (1). It is easy to see that
x-maximal subgroups of G are weakly y-maximal. Recall [BZ, §21.2] that
H < Gis x-maximal if x g is reducible and |H| = n,, (in this case, 7, (H) = 0).
It follows from condition (ii) of Lemma 3 that, if H < G is weakly y-maximal,
then Z(x) < H.

LEMMA 7. If an abelian H < G is weakly x-mazimal with respect to
x € Irr1(G), then x(1) =2 and g* € Z(x) for all g € T,.

ProoF. By Lemma 3, (xg,xn) = 2 so xg = ¥ + ¢', where ¢,¢’ €
Lin(H) and ¢ # ¢’ (here we use Frobenius’ reciprocity law). Therefore,
x(1) = 2. The second assertion follows from Lemma 5(a). O

LEMMA 8. If N, = G and H is a weakly x-mazimal subgroup of a group
G, then H is mazimal in G.

Proor. Assume that H < K < G. Then G-K Cc G-H C T, UU,
(Lemma 3). By (x), we have
ITy — K]

K|
The same holds for H instead of K, and this is a contradiction since 0 <
Ty, — K| <|Ty—H|and |K| > |H|. Thus, K does not exist so H is maximal
in G. O

(XK, xK) =14+

LEMMA 9. Suppose that g € Ty, and H = Cg(g) weakly x-mazimal in G.
Then

(a) 9% € Z(x).
(b) xH = Y1 + 2, where 11,19 € Irr(H) are distinct of equal degree.

PrROOF. We have (xp,xn) = 2 (Lemma 3) so xg = %1 + )2, where
1,12 € Irr(H) are distinct. Let T' be an irreducible representation of G
affording the character y and I'; an irreducible representation of H affording
the character ¢;, i = 1,2. One can assume that I'(z) = diag(I'1(z),T'2(x))
for every x € H. If, in particular, x = g, then I';(g) = a;1,,,, where n; =
deg(T';) = ¢i(1) (i = 1,2) and I, is the identity n; x n; matrix (recall that
g € Z(H)). Therefore, I'(g) = diag(a11,,, a2l,,). Here a; and as are roots
of 1.

It follows from 0 = x(g) = ni1a; +ngas that ny = |n1aq| = | —neas| = ne
since |a1]| = Jag| = 1. Thus, ¥1(1) = 9¥2(1) and a3 = —as9, so we get
I(g) = ardiag(ln,, ~In,) so I'(g?) = afl,, where n = 2n; = deg(T') = x(1).
Therefore, g? € Z(x), and the proof is complete. O

LEMMA 10. Ifg € Ty, and H = Cg(g), then n, > |H| + 7 (H).
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PROOF. Since g € Z(x), the character y g is reducible, and the result
follows from Lemma 3. O

LEMMA 11. If H <G is weakly x-mazimal, then |G : H| = 2.

PROOF. As in the proof of Lemma 9, (x#, xz) = 2 (Lemma 3) so xg =
P+, where ¥, 4’ € Irr(H) are distinct. Since H<G, we have |G : I¢(¢)] = 2
(this follows by Clifford theory; here I (¢) is the inertia group of ¢ in G).
Since x is induced from H, we get T, 2 G — H; then N, = G. Therefore,
H is maximal in G (Lemma 8). Thus, H = Ig(®), and so |G : H| = |G :
I (w)| = 2, and we are done. O

PROOF OF THEOREM A. Let x € Irr1(G), g € Ty, and o(g) = m. Setting
H = Cg(g), we get, by Lemma 10, n, > |H|+ 7, (H). Let {v1,...,Vum)}
be the full reduced residue system (mod m). Then the elements ¢g* (i =
1,...,p(m)) are pairwise distinct. It suffices to show that these elements are
contained in T,. Let € be a primitive |G|-th root of 1 and G = Gal(Q(¢)/Q).
There exists o; € G such that o;(e) =€ (i =1,...,p(m)). Since x(g) =0,
then x(¢"") = o0i(x(g)) = 0 (recall that x(g) is a sum of powers of €) so
that g € T, N H, and we conclude that 7, (H) = |H N'T,| > ¢(m). Next,
|H| > o(g) = m since g € H. It follows from the inequality in the second
sentence of the proof that n, > m + ¢(m). O

PRrROOF OF THEOREM B. 1°. Let G be an A-group, i.e., for some y €
Irr1 (G) we have n, = m + ¢(m), where m is the order of a suitable g € T,
(note that m > 1 since g # 1). It follows from the proof of Theorem A that
for H = Cg(g), we have

m < [H| <ny — 7 (H) < ny — p(m) = m.
Therefore, |H| = m, i.e., (g) = H(= Cg(g)). We also have 7, (H) = p(m)
and |H| = n, — 7,(H), i.e., H is weakly yx-maximal. Since H is cyclic, we
have x(1) = 2 (Lemma 9(b)). Besides, by the paragraph preceding Lemma 7,
we have Z(x) < H, and again, by Lemma 7, ¢g> € Z(x). Let x — Z be the
natural homomorphism of H to H = H/Z(x). We have |H : (g?)| = 2. Since

9? € Z(x) # H = (g), we get
(2) Z(x) = (9%), |[H : Z(x)| = 2.

2°. Let us prove that H — Z(x) C Ty. To this end, rewrite the equality
(X, xm) =2 in the following form:

S (@) = 21H| = 2m.
reH
On the other hand, we have

2m=3 k@)= Y Kk@F+ Y @

zeH zEZ(X) zE€H—Z(x)
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=xWZC)I+ > Ix@)*
z€H—-Z(x)
Since H is abelian then, by Lemma 7, x(1) = 2, and we obtain
m
X(1)*|Z(x) = 4- 5 = 2m.
Therefore, 3~ c ir_7(y) Ix(z)|?> =0, ie., H—Z(x) C Ty, as desired.

3°. Since G — H C T,, U U, (Lemma 3), it follows from 2° that
3) G~ 7(x) C T, U,
By inequality (7) in [BZ, Chapter 21], we have n, > |Z(x)|(x(1)* — 1).
Therefore, by hypothesis and (2), we obtain

3

(4) m+e(m) =ny > |[Z0)I(x(1)* = 1) = 5m.
It follows that ¢(m) > %m. In this case, since m is even, we get m = 2* for
some positive integer X\. Thus,

(5) H={g), Z(x) = (¢%), |[H| =2, |Z(x)| = 2",
(6) n, =2 231 = 3. 231,

We consider the following three possibilities for N, and H. Recall that
H is weakly y-maximal.

CASE 1. Suppose that Ny, = G and H < G.

In this case, |G : H| = 2 (Lemma 11). Therefore, by (5), |G| = 2 1,
where A > 2 since G is nonabelian. Thus, G is one of the following four
nonabelian 2-groups with cyclic subgroup H of index 2 (see [B, Theorem
1.2]):

G(Al) = {(a,b | a? = 1,2 =1,a"=a"1) = Doyris,
G&Q) = (a,b | a? = 1, 0% = a2x71, a’ =a71) =2 Qors,
G =(ab]a® =1,02=1,a"=a "2 ") 2 SDyri1, A>3,
GE\4) = (a,b | a® = L =1,a"= a1+2A71> = Mort1, A > 3.

Let us prove that all these four groups are A-groups.

Let i <3 and G = GE\Z). Take in the Frattini subgroup ®(G) a subgroup
L of index 2 and let x € Irri(G), where G = G/ L is nonabelian of order 8.
Then xyc) = 29, where 1 is the faithful linear character of Z(G) (Clifford)
S0 Xa(c) = 2. By reciprocity, ¢ = 2x so G — ®(G) C Ty. Since ¥ is linear,
we get T, N ®(G) = 0, and we conclude that T, = G — ®(G). Thus,

n, = |G- ®G)| =2 - 221 =3. 22" =m + p(m),

where m = 2% is the order of a generator of a cyclic subgroup of index 2 in
G. Thus, all three groups are A-groups.
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Now let G = Gg\4) = Myxrt1. In this case, G’ is the unique minimal normal
subgroup of G and Z(G) = ®(G) is cyclic of index 4 in G. Let x € Irry (G).
Then xz(qy = 2¢, where ¢ is linear (Clifford). Therefore, by reciprocity,
Y% =2x s0 Ty O G —Z(G) and, since T, NZ(G) = 0, we conclude, as in the
previous paragraph, that G is an A-group.

CASE 2. Suppose that Ny, = G and H is not normal in G.
We claim that

(7) Z(x) = Z(G).
Set K = Cg(g?). Since Z(x) = (¢?) (see (2)), it follows that K =

Ce(Z(x)) is normal in G. Since H < K and H is maximal in G (Lemma 8),
we have K € {H,G}. Since H is not normal in G, we obtain K = G, and so

Z(x) = Z(G).
Since H is maximal in G and nonnormal, we get
(8) Ng(H) = H.
Take x € H — Z(G). Then (x) = H, by (5), and so, by (8), we have
9) Cg(z) = H for all x € H — Z(G).
It follows from (2) and (8) that
(10) HNH'=7(G) forallt € G — H.

~ Set G = G/Z(G). Then H is a nonnormal maximal subgroup of order 2 in
G so G = H - F'is a Frobenius group with complement H of order 2 (see also
(8) and (10)). Since the involution in H inverts I, the subgroup F is abelian
and all subgroups of F' are normal in G' (Burnside). Since H is maximal in
G, it follows that |F| = p > 2, a prime. Thus,
(11) G =2 Dy, the dihedral group.

Set D = J;c H'. Since D — Z(G) C T, and T, is a normal subset of
G, we get D —Z(G) C T,. By (6), (10), (11) and assumption, we have

3.-227 =n, > |D-Z(G)|=2""G: H =21 p,

and we conclude that p = 3 since p > 2. Thus, G = H - G’, where |G'| = 3.
Write C' = Cg(G’); then C = Z(G) x G’ is cyclic of index 2 in G. In this
case, Y = p%, where u € Lin(C). Since x vanishes on the set G — C of

cardinality 3 -2*~1 = n,, it follows that G is an A-group with respect to x
since m =o(g) =2*,3-22"1 =2 422" =m+ p(m) and g€ G — C =T,

CASE 3. Suppose that N, < G.
Set Ny, = G1, x1 = X@,; then x1 € Irr(G1), by [BZ, Exercise 21.3(a)].
We retain the above introduced notation (see (5)):

g € Txa m = O(g)a H= <g>a |H| = 2/\'
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It follows from T, = T,, (indeed, T, C N, = G1) that n,, = m + ¢(m) so
that G is an A-group of one of the types considered in Cases 1 and 2.

By [BZ, Exercise 21.3(b)], G — G1 C U,. Since H is abelian, we get
x(1) = 2, by Lemma 7. Then z°® € Z(x) for all z € G — G (Lemma 5(b)). By
[BZ, Exercise 21.3(c)], we have Z(x) < G1 so G/G; is a group of exponent 3:

(13) IG/Gy| = 3%, a > 1.

By [BZ, Lemma 21.4(b)], |G/G1| divides n,. By (6), n, = 3-2*~! hence, by
(13), we get a = 1. Thus,
(14) |G : Gy = 3.

Since H = (g) is a 2-subgroup and G; <G is of index 3, we get H < Gj.
Since Aut(H) is abelian 2-group, it follows that H < Gj.

Assume that H is not contained in Gy. Then Z(x1) = Z(G1) (see equality
(7) in Case 2). Since G1/Z(G1) = S3 (see equality (11) in Case 2 and take
into account that p = 3), we obtain

G| = 6]Z(G1)| = 6|Z(y)| = 6- 221 = 2* . 3.
Therefore, in view of (14), we have
1) Gl = 3ch| = 2* 0.

Let P € Syl;(G); then |P| =9 so P is abelian.

Set K = P -Z(x); then K is abelian since Z(x) € Syly(K) is cyclic and
normal in K so P <G (Burnside), and |G : K| = 2, by (15) and (5). It
follows that x g is reducible so x is induced from K, and we conclude that
G- K CT,. Then N, =(T,) > (G — K) = G, contrary to the assumption.

Thus, H < G;. In this case, G is one of groups GE\Z), i=1,2,3,4 (see
Case 1). We have (see (14))

(16) |G1| =2 M1 |Gy - H| =2, |G| =213, |G : G1| = 3.

Let G; % Qs. Then G = G; x P, where |P| = 3 (by [B, Theorem 34.8],
Aut(G,) is a 2-group). Since P < Z(x), it follows that Z(x) £ G1, contrary
to [BZ, Exercise 21.3(c)].

It remains to consider the case G1 = Qg. In this case, G/Z(G1) = Ay.
Since Z(G1) = Z(G) < G', it follows that Z(G1) is the Schur multiplier of Ay,
and we conclude that G = SL(2, 3), the group of part (c). O

Let x € Irr1 (@), g € T, of order m = 2* and H = (g) be as in the proof of
Theorem B; recall then n, = 3-2*~1. Since x(1) = 2, we have (xu, xu) = 2.

In part (a) of Theorem B, the character x has on H exactly |H —®(G)| =
22~1 zeros. Therefore

Ty — H| 32371 oAl
(17) LYY * 2

so that in (x) we have equality. By Veitsblit’s theorem, G — H C T, UU,,.
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In part (b) of theorem B, the character y has on H exactly |H—Cq(G')| =
22~1 zeros, so (17) holds, and we have G — H C T, U U, again.

In part (c) of Theorem B, the character x has on H exactly two zeros.
Therefore,

|T, — H| 6—2
1 =1 =2
+ V] + 1
so, as above, G — H C T, UU,.
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