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FINITE GROUPS WITH A NONLINEAR IRREDUCIBLE

CHARACTER HAVING FEW ZEROS

Emmanuel Zhmud

Abstract. We classify the finite groups with a nonlinear irreducible
character χ such that the number of zeros nχ of χ satisfies a certain relation.

Let

• G be a finite group,
• Irr(G) be the set of irreducible characters of G,
• Lin(G) be the set of linear characters of G,
• Irr1(G) be the set of nonlinear irreducible characters of G,
• χ ∈ Irr(G),
• Uχ = {g ∈ G | |χ(g)| = 1}, the set of unitary elements of χ (it is easy
to check that the set Uχ is invariant under G-conjugation),

• Tχ = {g ∈ G | χ(g) = 0}, the set of zeros of χ (it is easy to check that
the set Tχ is invariant under G-conjugation),

• Nχ = 〈Tχ〉, the subgroup generated by zeros of χ (by the previous
paragraph, Nχ is a normal subgroup of G),

• nχ = |Tχ|, the number of zeros of χ,
• τχ(H) = |Tχ ∩H |, the number of zeros of χ on a given subgroup H of
G,

• Z(χ) = {x ∈ G | |χ(x)| = χ(1)} (Z(χ) is normal in G and
Z(χ)/ ker(χ) = Z(G/ ker(χ)).

A classical theorem by Burnside asserts that if χ ∈ Irr1(G), then the set
Tχ 6= ∅.

One of the main results of this note is the following
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Theorem A. If χ ∈ Irr1(G) and g ∈ Tχ is of order m, then

nχ ≥ m+ ϕ(m),

where ϕ is Euler’s totient function.

In Theorem A, as g, one can take an element of maximal order in the set
Tχ.

Definition 1. A group G is said to be an A-group provided it satisfies

(A) nχ = m+ ϕ(m)

for some χ ∈ Irr(G) and g ∈ Tχ of order m. A character χ satisfying the
condition (A), is said to be an A-character.

Example: S3, the symmetric group of degree 3 is an A-group with respect
to χ ∈ Irr1(G) (of degree 2) and g ∈ S3 of order m = 2 (all elements of the
set Tχ have the same order 2).

The A-groups are classified in the following

Theorem B. If G is an A-group with respect to χ ∈ Irr1(G) and g ∈ Tχ

of order m, then χ(1) = 2 and one of the following holds:

(a) G is a nonabelian 2-group of order 2λ+1 with a cyclic subgroup of index
2.

(b) G = 〈a, b | a3 = b2
λ

= 1, ab = a−1〉, λ ≥ 1.
(c) G ∼= SL(2, 3).

In part (a) of Theorem B, we have two cases. (i) If G is of maximal
class, then χ has kernel of index 8 in G, Tχ = G − Φ(G), m = 2λ and

nχ = 2λ + 2λ−1. (ii) Now let G = 〈a, b | aλ = b2 = 1, ab = a1+2λ−1

〉. Here χ
is faithful, Tχ = G− Φ(G), m = 2λ, nχ = 2λ + 2λ−1.

In part (b) of Theorem B, χ = τG, where τ ∈ Lin(CG(G
′)) is faithful,

Tχ = G− CG(G
′), m = 2λ and nχ = |G− CG(G

′)| = 2λ + 2λ−1.
In part (c) of Theorem B, χ is faithful (G has exactly three faithful

irreducible characters and each of them can be taken as χ), Tχ = G′ −Z(G′),
m = 4, nχ = 4 + 2.

Theorem B follows from a long series of lemmas.
The following theorem is cited many times in what follows.

Theorem 2 (A. I. Veitsblit; see [BZ, Theorem 21.1]). If χ ∈ Irr1(G) and
H ≤ G, then

(∗) 〈χH , χH〉 ≤ 1 +
|Tχ −H |

|H |

with equality if and only if G−H ⊆ Tχ ∪ Uχ.

Note that |Tχ −H | = |Tχ| − |Tχ ∩H | = nχ − τχ(H).
In what follows χ is a fixed nonlinear irreducible character of the group

G.
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Lemma 3. If H < G, χ ∈ Irr1(G) and χH 6∈ Irr(H), then nχ ≥ |H | +
τχ(H) with equality if and only if

(1) (i) 〈χH , χH〉 = 2, (ii) G−H ⊆ Tχ ∪ Uχ.

Proof. See [BZ, Lemma 21.13].

Lemma 4. Under the hypotheses of Lemma 3, if g ∈ G− Z(χ), then

nχ ≥ |CG(g)|+ τχ(CG(g)).

Proof. See [BZ, Corollary 21.14].

Lemma 5. Let χ ∈ Irr1(G), χ(1) = 2. Then

(a) Tχ = {g ∈ G− Z(χ) | g2 ∈ Z(χ)}.
(b) Uχ = {g ∈ G− Z(χ) | g3 ∈ Z(χ)}.

Proof. Let Γ be an irreducible matrix representation affording the
character χ and let (α, β) be the spectrum of the matrix Γ(g). Then (αn, βn)
is the spectrum of the matrix Γ(gn) = Γ(g)n for every positive integer n.

(i) Suppose that g ∈ G − Z(χ) and g2 ∈ Z(χ). Since Γ(g2) is a scalar
matrix, we have α2 = β2 so α = ±β. Since g 6∈ Z(χ) (i.e., the matrix Γ(g) is
non-scalar), we get α = −β so that χ(g) = tr(Γ(g)) = α+ β = 0, i.e., g ∈ Tχ.

Conversely, if g ∈ Tχ, then α + β = χ(g) = 0, i.e., α = −β. In this case,
α2 = β2 so that Γ(g2) is a scalar matrix, i.e., g2 ∈ Z(χ), and (a) is proven.

(ii) Now suppose that g ∈ G− Z(χ) and g3 ∈ Z(χ). Then α3 = β3 since
Γ(g3) is a scalar matrix. Since g 6∈ Z(χ), we get α 6= β. Therefore, α = ǫβ,
where ǫ is a primitive 3-th root of unity. Since 1 + ǫ+ ǫ2 = 0, we get

χ(g) = tr(Γ(g)) = α+ β = (1 + ǫ)β = −ǫ2β.

Since β is a root of unity (indeed, β|G| = 1), it follows that |χ(g)| = 1, i.e.,
g ∈ Uχ.

Conversely, suppose that g ∈ Uχ. Then g ∈ G − Z(χ) since χ(1) > 1.
Since |α+β| = |χ(g)| = 1 then, setting αβ−1 = ǫ, we get 1 = |β||1+ǫ| = |1+ǫ|
(recall that α and β are roots of 1). Let ǫ = eiφ, where φ = arg(ǫ). Then it
follows from

1 = |1 + ǫ|2 = (1 + ǫ)(1 + ǭ) = 2 + ǫ+ ǭ

that cosφ = − 1
2 so that ǫ = − 1

2 + i
√
3
2 , a primitive third root of 1. Since

α = ǫβ, then α3 = β3; in this case, Γ(g3) is a scalar matrix so that g3 ∈ Z(χ),
and the proof of (b) is complete.

Definition 6. Let χ be an irreducible character of a group G. A proper
subgroup H of G is said to be weakly χ-maximal in G provided χH 6∈ Irr(H)
and nχ = |H |+τχ(H) (or, what is the same, χH 6∈ Irr(H) and |H | = |Tχ−H |).
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Lemma 3 shows that the weak χ-maximality of H < G is equivalent
(under the assumption χH 6∈ Irr(H)) to condition (1). It is easy to see that
χ-maximal subgroups of G are weakly χ-maximal. Recall [BZ, §21.2] that
H < G is χ-maximal if χH is reducible and |H | = nχ (in this case, τχ(H) = 0).
It follows from condition (ii) of Lemma 3 that, if H < G is weakly χ-maximal,
then Z(χ) ≤ H .

Lemma 7. If an abelian H < G is weakly χ-maximal with respect to
χ ∈ Irr1(G), then χ(1) = 2 and g2 ∈ Z(χ) for all g ∈ Tχ.

Proof. By Lemma 3, 〈χH , χH〉 = 2 so χH = ψ + ψ′, where ψ, ψ′ ∈
Lin(H) and ψ 6= ψ′ (here we use Frobenius’ reciprocity law). Therefore,
χ(1) = 2. The second assertion follows from Lemma 5(a).

Lemma 8. If Nχ = G and H is a weakly χ-maximal subgroup of a group
G, then H is maximal in G.

Proof. Assume that H < K < G. Then G − K ⊂ G −H ⊆ Tχ ∪ Uχ

(Lemma 3). By (∗), we have

〈χK , χK〉 = 1 +
|Tχ −K|

|K|
.

The same holds for H instead of K, and this is a contradiction since 0 <
|Tχ−K| ≤ |Tχ−H | and |K| > |H |. Thus, K does not exist so H is maximal
in G.

Lemma 9. Suppose that g ∈ Tχ and H = CG(g) weakly χ-maximal in G.
Then

(a) g2 ∈ Z(χ).
(b) χH = ψ1 + ψ2, where ψ1, ψ2 ∈ Irr(H) are distinct of equal degree.

Proof. We have 〈χH , χH〉 = 2 (Lemma 3) so χH = ψ1 + ψ2, where
ψ1, ψ2 ∈ Irr(H) are distinct. Let Γ be an irreducible representation of G
affording the character χ and Γi an irreducible representation of H affording
the character ψi, i = 1, 2. One can assume that Γ(x) = diag(Γ1(x),Γ2(x))
for every x ∈ H . If, in particular, x = g, then Γi(g) = αiIni

, where ni =
deg(Γi) = ψi(1) (i = 1, 2) and Ini

is the identity ni × ni matrix (recall that
g ∈ Z(H)). Therefore, Γ(g) = diag(α1In1

, α2In2
). Here α1 and α2 are roots

of 1.
It follows from 0 = χ(g) = n1α1+n2α2 that n1 = |n1α1| = |−n2α2| = n2

since |α1| = |α2| = 1. Thus, ψ1(1) = ψ2(1) and α1 = −α2, so we get
Γ(g) = α1diag(In1

,−In1
) so Γ(g2) = α2

1In, where n = 2n1 = deg(Γ) = χ(1).
Therefore, g2 ∈ Z(χ), and the proof is complete.

Lemma 10. If g ∈ Tχ and H = CG(g), then nχ ≥ |H |+ τχ(H).
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Proof. Since g 6∈ Z(χ), the character χH is reducible, and the result
follows from Lemma 3.

Lemma 11. If H ⊳ G is weakly χ-maximal, then |G : H | = 2.

Proof. As in the proof of Lemma 9, 〈χH , χH〉 = 2 (Lemma 3) so χH =
ψ+ψ′, where ψ, ψ′ ∈ Irr(H) are distinct. Since H⊳G, we have |G : IG(ψ)| = 2
(this follows by Clifford theory; here IG(ψ) is the inertia group of ψ in G).
Since χ is induced from H , we get Tχ ⊇ G − H ; then Nχ = G. Therefore,
H is maximal in G (Lemma 8). Thus, H = IG(ψ), and so |G : H | = |G :
IG(ψ)| = 2, and we are done.

Proof of Theorem A. Let χ ∈ Irr1(G), g ∈ Tχ and o(g) = m. Setting
H = CG(g), we get, by Lemma 10, nχ ≥ |H | + τχ(H ). Let {ν1, . . . , νϕ(m)}
be the full reduced residue system (mod m). Then the elements gνi (i =
1, . . . , ϕ(m)) are pairwise distinct. It suffices to show that these elements are
contained in Tχ. Let ǫ be a primitive |G|-th root of 1 and G = Gal(Q(ǫ)/Q).
There exists σi ∈ G such that σi(ǫ) = ǫνi (i = 1, . . . , ϕ(m)). Since χ(g) = 0,
then χ(gνi) = σi(χ(g)) = 0 (recall that χ(g) is a sum of powers of ǫ) so
that gνi ∈ Tχ ∩H , and we conclude that τχ(H) = |H ∩ Tχ| ≥ ϕ(m). Next,
|H | ≥ o(g) = m since g ∈ H . It follows from the inequality in the second
sentence of the proof that nχ ≥ m+ ϕ(m).

Proof of Theorem B. 1o. Let G be an A-group, i.e., for some χ ∈
Irr1(G) we have nχ = m + ϕ(m), where m is the order of a suitable g ∈ Tχ

(note that m > 1 since g 6= 1). It follows from the proof of Theorem A that
for H = CG(g), we have

m ≤ |H | ≤ nχ − τχ(H) ≤ nχ − ϕ(m) = m.

Therefore, |H | = m, i.e., 〈g〉 = H(= CG(g)). We also have τχ(H) = ϕ(m)
and |H | = nχ − τχ(H), i.e., H is weakly χ-maximal. Since H is cyclic, we
have χ(1) = 2 (Lemma 9(b)). Besides, by the paragraph preceding Lemma 7,
we have Z(χ) ≤ H , and again, by Lemma 7, g2 ∈ Z(χ). Let x 7→ x̄ be the
natural homomorphism of H to H̄ = H/Z(χ). We have |H : 〈g2〉| = 2. Since
g2 ∈ Z(χ) 6= H = 〈g〉, we get

(2) Z(χ) = 〈g2〉, |H : Z(χ)| = 2.

2o. Let us prove that H − Z(χ) ⊆ Tχ. To this end, rewrite the equality
〈χH , χH〉 = 2 in the following form:

∑

x∈H

|χ(x)|2 = 2|H | = 2m.

On the other hand, we have

2m =
∑

x∈H

|χ(x)|2 =
∑

x∈Z(χ)

|χ(x)|2 +
∑

x∈H−Z(χ)

|χ(x)|2
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= χ(1)2|Z(χ)|+
∑

x∈H−Z(χ)

|χ(x)|2.

Since H is abelian then, by Lemma 7, χ(1) = 2, and we obtain

χ(1)2|Z(χ) = 4 ·
m

2
= 2m.

Therefore,
∑

x∈H−Z(χ) |χ(x)|
2 = 0, i.e., H − Z(χ) ⊆ Tχ, as desired.

3o. Since G−H ⊆ Tχ ∪ Uχ (Lemma 3), it follows from 2o that

(3) G− Z(χ) ⊆ Tχ ∪Uχ.

By inequality (7) in [BZ, Chapter 21], we have nχ ≥ |Z(χ)|(χ(1)2 − 1).
Therefore, by hypothesis and (2), we obtain

(4) m+ ϕ(m) = nχ ≥ |Z(χ)|(χ(1)2 − 1) =
3

2
m.

It follows that ϕ(m) ≥ 1
2m. In this case, since m is even, we get m = 2λ for

some positive integer λ. Thus,

(5) H = 〈g〉, Z(χ) = 〈g2〉, |H | = 2λ, |Z(χ)| = 2λ−1,

(6) nχ = 2λ + 2λ−1 = 3 · 2λ−1.

We consider the following three possibilities for Nχ and H . Recall that
H is weakly χ-maximal.

Case 1. Suppose that Nχ = G and H ⊳ G.
In this case, |G : H | = 2 (Lemma 11). Therefore, by (5), |G| = 2λ+1,

where λ ≥ 2 since G is nonabelian. Thus, G is one of the following four
nonabelian 2-groups with cyclic subgroup H of index 2 (see [B, Theorem
1.2]):

G
(1)
λ = 〈a, b | a2

λ

= 1, b2 = 1, ab = a−1〉 ∼= D2λ+1 ,

G
(2)
λ = 〈a, b | a2

λ

= 1, b2 = a2
λ−1

, ab = a−1〉 ∼= Q2λ+1 ,

G
(3)
λ = 〈a, b | a2

λ

= 1, b2 = 1, ab = a−1+2λ−1

〉 ∼= SD2λ+1 , λ ≥ 3,

G
(4)
λ = 〈a, b | a2

λ

= 1, b2 = 1, ab = a1+2λ−1

〉 ∼= M2λ+1 , λ ≥ 3.

Let us prove that all these four groups are A-groups.

Let i ≤ 3 and G = G
(i)
λ . Take in the Frattini subgroup Φ(G) a subgroup

L of index 2 and let χ ∈ Irr1(Ḡ), where Ḡ = G/L is nonabelian of order 8.
Then χZ(Ḡ) = 2ψ̄, where ψ̄ is the faithful linear character of Z(Ḡ) (Clifford)

so χΦ(G) = 2ψ. By reciprocity, ψG = 2χ so G−Φ(G) ⊆ Tχ. Since ψ is linear,
we get Tχ ∩Φ(G) = ∅, and we conclude that Tχ = G− Φ(G). Thus,

nχ = |G− Φ(G)| = 2λ+1 − 2λ−1 = 3 · 2λ−1 = m+ ϕ(m),

where m = 2λ is the order of a generator of a cyclic subgroup of index 2 in
G. Thus, all three groups are A-groups.
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Now let G = G
(4)
λ

∼= M2λ+1 . In this case, G′ is the unique minimal normal
subgroup of G and Z(G) = Φ(G) is cyclic of index 4 in G. Let χ ∈ Irr1(G).
Then χZ(G) = 2ψ, where ψ is linear (Clifford). Therefore, by reciprocity,

ψG = 2χ so Tχ ⊇ G− Z(G) and, since Tχ ∩ Z(G) = ∅, we conclude, as in the
previous paragraph, that G is an A-group.

Case 2. Suppose that Nχ = G and H is not normal in G.
We claim that

(7) Z(χ) = Z(G).

Set K = CG(g
2). Since Z(χ) = 〈g2〉 (see (2)), it follows that K =

CG(Z(χ)) is normal in G. Since H ≤ K and H is maximal in G (Lemma 8),
we have K ∈ {H,G}. Since H is not normal in G, we obtain K = G, and so
Z(χ) = Z(G).

Since H is maximal in G and nonnormal, we get

(8) NG(H) = H.

Take x ∈ H − Z(G). Then 〈x〉 = H , by (5), and so, by (8), we have

(9) CG(x) = H for all x ∈ H − Z(G).

It follows from (2) and (8) that

(10) H ∩Ht = Z(G) for all t ∈ G−H.

Set Ḡ = G/Z(G). Then H̄ is a nonnormal maximal subgroup of order 2 in
Ḡ so Ḡ = H̄ · F̄ is a Frobenius group with complement H̄ of order 2 (see also
(8) and (10)). Since the involution in H̄ inverts F̄ , the subgroup F̄ is abelian
and all subgroups of F̄ are normal in Ḡ (Burnside). Since H̄ is maximal in
Ḡ, it follows that |F̄ | = p > 2, a prime. Thus,

(11) Ḡ ∼= D2p, the dihedral group.

Set D =
⋃

t∈GH
t. Since D − Z(G) ⊆ Tχ and Tχ is a normal subset of

G, we get D − Z(G) ⊆ Tχ. By (6), (10), (11) and assumption, we have

3 · 2λ−1 = nχ ≥ |D − Z(G)| = 2λ−1|G : H | = 2λ−1 · p,

and we conclude that p = 3 since p > 2. Thus, G = H · G′, where |G′| = 3.
Write C = CG(G

′); then C = Z(G) × G′ is cyclic of index 2 in G. In this
case, χ = µG, where µ ∈ Lin(C). Since χ vanishes on the set G − C of
cardinality 3 · 2λ−1 = nχ, it follows that G is an A-group with respect to χ
since m = o(g) = 2λ, 3 · 2λ−1 = 2λ + 2λ−1 = m+ ϕ(m) and g ∈ G−C = Tχ.

Case 3. Suppose that Nχ < G.
Set Nχ = G1, χ1 = χG1

; then χ1 ∈ Irr(G1), by [BZ, Exercise 21.3(a)].
We retain the above introduced notation (see (5)):

g ∈ Tχ, m = o(g), H = 〈g〉, |H | = 2λ.



364 E. ZHMUD

It follows from Tχ = Tχ1
(indeed, Tχ ⊂ Nχ = G1) that nχ1

= m + ϕ(m) so
that G1 is an A-group of one of the types considered in Cases 1 and 2.

By [BZ, Exercise 21.3(b)], G − G1 ⊆ Uχ. Since H is abelian, we get
χ(1) = 2, by Lemma 7. Then x3 ∈ Z(χ) for all x ∈ G−G1 (Lemma 5(b)). By
[BZ, Exercise 21.3(c)], we have Z(χ) ≤ G1 so G/G1 is a group of exponent 3:

(13) |G/G1| = 3a, a ≥ 1.

By [BZ, Lemma 21.4(b)], |G/G1| divides nχ. By (6), nχ = 3 · 2λ−1 hence, by
(13), we get a = 1. Thus,

(14) |G : G1| = 3.

Since H = 〈g〉 is a 2-subgroup and G1 ⊳ G is of index 3, we get H ≤ G1.
Since Aut(H) is abelian 2-group, it follows that H < G1.

Assume that H is not contained in G1. Then Z(χ1) = Z(G1) (see equality
(7) in Case 2). Since G1/Z(G1) ∼= S3 (see equality (11) in Case 2 and take
into account that p = 3), we obtain

|G1| = 6|Z(G1)| = 6|Z(χ)| = 6 · 2λ−1 = 2λ · 3.

Therefore, in view of (14), we have

(15) |G| = 3|G1| = 2λ · 9.

Let P ∈ Syl3(G); then |P | = 9 so P is abelian.
Set K = P · Z(χ); then K is abelian since Z(χ) ∈ Syl2(K) is cyclic and

normal in K so P ⊳ G (Burnside), and |G : K| = 2, by (15) and (5). It
follows that χK is reducible so χ is induced from K, and we conclude that
G−K ⊆ Tχ. Then Nχ = 〈Tχ〉 ≥ 〈G−K〉 = G, contrary to the assumption.

Thus, H ⊳ G1. In this case, G1 is one of groups G
(i)
λ , i = 1, 2, 3, 4 (see

Case 1). We have (see (14))

(16) |G1| = 2λ+1, |G1 : H | = 2, |G| = 2λ+1 · 3, |G : G1| = 3.

Let G1 6∼= Q8. Then G = G1 × P , where |P | = 3 (by [B, Theorem 34.8],
Aut(G1) is a 2-group). Since P < Z(χ), it follows that Z(χ) 6≤ G1, contrary
to [BZ, Exercise 21.3(c)].

It remains to consider the case G1
∼= Q8. In this case, G/Z(G1) ∼= A4.

Since Z(G1) = Z(G) < G′, it follows that Z(G1) is the Schur multiplier of A4,
and we conclude that G ∼= SL(2, 3), the group of part (c).

Let χ ∈ Irr1(G), g ∈ Tχ of orderm = 2λ and H = 〈g〉 be as in the proof of
Theorem B; recall then nχ = 3 · 2λ−1. Since χ(1) = 2, we have 〈χH , χH〉 = 2.

In part (a) of Theorem B, the character χ has on H exactly |H−Φ(G)| =
2λ−1 zeros. Therefore

(17) 1 +
|Tχ −H |

|H |
= 1 +

3 · 2λ−1 − 2λ−1

2λ
= 2

so that in (∗) we have equality. By Veitsblit’s theorem, G−H ⊆ Tχ ∪ Uχ.
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In part (b) of theorem B, the character χ has onH exactly |H−CG(G
′)| =

2λ−1 zeros, so (17) holds, and we have G−H ⊆ Tχ ∪ Uχ again.
In part (c) of Theorem B, the character χ has on H exactly two zeros.

Therefore,

1 +
|Tχ −H |

|H |
= 1 +

6− 2

4
= 2

so, as above, G−H ⊆ Tχ ∪ Uχ.
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