FINITE GROUPS WITH A NONLINEAR IRREDUCIBLE CHARACTER HAVING FEW ZEROS

Emmanuel Zhmud

ABSTRACT. We classify the finite groups with a nonlinear irreducible character χ such that the number of zeros n_{χ} of χ satisfies a certain relation.

Let

- G be a finite group,
- Irr(G) be the set of irreducible characters of G,
- $\operatorname{Lin}(G)$ be the set of linear characters of G,
- $\operatorname{Irr}_1(G)$ be the set of nonlinear irreducible characters of G,
- $\chi \in \operatorname{Irr}(G)$,
- $U_{\chi} = \{g \in G \mid |\chi(g)| = 1\}$, the set of *unitary elements* of χ (it is easy to check that the set U_{χ} is invariant under *G*-conjugation),
- $T_{\chi} = \{g \in G \mid \chi(g) = 0\}$, the set of zeros of χ (it is easy to check that the set T_{χ} is invariant under *G*-conjugation),
- $N_{\chi} = \langle T_{\chi} \rangle$, the subgroup generated by zeros of χ (by the previous paragraph, N_{χ} is a normal subgroup of G),
- $n_{\chi} = |T_{\chi}|$, the number of zeros of χ ,
- $\tau_{\chi}(H) = |T_{\chi} \cap H|$, the number of zeros of χ on a given subgroup H of G,
- $Z(\chi) = \{x \in G \mid |\chi(x)| = \chi(1)\}$ (Z(χ) is normal in G and $Z(\chi)/\ker(\chi) = Z(G/\ker(\chi))$.

A classical theorem by Burnside asserts that if $\chi \in Irr_1(G)$, then the set $T_{\chi} \neq \emptyset$.

One of the main results of this note is the following

²⁰¹⁰ Mathematics Subject Classification. 20D15.

Key words and phrases. Zeros and unitary elements of a character.

Professor E.M. Zhmud (1918–2007) wrote this paper about 10 years ago. Y. Berkovich prepared this paper using Zhmud's letter.

³⁵⁷

E. ZHMUD

THEOREM A. If $\chi \in Irr_1(G)$ and $g \in T_{\chi}$ is of order m, then

 $n_{\chi} \ge m + \varphi(m),$

where φ is Euler's totient function.

In Theorem A, as q, one can take an element of maximal order in the set T_{χ} .

DEFINITION 1. A group G is said to be an A-group provided it satisfies $n_{\chi} = m + \varphi(m)$ (\mathcal{A})

for some $\chi \in Irr(G)$ and $g \in T_{\chi}$ of order m. A character χ satisfying the condition (\mathcal{A}) , is said to be an \mathcal{A} -character.

Example: S_3 , the symmetric group of degree 3 is an A-group with respect to $\chi \in Irr_1(G)$ (of degree 2) and $g \in S_3$ of order m = 2 (all elements of the set T_{χ} have the same order 2).

The \mathcal{A} -groups are classified in the following

THEOREM B. If G is an A-group with respect to $\chi \in Irr_1(G)$ and $g \in T_{\chi}$ of order m, then $\chi(1) = 2$ and one of the following holds:

- (a) G is a nonabelian 2-group of order $2^{\lambda+1}$ with a cyclic subgroup of index
- (b) $\overline{G} = \langle a, b \mid a^3 = b^{2^{\lambda}} = 1, a^b = a^{-1} \rangle, \lambda \ge 1.$ (c) $G \cong SL(2,3)$.

In part (a) of Theorem B, we have two cases. (i) If G is of maximal class, then χ has kernel of index 8 in G, $T_{\chi} = G - \Phi(G)$, $m = 2^{\lambda}$ and $n_{\chi} = 2^{\lambda} + 2^{\lambda-1}$. (ii) Now let $G = \langle a, b \mid a^{\lambda} = b^2 = 1, a^b = a^{1+2^{\lambda-1}} \rangle$. Here χ

is faithful, $T_{\chi} = G - \Phi(G)$, $m = 2^{\lambda}$, $n_{\chi} = 2^{\lambda} + 2^{\lambda-1}$. In part (b) of Theorem B, $\chi = \tau^{G}$, where $\tau \in \text{Lin}(C_{G}(G'))$ is faithful, $T_{\chi} = G - C_{G}(G')$, $m = 2^{\lambda}$ and $n_{\chi} = |G - C_{G}(G')| = 2^{\lambda} + 2^{\lambda-1}$.

In part (c) of Theorem B, χ is faithful (G has exactly three faithful irreducible characters and each of them can be taken as χ), $T_{\chi} = G' - Z(G')$, $m = 4, n_{\chi} = 4 + 2.$

Theorem B follows from a long series of lemmas.

The following theorem is cited many times in what follows.

THEOREM 2 (A. I. Veitsblit; see [BZ, Theorem 21.1]). If $\chi \in Irr_1(G)$ and $H \leq G$, then

(*)
$$\langle \chi_H, \chi_H \rangle \le 1 + \frac{|\mathbf{T}_{\chi} - H|}{|H|}$$

with equality if and only if $G - H \subseteq T_{\chi} \cup U_{\chi}$.

Note that $|T_{\chi} - H| = |T_{\chi}| - |T_{\chi} \cap H| = n_{\chi} - \tau_{\chi}(H).$

In what follows χ is a fixed nonlinear irreducible character of the group G.

LEMMA 3. If H < G, $\chi \in Irr_1(G)$ and $\chi_H \notin Irr(H)$, then $n_{\chi} \geq |H| +$ $\tau_{\chi}(H)$ with equality if and only if

(1) (i)
$$\langle \chi_H, \chi_H \rangle = 2$$
, (ii) $G - H \subseteq T_{\chi} \cup U_{\chi}$.

PROOF. See [BZ, Lemma 21.13].

LEMMA 4. Under the hypotheses of Lemma 3, if $g \in G - Z(\chi)$, then

$$\mathbf{n}_{\chi} \ge |\mathbf{C}_G(g)| + \tau_{\chi}(\mathbf{C}_G(g)).$$

PROOF. See [BZ, Corollary 21.14]

LEMMA 5. Let $\chi \in \operatorname{Irr}_1(G)$, $\chi(1) = 2$. Then

 $\begin{array}{ll} \text{(a)} & \mathcal{T}_{\chi} = \{g \in G - \mathcal{Z}(\chi) \mid g^2 \in \mathcal{Z}(\chi)\}.\\ \text{(b)} & \mathcal{U}_{\chi} = \{g \in G - \mathcal{Z}(\chi) \mid g^3 \in \mathcal{Z}(\chi)\}. \end{array}$

Proof. Let Γ be an irreducible matrix representation affording the character χ and let (α, β) be the spectrum of the matrix $\Gamma(q)$. Then (α^n, β^n) is the spectrum of the matrix $\Gamma(g^n) = \Gamma(g)^n$ for every positive integer n.

(i) Suppose that $g \in G - Z(\chi)$ and $g^2 \in Z(\chi)$. Since $\Gamma(g^2)$ is a scalar matrix, we have $\alpha^2 = \beta^2$ so $\alpha = \pm \beta$. Since $g \notin \mathbb{Z}(\chi)$ (i.e., the matrix $\Gamma(g)$ is non-scalar), we get $\alpha = -\beta$ so that $\chi(g) = \operatorname{tr}(\Gamma(g)) = \alpha + \beta = 0$, i.e., $g \in T_{\chi}$. Conversely, if $g \in T_{\chi}$, then $\alpha + \beta = \chi(g) = 0$, i.e., $\alpha = -\beta$. In this case,

 $\alpha^2 = \beta^2$ so that $\Gamma(g^2)$ is a scalar matrix, i.e., $g^2 \in \mathbb{Z}(\chi)$, and (a) is proven.

(ii) Now suppose that $g \in G - Z(\chi)$ and $g^3 \in Z(\chi)$. Then $\alpha^3 = \beta^3$ since $\Gamma(g^3)$ is a scalar matrix. Since $g \notin Z(\chi)$, we get $\alpha \neq \beta$. Therefore, $\alpha = \epsilon \beta$, where ϵ is a primitive 3-th root of unity. Since $1 + \epsilon + \epsilon^2 = 0$, we get

$$\chi(g) = \operatorname{tr}(\Gamma(g)) = \alpha + \beta = (1+\epsilon)\beta = -\epsilon^2\beta.$$

Since β is a root of unity (indeed, $\beta^{|G|} = 1$), it follows that $|\chi(g)| = 1$, i.e., $g \in U_{\chi}$.

Conversely, suppose that $g \in U_{\chi}$. Then $g \in G - Z(\chi)$ since $\chi(1) > 1$. Since $|\alpha + \beta| = |\chi(g)| = 1$ then, setting $\alpha \beta^{-1} = \epsilon$, we get $1 = |\beta| |1 + \epsilon| = |1 + \epsilon|$ (recall that α and β are roots of 1). Let $\epsilon = e^{i\phi}$, where $\phi = \arg(\epsilon)$. Then it follows from

$$1 = |1 + \epsilon|^2 = (1 + \epsilon)(1 + \overline{\epsilon}) = 2 + \epsilon + \overline{\epsilon}$$

that $\cos \phi = -\frac{1}{2}$ so that $\epsilon = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, a primitive third root of 1. Since $\alpha = \epsilon \beta$, then $\alpha^3 = \beta^3$; in this case, $\Gamma(g^3)$ is a scalar matrix so that $g^3 \in \mathbb{Z}(\chi)$, and the proof of (b) is complete.

DEFINITION 6. Let χ be an irreducible character of a group G. A proper subgroup H of G is said to be weakly χ -maximal in G provided $\chi_H \notin \operatorname{Irr}(H)$ and $n_{\chi} = |H| + \tau_{\chi}(H)$ (or, what is the same, $\chi_H \notin \operatorname{Irr}(H)$ and $|H| = |T_{\chi} - H|$).

Lemma 3 shows that the weak χ -maximality of H < G is equivalent (under the assumption $\chi_H \notin \operatorname{Irr}(H)$) to condition (1). It is easy to see that χ -maximal subgroups of G are weakly χ -maximal. Recall [BZ, §21.2] that H < G is χ -maximal if χ_H is reducible and $|H| = n_{\chi}$ (in this case, $\tau_{\chi}(H) = 0$). It follows from condition (ii) of Lemma 3 that, if H < G is weakly χ -maximal, then $Z(\chi) \leq H$.

LEMMA 7. If an abelian H < G is weakly χ -maximal with respect to $\chi \in \operatorname{Irr}_1(G)$, then $\chi(1) = 2$ and $g^2 \in \operatorname{Z}(\chi)$ for all $g \in \operatorname{T}_{\chi}$.

PROOF. By Lemma 3, $\langle \chi_H, \chi_H \rangle = 2$ so $\chi_H = \psi + \psi'$, where $\psi, \psi' \in \text{Lin}(H)$ and $\psi \neq \psi'$ (here we use Frobenius' reciprocity law). Therefore, $\chi(1) = 2$. The second assertion follows from Lemma 5(a).

LEMMA 8. If $N_{\chi} = G$ and H is a weakly χ -maximal subgroup of a group G, then H is maximal in G.

PROOF. Assume that H < K < G. Then $G - K \subset G - H \subseteq T_{\chi} \cup U_{\chi}$ (Lemma 3). By (*), we have

$$\langle \chi_K, \chi_K \rangle = 1 + \frac{|\mathbf{T}_{\chi} - K|}{|K|}$$

The same holds for H instead of K, and this is a contradiction since $0 < |T_{\chi} - K| \le |T_{\chi} - H|$ and |K| > |H|. Thus, K does not exist so H is maximal in G.

LEMMA 9. Suppose that $g \in T_{\chi}$ and $H = C_G(g)$ weakly χ -maximal in G. Then

(a) $g^2 \in \mathbf{Z}(\chi)$.

(b) $\chi_H = \psi_1 + \psi_2$, where $\psi_1, \psi_2 \in Irr(H)$ are distinct of equal degree.

PROOF. We have $\langle \chi_H, \chi_H \rangle = 2$ (Lemma 3) so $\chi_H = \psi_1 + \psi_2$, where $\psi_1, \psi_2 \in \operatorname{Irr}(H)$ are distinct. Let Γ be an irreducible representation of G affording the character χ and Γ_i an irreducible representation of H affording the character $\psi_i, i = 1, 2$. One can assume that $\Gamma(x) = \operatorname{diag}(\Gamma_1(x), \Gamma_2(x))$ for every $x \in H$. If, in particular, x = g, then $\Gamma_i(g) = \alpha_i \operatorname{I}_{n_i}$, where $n_i = \operatorname{deg}(\Gamma_i) = \psi_i(1)$ (i = 1, 2) and I_{n_i} is the identity $n_i \times n_i$ matrix (recall that $g \in \operatorname{Z}(H)$). Therefore, $\Gamma(g) = \operatorname{diag}(\alpha_1 \operatorname{I}_{n_1}, \alpha_2 \operatorname{I}_{n_2})$. Here α_1 and α_2 are roots of 1.

It follows from $0 = \chi(g) = n_1\alpha_1 + n_2\alpha_2$ that $n_1 = |n_1\alpha_1| = |-n_2\alpha_2| = n_2$ since $|\alpha_1| = |\alpha_2| = 1$. Thus, $\psi_1(1) = \psi_2(1)$ and $\alpha_1 = -\alpha_2$, so we get $\Gamma(g) = \alpha_1 \operatorname{diag}(I_{n_1}, -I_{n_1})$ so $\Gamma(g^2) = \alpha_1^2 I_n$, where $n = 2n_1 = \operatorname{deg}(\Gamma) = \chi(1)$. Therefore, $g^2 \in \mathbb{Z}(\chi)$, and the proof is complete.

LEMMA 10. If $g \in T_{\chi}$ and $H = C_G(g)$, then $n_{\chi} \ge |H| + \tau_{\chi}(H)$.

PROOF. Since $g \notin Z(\chi)$, the character χ_H is reducible, and the result follows from Lemma 3.

LEMMA 11. If $H \triangleleft G$ is weakly χ -maximal, then |G:H| = 2.

PROOF. As in the proof of Lemma 9, $\langle \chi_H, \chi_H \rangle = 2$ (Lemma 3) so $\chi_H = \psi + \psi'$, where $\psi, \psi' \in \operatorname{Irr}(H)$ are distinct. Since $H \triangleleft G$, we have $|G : I_G(\psi)| = 2$ (this follows by Clifford theory; here $I_G(\psi)$ is the inertia group of ψ in G). Since χ is induced from H, we get $T_{\chi} \supseteq G - H$; then $N_{\chi} = G$. Therefore, H is maximal in G (Lemma 8). Thus, $H = I_G(\psi)$, and so $|G : H| = |G : I_G(\psi)| = 2$, and we are done.

PROOF OF THEOREM A. Let $\chi \in \operatorname{Irr}_1(G), g \in \operatorname{T}_{\chi}$ and o(g) = m. Setting $H = \operatorname{C}_G(g)$, we get, by Lemma 10, $n_{\chi} \geq |H| + \tau_{\chi}(H)$. Let $\{\nu_1, \ldots, \nu_{\varphi(m)}\}$ be the full reduced residue system (mod m). Then the elements g^{ν_i} $(i = 1, \ldots, \varphi(m))$ are pairwise distinct. It suffices to show that these elements are contained in T_{χ} . Let ϵ be a primitive |G|-th root of 1 and $\mathcal{G} = \operatorname{Gal}(Q(\epsilon)/Q)$. There exists $\sigma_i \in \mathcal{G}$ such that $\sigma_i(\epsilon) = \epsilon^{\nu_i}$ $(i = 1, \ldots, \varphi(m))$. Since $\chi(g) = 0$, then $\chi(g^{\nu_i}) = \sigma_i(\chi(g)) = 0$ (recall that $\chi(g)$ is a sum of powers of ϵ) so that $g^{\nu_i} \in \operatorname{T}_{\chi} \cap H$, and we conclude that $\tau_{\chi}(H) = |H \cap \operatorname{T}_{\chi}| \geq \varphi(m)$. Next, $|H| \geq o(g) = m$ since $g \in H$. It follows from the inequality in the second sentence of the proof that $n_{\chi} \geq m + \varphi(m)$.

PROOF OF THEOREM B. 1°. Let G be an \mathcal{A} -group, i.e., for some $\chi \in \operatorname{Irr}_1(G)$ we have $n_{\chi} = m + \varphi(m)$, where m is the order of a suitable $g \in T_{\chi}$ (note that m > 1 since $g \neq 1$). It follows from the proof of Theorem A that for $H = C_G(g)$, we have

$$m \le |H| \le n_{\chi} - \tau_{\chi}(H) \le n_{\chi} - \varphi(m) = m.$$

Therefore, |H| = m, i.e., $\langle g \rangle = H(= C_G(g))$. We also have $\tau_{\chi}(H) = \varphi(m)$ and $|H| = n_{\chi} - \tau_{\chi}(H)$, i.e., H is weakly χ -maximal. Since H is cyclic, we have $\chi(1) = 2$ (Lemma 9(b)). Besides, by the paragraph preceding Lemma 7, we have $Z(\chi) \leq H$, and again, by Lemma 7, $g^2 \in Z(\chi)$. Let $x \mapsto \bar{x}$ be the natural homomorphism of H to $\bar{H} = H/Z(\chi)$. We have $|H : \langle g^2 \rangle| = 2$. Since $g^2 \in Z(\chi) \neq H = \langle g \rangle$, we get

(2)
$$Z(\chi) = \langle g^2 \rangle, |H: Z(\chi)| = 2.$$

2°. Let us prove that $H - Z(\chi) \subseteq T_{\chi}$. To this end, rewrite the equality $\langle \chi_H, \chi_H \rangle = 2$ in the following form:

$$\sum_{x \in H} |\chi(x)|^2 = 2|H| = 2m.$$

On the other hand, we have

$$2m = \sum_{x \in H} |\chi(x)|^2 = \sum_{x \in \mathbb{Z}(\chi)} |\chi(x)|^2 + \sum_{x \in H - \mathbb{Z}(\chi)} |\chi(x)|^2$$

E. ZHMUD

$$= \chi(1)^2 |\mathbf{Z}(\chi)| + \sum_{x \in H - \mathbf{Z}(\chi)} |\chi(x)|^2.$$

Since H is abelian then, by Lemma 7, $\chi(1) = 2$, and we obtain

$$\chi(1)^2 |\mathbf{Z}(\chi) = 4 \cdot \frac{m}{2} = 2m.$$

Therefore, $\sum_{x \in H-\mathbf{Z}(\chi)} |\chi(x)|^2 = 0$, i.e., $H - \mathbf{Z}(\chi) \subseteq \mathbf{T}_{\chi}$, as desired.

3°. Since $G - H \subseteq T_{\chi} \cup U_{\chi}$ (Lemma 3), it follows from 2° that

(3)
$$G - Z(\chi) \subseteq T_{\chi} \cup U_{\chi}.$$

By inequality (7) in [BZ, Chapter 21], we have $n_{\chi} \geq |Z(\chi)|(\chi(1)^2 - 1)$. Therefore, by hypothesis and (2), we obtain

(4)
$$m + \varphi(m) = n_{\chi} \ge |Z(\chi)|(\chi(1)^2 - 1) = \frac{3}{2}m$$

It follows that $\varphi(m) \geq \frac{1}{2}m$. In this case, since m is even, we get $m = 2^{\lambda}$ for some positive integer λ . Thus,

(5)
$$H = \langle g \rangle, \, \mathcal{Z}(\chi) = \langle g^2 \rangle, \, |H| = 2^{\lambda}, \, |\mathcal{Z}(\chi)| = 2^{\lambda - 1}$$

(6)
$$n_{\chi} = 2^{\lambda} + 2^{\lambda - 1} = 3 \cdot 2^{\lambda - 1}.$$

We consider the following three possibilities for ${\rm N}_{\chi}$ and H. Recall that H is weakly $\chi\text{-maximal.}$

CASE 1. Suppose that $N_{\chi} = G$ and $H \triangleleft G$.

In this case, |G : H| = 2 (Lemma 11). Therefore, by (5), $|G| = 2^{\lambda+1}$, where $\lambda \geq 2$ since G is nonabelian. Thus, G is one of the following four nonabelian 2-groups with cyclic subgroup H of index 2 (see [B, Theorem 1.2]):

$$\begin{split} G_{\lambda}^{(1)} &= \langle a, b \mid a^{2^{\lambda}} = 1, \, b^2 = 1, \, a^b = a^{-1} \rangle \cong \mathcal{D}_{2^{\lambda+1}}, \\ G_{\lambda}^{(2)} &= \langle a, b \mid a^{2^{\lambda}} = 1, \, b^2 = a^{2^{\lambda-1}}, \, a^b = a^{-1} \rangle \cong \mathcal{Q}_{2^{\lambda+1}}, \\ G_{\lambda}^{(3)} &= \langle a, b \mid a^{2^{\lambda}} = 1, \, b^2 = 1, \, a^b = a^{-1+2^{\lambda-1}} \rangle \cong \mathcal{SD}_{2^{\lambda+1}}, \, \lambda \ge 3, \\ G_{\lambda}^{(4)} &= \langle a, b \mid a^{2^{\lambda}} = 1, \, b^2 = 1, \, a^b = a^{1+2^{\lambda-1}} \rangle \cong \mathcal{M}_{2^{\lambda+1}}, \, \lambda \ge 3. \end{split}$$

Let us prove that all these four groups are \mathcal{A} -groups.

Let $i \leq 3$ and $G = G_{\lambda}^{(i)}$. Take in the Frattini subgroup $\Phi(G)$ a subgroup L of index 2 and let $\chi \in \operatorname{Irr}_1(\bar{G})$, where $\bar{G} = G/L$ is nonabelian of order 8. Then $\chi_{Z(\bar{G})} = 2\bar{\psi}$, where $\bar{\psi}$ is the faithful linear character of $Z(\bar{G})$ (Clifford) so $\chi_{\Phi(G)} = 2\psi$. By reciprocity, $\psi^G = 2\chi$ so $G - \Phi(G) \subseteq T_{\chi}$. Since ψ is linear, we get $T_{\chi} \cap \Phi(G) = \emptyset$, and we conclude that $T_{\chi} = G - \Phi(G)$. Thus,

$$n_{\chi} = |G - \Phi(G)| = 2^{\lambda+1} - 2^{\lambda-1} = 3 \cdot 2^{\lambda-1} = m + \varphi(m),$$

where $m = 2^{\lambda}$ is the order of a generator of a cyclic subgroup of index 2 in G. Thus, all three groups are \mathcal{A} -groups.

362

Now let $G = G_{\lambda}^{(4)} \cong M_{2^{\lambda+1}}$. In this case, G' is the unique minimal normal subgroup of G and $Z(G) = \Phi(G)$ is cyclic of index 4 in G. Let $\chi \in \operatorname{Irr}_1(G)$. Then $\chi_{Z(G)} = 2\psi$, where ψ is linear (Clifford). Therefore, by reciprocity, $\psi^G = 2\chi$ so $T_{\chi} \supseteq G - Z(G)$ and, since $T_{\chi} \cap Z(G) = \emptyset$, we conclude, as in the previous paragraph, that G is an \mathcal{A} -group.

CASE 2. Suppose that $N_{\chi} = G$ and H is not normal in G. We claim that

(7)
$$Z(\chi) = Z(G).$$

Set $K = C_G(g^2)$. Since $Z(\chi) = \langle g^2 \rangle$ (see (2)), it follows that $K = C_G(Z(\chi))$ is normal in G. Since $H \leq K$ and H is maximal in G (Lemma 8), we have $K \in \{H, G\}$. Since H is not normal in G, we obtain K = G, and so $Z(\chi) = Z(G)$.

Since H is maximal in G and nonnormal, we get

 $N_G(H) = H.$

Take $x \in H - Z(G)$. Then $\langle x \rangle = H$, by (5), and so, by (8), we have

(9)
$$C_G(x) = H \text{ for all } x \in H - Z(G).$$

It follows from (2) and (8) that

(10)
$$H \cap H^t = Z(G) \text{ for all } t \in G - H.$$

Set $\overline{G} = G/Z(G)$. Then \overline{H} is a nonnormal maximal subgroup of order 2 in \overline{G} so $\overline{G} = \overline{H} \cdot \overline{F}$ is a Frobenius group with complement \overline{H} of order 2 (see also (8) and (10)). Since the involution in \overline{H} inverts \overline{F} , the subgroup \overline{F} is abelian and all subgroups of \overline{F} are normal in \overline{G} (Burnside). Since \overline{H} is maximal in \overline{G} , it follows that $|\overline{F}| = p > 2$, a prime. Thus,

(11)
$$\bar{G} \cong D_{2p}$$
, the dihedral group.

Set $D = \bigcup_{t \in G} H^t$. Since $D - Z(G) \subseteq T_{\chi}$ and T_{χ} is a normal subset of G, we get $D - Z(G) \subseteq T_{\chi}$. By (6), (10), (11) and assumption, we have

$$3 \cdot 2^{\lambda - 1} = n_{\chi} \ge |D - Z(G)| = 2^{\lambda - 1} |G : H| = 2^{\lambda - 1} \cdot p,$$

and we conclude that p = 3 since p > 2. Thus, $G = H \cdot G'$, where |G'| = 3. Write $C = C_G(G')$; then $C = Z(G) \times G'$ is cyclic of index 2 in G. In this case, $\chi = \mu^G$, where $\mu \in \text{Lin}(C)$. Since χ vanishes on the set G - C of cardinality $3 \cdot 2^{\lambda-1} = n_{\chi}$, it follows that G is an \mathcal{A} -group with respect to χ since $m = o(g) = 2^{\lambda}$, $3 \cdot 2^{\lambda-1} = 2^{\lambda} + 2^{\lambda-1} = m + \varphi(m)$ and $g \in G - C = T_{\chi}$.

CASE 3. Suppose that $N_{\chi} < G$.

Set $N_{\chi} = G_1$, $\chi_1 = \chi_{G_1}$; then $\chi_1 \in Irr(G_1)$, by [BZ, Exercise 21.3(a)]. We retain the above introduced notation (see (5)):

$$g \in \mathcal{T}_{\chi}, m = o(g), H = \langle g \rangle, |H| = 2^{\lambda}$$

It follows from $T_{\chi} = T_{\chi_1}$ (indeed, $T_{\chi} \subset N_{\chi} = G_1$) that $n_{\chi_1} = m + \varphi(m)$ so that G_1 is an \mathcal{A} -group of one of the types considered in Cases 1 and 2.

By [BZ, Exercise 21.3(b)], $G - G_1 \subseteq U_{\chi}$. Since H is abelian, we get $\chi(1) = 2$, by Lemma 7. Then $x^3 \in \mathbb{Z}(\chi)$ for all $x \in G - G_1$ (Lemma 5(b)). By [BZ, Exercise 21.3(c)], we have $\mathbb{Z}(\chi) \leq G_1$ so G/G_1 is a group of exponent 3: (12)

(13)
$$|G/G_1| = 3^a, a \ge 1.$$

By [BZ, Lemma 21.4(b)], $|G/G_1|$ divides n_{χ} . By (6), $n_{\chi} = 3 \cdot 2^{\lambda-1}$ hence, by (13), we get a = 1. Thus,

(14)
$$|G:G_1| = 3$$

Since $H = \langle g \rangle$ is a 2-subgroup and $G_1 \triangleleft G$ is of index 3, we get $H \leq G_1$. Since $\operatorname{Aut}(H)$ is abelian 2-group, it follows that $H < G_1$.

Assume that H is not contained in G_1 . Then $Z(\chi_1) = Z(G_1)$ (see equality (7) in Case 2). Since $G_1/Z(G_1) \cong S_3$ (see equality (11) in Case 2 and take into account that p = 3), we obtain

$$G_1 = 6|Z(G_1)| = 6|Z(\chi)| = 6 \cdot 2^{\lambda - 1} = 2^{\lambda} \cdot 3$$

Therefore, in view of (14), we have

(15)
$$|G| = 3|G_1| = 2^{\lambda} \cdot 9.$$

Let $P \in Syl_3(G)$; then |P| = 9 so P is abelian.

Set $K = P \cdot Z(\chi)$; then K is abelian since $Z(\chi) \in \text{Syl}_2(K)$ is cyclic and normal in K so $P \triangleleft G$ (Burnside), and |G : K| = 2, by (15) and (5). It follows that χ_K is reducible so χ is induced from K, and we conclude that $G - K \subseteq T_{\chi}$. Then $N_{\chi} = \langle T_{\chi} \rangle \geq \langle G - K \rangle = G$, contrary to the assumption.

Thus, $H \triangleleft G_1$. In this case, G_1 is one of groups $G_{\lambda}^{(i)}$, i = 1, 2, 3, 4 (see Case 1). We have (see (14))

(16)
$$|G_1| = 2^{\lambda+1}, |G_1:H| = 2, |G| = 2^{\lambda+1} \cdot 3, |G:G_1| = 3.$$

Let $G_1 \not\cong Q_8$. Then $G = G_1 \times P$, where |P| = 3 (by [B, Theorem 34.8], Aut (G_1) is a 2-group). Since $P < Z(\chi)$, it follows that $Z(\chi) \not\subseteq G_1$, contrary to [BZ, Exercise 21.3(c)].

It remains to consider the case $G_1 \cong Q_8$. In this case, $G/Z(G_1) \cong A_4$. Since $Z(G_1) = Z(G) < G'$, it follows that $Z(G_1)$ is the Schur multiplier of A_4 , and we conclude that $G \cong SL(2,3)$, the group of part (c).

Let $\chi \in \operatorname{Irr}_1(G)$, $g \in \operatorname{T}_{\chi}$ of order $m = 2^{\lambda}$ and $H = \langle g \rangle$ be as in the proof of Theorem B; recall then $n_{\chi} = 3 \cdot 2^{\lambda - 1}$. Since $\chi(1) = 2$, we have $\langle \chi_H, \chi_H \rangle = 2$.

In part (a) of Theorem B, the character χ has on H exactly $|H-\Phi(G)|=2^{\lambda-1}$ zeros. Therefore

(17)
$$1 + \frac{|\mathbf{T}_{\chi} - H|}{|H|} = 1 + \frac{3 \cdot 2^{\lambda - 1} - 2^{\lambda - 1}}{2^{\lambda}} = 2$$

so that in (*) we have equality. By Veitsblit's theorem, $G - H \subseteq T_{\chi} \cup U_{\chi}$.

In part (b) of theorem B, the character χ has on H exactly $|H - C_G(G')| = 2^{\lambda-1}$ zeros, so (17) holds, and we have $G - H \subseteq T_{\chi} \cup U_{\chi}$ again.

In part (c) of Theorem B, the character χ has on H exactly two zeros. Therefore,

$$1 + \frac{|\mathbf{T}_{\chi} - H|}{|H|} = 1 + \frac{6-2}{4} = 2$$

so, as above, $G - H \subseteq \mathbf{T}_{\chi} \cup \mathbf{U}_{\chi}^{\mathsf{T}}$.

ACKNOWLEDGEMENTS.

Y. Berkovich is indebted to the referee whose very detailed and constructive report helped to improve exposition.

References

[B] Y. Berkovich, Groups of prime power order. Vol. 1, Walter de Gruyter, Berlin, 2008.

[BZ] Ya. G. Berkovich and E. M. Zhmud, Characters of finite groups. Part 2, AMS, Providence, 1999.

E. Zhmud Kharkiv State University Ukraine *Received*: 25.5.2010. *Revised*: 10.10.2010.