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AUTOMORPHISMS OF A MINIMAL NONABELIAN

p-GROUP WITH p ODD I

János Kurdics

Nýıregyháza College, Hungary

Abstract. Description of automorphism groups of non-metacyclic
minimal nonabelian finite p-groups with p > 2 in terms of generators and
relations is provided. Furthermore, finite abelian groups with solvable
automorphism groups are determined.

1. Introduction

At the end of their paper [1], Yakov Berkovich and Zvonimir Janko posed
twenty problems, last of which was the following: Describe the automorphism
groups of minimal nonabelian finite p-groups. The aim of this paper and its
second part is to provide this description for odd primes p.

In the paper [2] G. Birkhoff gives a generator system for the group
of automorphisms of a finite abelian p-group in a way that each of these
generators has the effect of substitution of only one basis element. Hence,
description of the automorphism group of an abelian finite p-group in terms
of generators and relations is reduced to find the relations, which, given
the structure invariants, is a complex but straightforward task. A deeper
insight into the structure of automorphism groups of finite abelian p-groups
reveals more on the structure of the automorphism groups studied, provided
in paragraphs 2, 4 and 6. I know of no general information on the structure
of the group of automorphisms except for elementary abelian p-groups.1 As

2010 Mathematics Subject Classification. 20D45, 20F28.
Key words and phrases. Group, finite p-group, automorphism, minimal nonabelian

group.
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a byproduct of these investigations, finite abelian groups possessing solvable
automorphism groups will be determined in the last paragraph.

By the result of L. Rédei [5] a finite p-group G (p = 2 included)
is a minimal nonabelian group (that is, nonabelian with abelian maximal
subgroups, A1-group for short) if and only if either it is isomorphic to the
quaternion group of order 8, or (A) has the presentation

〈a, b | ap
m

= bp
n

= 1, ab = a1+pm−1

〉,

where m ≥ 2, n ≥ 1, |G| = pm+n, or (B) has the presentation

〈a, b | ap
m

= bp
n

= cp = 1, [a, b] = c, [a, c] = 1, [b, c] = 1〉,

where |G| = pm+n+1 and all these groups are of class 2. In what follows, a
generator system and generating relations will be determined for the group of
automorphisms of 2-generated finite abelian p-groups with p > 2 in a way that
each of the generator automorphisms has the effect of substitution of only one
generator element. On this basis the group of automorphisms of any of the
A1-groups G of type (B) may be described as it will turn out that the group
of outer automorphisms for each group G of type (B) is isomorphic to the
group of automorphisms of the respective 2-generated finite abelian p-group.

Generally, an automorphism can be viewed as a substitution of generators
satisfying the same relations. More precisely:

Theorem 1.1. Let the group H be finite, presented by

(∗) 〈g1, . . . , gr |w1(g1, . . . , gr), . . . , ws(g1, . . . , gr)〉.

Then there is a bijective correspondence between automorphisms of the group
H and ordered r-tuples (g′1, . . . , g

′
r) of elements generating the group H for

which all the relations wj(g
′
1, . . . , g

′
r) = 1 hold.

Proof. If α is an automorphism of the group, then

〈α(g1), . . . , α(gr) |w1(α(g1), . . . , α(gr)), . . . , ws(α(g1), . . . , α(gr))〉

is again a presentation of the same form as the presentation (*). Conversely,
let (g′1, . . . , g

′
r) be an ordered r-tuple of generators of the group H satisfying

all the relations wj(g
′
1, . . . , g

′
r) = 1. Then the mapping gi 7→ g′i between

the generators extends to an isomorphism between the free groups over the
alphabets {g1, . . . , gr} and {g′1, . . . , g

′
r}, which maps the normal divisor

generated by conjugates of the words wj(g1, . . . , gr) onto the normal divisor
generated by conjugates of the words wj(g

′
1, . . . , g

′
r). That is, the mapping

gi 7→ g′i between the generators determines an automorphism of the group H .
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2. The linear group GL(2, p)

In what follows we shall frequently use fractional exponents, meant
modulo the suitable prime power.

Theorem 2.1. Consider the linear group GL(2, p) as the automorphism
group of the elementary abelian group 〈a〉 × 〈b〉 of type Cp × Cp. Let the
automorphism α be induced by the substitution a 7→ at with t primitive root
modulo p (1 < t < p) and b 7→ b; the automorphism β by the substitution
a 7→ a, b 7→ bt; the automorphism γ by the substitution a 7→ ab, b 7→ b; the
automorphism δ by the substitution a 7→ a, b 7→ ab; and set ν = δγ−1δ. Then
the linear group GL(2, p) is presented with generators α, β, γ and δ, and with
generating relations

(2.1) |α| = p− 1, |β| = p− 1, |γ| = p, |δ| = p,

(2.2) α−1βα = β, α−1γα = γt, α−1δα = δ
1
t ,

(2.3) β−1γβ = γ
1
t β−1δβ = δt, γ−1δγ = δ−1γ−1δ,

(2.4) δuγ = αiβ−iγu+1δ
u

u+1 , ν2 = α
p−1
2 β

p−1
2 ν−1αν = β,

where 1
t is the multiplicative inverse of t modulo p, an integer between 1 and

p, 1 ≤ u ≤ p − 2, 1
u+1 is the multiplicative inverse of u + 1 modulo p, an

integer between 1 and p, and ti ≡ u + 1 (mod p) with i an integer between 1
and p.

Proof. Clearly, the group GL(2, p) is of order (p2 − 1)(p2 − p). The
relations (2.1) and (2.21) are easy to see. Since

α−1γα(a) = α−1γ(at) = α−1(atbt) = abt, α−1γα(b) = b,

we have the relation (2.22). Furthermore,

α−1δα(a) = α−1δ(at) = α−1(at) = a,

α−1δα(b) = α−1δ(b) = α−1(ab) = a
1
t b,

therefore the relation (2.23) holds. In an analogous manner we obtain the
relations (2.31) and (2.32). Further,

γ−1δγ(a) = γ−1δ(ab) = γ−1(a2b) = (ab−1)2b = a2b−1,

γ−1δγ(b) = γ−1δ(b) = γ−1(ab) = a.

On the other hand,

δ−1γ−1δ(a) = δ−1(ab−1) = a(a−1b)−1 = a2b−1 = γ−1δγ(a),

δ−1γ−1δ(b) = δ−1γ−1(ab) = δ−1(a) = a = γ−1δγ(a),

and we have the relation (2.33). For 1 ≤ u ≤ p− 2 we see

δuγ(a) = au+1b, δuγ(b) = aub.
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On the other hand, let ti ≡ u+ 1 (mod p). Then

αiβ−iγu+1δ
u

u+1 (a) = αiβ−i(abu+1) = αi(ab) = au+1b = δuγ(a),

αiβ−iγu+1δ
u

u+1 (b) = αiβ−iγu+1(a
u

u+1 b) =

αiβ−i(a
u

u+1 bu+1) = αi(a
u

u+1 b) = aub = δuγ(b).

The relation (2.41) follows.
We prove now that the four automorphisms generate the whole linear

group. The subgroup A = 〈α, β〉 is elementary abelian of order (p− 1)2, and
elements of this subgroup map a to an a-power and b to a b-power, while
nonidentity automorphisms in the subgroup 〈γ〉 do not. Hence A ∩ 〈γ〉 =
{1}, and by the relations (2.22) and (2.31), the subgroup B = 〈A, γ〉 is the
semidirect product A⋉ 〈γ〉 of order p(p− 1)2, of index p+ 1. Since

αiβjγk(a) = at
i

bt
jk

(0 ≤ i ≤ p − 2, 0 ≤ j ≤ p − 2, 0 ≤ k ≤ p − 1) equals a only if i = 0,
k = 0, we see that nonidentity automorphisms in the subgroup 〈δ〉 are not
in the subgroup B, and the subgroup 〈B, δ〉 is of order p2(p − 1)2 at least.

But the greatest proper divisor of (p2 − 1)(p2 − p) is p+1
2 p(p − 1)2, which is

less than p2(p− 1)2, and these four automorphisms generate the whole linear
group GL(2, p) (clearly, by Dickson’s theorem [3, Theorem 2.8.4] the matrices
corresponding to the automorphisms γ and δ generate the special linear group,
and the determinants of the matrices corresponding to the powers αi take all
the p− 1 values).

The automorphism ν maps a to b−1 and b to a. We see that elements
of the set ∪p−1

i=0Bδi map a to an element ajbk with j relatively prime to p
so the cosets Bδi (0 ≤ i ≤ p − 1) and Bν are all distinct. There remained
to show that these are all the cosets, using relations only. For this aim we
need the remaining two relations (2.42) and (2.43), which are immediate, and
imply that, in fact, the automorphisms α, γ and δ generate the whole linear
group (remarked already above). By the relation (2.23) Bδuα = Bδ

u
t , and by

the relations (2.42)–(2.43) Bνα = Bν (clearly, by the relations (2.21)–(2.32)

the automorphism αβ is central). By the relations (2.41) Bδuγ = Bδ
u

u+1

(1 ≤ u ≤ p − 2), by the relation (2.33) δ−1γ = γ−1ν−1 so Bδ−1γ = Bν and
Bνγ = Bδ. Again by the relation (2.33) νδ = γ−1ν and hence Bνδ = Bν.
Hence there are no more cosets, the elements δi, ν (i = 0, . . . , p − 1) form a
right transversal to the subgroup B, and the relations (2.1)–(2.4) determine
the group operation completely.

In the course of the proof a permutation representation has been given
by means of the relations on the right cosets of the subgroup B (with core
the center 〈αβ〉).
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3. The case of the group
G = 〈a, b | ap

m

= bp
n

= cp = 1, [a, b] = c, [a, c] = 1, [b, c] = 1〉 with
m = n = 1, |G| = p3

Theorem 3.1. Consider the automorphism group Aut(G) (with G as in
the title). Let the automorphism α be induced by the substitution a 7→ at

with t primitive root modulo p (1 < t < p) and b 7→ b; the automorphism β
by the substitution a 7→ a, b 7→ bt; the automorphism γ by the substitution
a 7→ ab, b 7→ b; the automorphism δ by the substitution a 7→ a, b 7→ ab; the
automorphism η by the substitution a 7→ ac, b 7→ b; and the automorphism θ
by the substitution a 7→ a, b 7→ bc; and set ν = δγ−1δ. Then the group of inner
automorphisms is Inn(G) = 〈η, θ〉, the factor-group Aut(G)/ Inn(G) of outer
automorphisms is isomorphic to the linear group GL(2, p). Furthermore, the
automorphism group Aut(G) is presented with generators α, β, γ, δ, η, θ, and
with generating relations

(3.1) |α| = p− 1, |β| = p− 1, |γ| = p, |δ| = p,

(3.2) α−1βα = β, α−1γα = η−
t−1
2 γt, α−1δα = δ

1
t ,

(3.3) β−1γβ = γ
1
t , β−1δβ = θ−

t−1
2 δt, γ−1δγ = δ−1γ−1δ,

(3.4) δuγ = αiβ−iγu+1δ
u

u+1 θ−
u

u+1 , ν2 = ηθα
p−1
2 β

p−1
2 , ν−1αν = β,

(3.5) ηp = 1, θp = 1, ηθ = θη, α−1ηα = η, α−1θα = θ
1
t , β−1ηβ = η

1
t ,

(3.6) β−1θβ = η, γ−1ηγ = η, γ−1θγ = θη, δ−1ηδ = θη, δ−1θδ = θ,

where 1
t is the multiplicative inverse of t modulo p, an integer between 1 and

p, 1 ≤ u ≤ p − 2, 1
u+1 is the multiplicative inverse of u + 1 modulo p, an

integer between 1 and p, and ti ≡ u + 1 (mod p) with i an integer between 1
and p.

Proof. Clearly, the group G is of exponent p now with centre 〈c〉. Let
G = 〈a′, b′ | a′

p
= b′

p
= 1, [a′, b′] = c′, [a′, c′] = 1, [b′, c′] = 1〉 be another

presentation. Obviously, for the generators a′ and b′ we may choose any
two noncommuting elements of order p, so there are (p3 − p)(p3 − p2) =
p2(p2−1)(p2−p) choices, which coincides with the order of the automorphism
group. Notice that (p2 − 1)(p2 − p) is the order of the linear group GL(2, p).

Put C = 〈c〉, then the factor-groupG/C is elementary abelian of order p2.
The automorphisms α, β, γ and δ act on the factor-group G/C, the induced
automorphisms may be viewed as elements of the linear group GL(2, p) of
order (p2−1)(p2−p). Hence the group 〈α, β, γ, δ〉maps homomorphically into
the group GL(2, p) (cf. [4, I.4.3.Satz]). The generating relations (3.1)–(3.4)
for the group Aut(G) are identical to the relations (2.1)–(2.4) of Theorem 2.1
of the previous section but the relations (3.22), (3.32), (3.41) and (3.42) where
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factors of inner automorphisms appear, and can be checked similarly. Now we
check the relation (3.41). For 1 ≤ u ≤ p−2 we see δuγ(a) = au+1b, δuγ(b) =
aub. On the other hand, let ti ≡ u+ 1 (mod p). Then

αiβ−iγu+1δ
u

u+1 θ−
u

u+1 (a) = αiβ−i(abu+1) = αi(ab) = au+1b = δuγ(a),

αiβ−iγu+1δ
u

u+1 θ−
u

u+1 (b) = αiβ−iγu+1δ
u

u+1 (bc−
u

u+1 )

= αiβ−iγu+1(a
u

u+1 bc−
u

u+1 ) = αiβ−i((abu+1)
u

u+1 bc−
u

u+1 )

= αiβ−i(a
u

u+1 bu+1c−
u

u+1 (
u

u+1−1)(u+1)/2c−
u

u+1 )

= αi(a
u

u+1 b) = aub = δuγ(b).

The relation (3.41) follows. The relations (3.5)–(3.6), describing the group of
inner automorphism, are easy to show.

By the relations (3.22) and (3.32) we see that the group of inner
automorphisms is contained in the group 〈α, β, γ, δ〉. By Theorem 2.1 the
homomorphism 〈α, β, γ, δ〉 → GL(2, p) is onto, it maps inner automorphisms
to 1, and since |Aut(G)| = p2|GL(2, p)|, the group 〈α, β, γ, δ〉 coincides with
the whole automorphism group. That is, the factor-group Aut(G)/ Inn(G) is
isomorphic to the linear group GL(2, p). Again by Theorem 2.1 the relations
(3.1)–(3.6) determine the group operation completely.

Clearly, the group Aut(G) is not solvable but in case p = 3.

4. The automorphism group Aut(Cpm × Cpm) (m > 1)

Theorem 4.1. Consider the automorphism group Aut(Cpm ×Cpm) (m >
1) of the abelian group 〈a〉 × 〈b〉 of type Cpm ×Cpm . Let the automorphism α
be induced by the substitution a 7→ at with t primitive root modulo pm (1 <
t < pm) and b 7→ b; the automorphism β by the substitution a 7→ a, b 7→ bt;
the automorphism γ by the substitution a 7→ ab, b 7→ b; the automorphism δ by
the substitution a 7→ a, b 7→ ab; and set ν = δγ−1δ. Then the automorphism
group Aut(Cpm ×Cpm) is of order p4m−3(p2− 1)(p− 1), and is presented with
generators α, β, γ and δ, and with generating relations

(4.1) |α| = ϕ(pm), |β| = ϕ(pm), |γ| = pm, |δ| = pm,

(4.2) α−1βα = β, α−1γα = γt, α−1δα = δ
1
t ,

(4.3) β−1γβ = γ
1
t , β−1δβ = δt, γ−1δγ = δ−1γ−1δ,

(4.4) δuγ = αiβ−iγu+1δ
u

u+1 , ν2 = α
ϕ(pm)

2 β
ϕ(pm)

2 , ν−1αν = β,

(4.5) δvp−1γ = αjβ−jγvp−1δ
vp

1−vp ν,

where 1
t is the multiplicative inverse of t modulo pm; 1 ≤ u ≤ pm−2, gcd(u+

1, p) = 1, 1
u+1 is the multiplicative inverse of u + 1 modulo pm, ti ≡ u + 1
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(mod pm); 0 ≤ v ≤ pm−1−1, tj ≡ vp−1 (mod pm), 1
1−vp is the multiplicative

inverse of 1− vp modulo pm; and 1
t , i, j,

1
u+1 and 1

1−vp are integers between

1 and pm. Moreover, there is an epimorphism Aut(Cpm × Cpm) → GL(2, p)
with a p-group kernel.

Proof. Let 〈a′〉 × 〈b′〉 be another presentation. As an element aibj is of
order pm if and only if gcd(i, p) = 1 or gcd(j, p) = 1, there are p2m − p2m−2

choices for the generator a′. Let b′ be any one of the choices for the other

generator. To assure that 〈a′〉 ∩ 〈a′
i
b′

j
〉 be trivial and a′

i
b′

j
be of order pm

it is necessary that j and p be relatively primes, as otherwise (a′
i
b′

j
)p

m−1

=

a′
ipm−1

, and this property is sufficient also. So there are pmϕ(pm) choices for
the second generator. This way altogether there are (p2m−p2m−2)pmϕ(pm) =
p4m−3(p2 − 1)(p − 1) choices, which is the order of the automorphism group
in view of Theorem 1.1.

The relations (4.1)–(4.41) are immediate and may be checked just as in
Theorem 2.1. We prove now that these four automorphisms generate the
whole automorphism group. The subgroup A = 〈α, β〉 is of order ϕ(pm)2,
and elements of this subgroup map a to an a-power and b to a b-power, while
nonidentity automorphisms in the subgroup 〈γ〉 do not. Hence A ∩ 〈γ〉 =
{1}, and by the relations (4.22) and (4.31), the subgroup B = 〈A, γ〉 is the
semidirect product A⋉ 〈γ〉 of order ϕ(pm)2pm, of index (p+ 1)pm−1. Since

αiβjγk(a) = at
i

bt
jk

(0 ≤ i ≤ ϕ(pm)−1, 0 ≤ j ≤ ϕ(pm)−1, 0 ≤ k ≤ pm−1) equals a only if i = 0,
k = 0, we see that nonidentity automorphisms in the subgroup 〈δ〉 are not in
the subgroup B, and the subgroup 〈B, δ〉 is of order p4m−2(p − 1)2 at least.
But the greatest proper divisor of p4m−3(p2 − 1)(p− 1) is p+1

2 p4m−3(p− 1)2,

which is less than p4m−2(p− 1)2, and these four automorphisms generate the
whole automorphism group Aut(Cpm × Cpm).

The automorphism ν = δγ−1δ maps a to b−1 and b to a. We see that

elements of the set ∪pm−1
i=0 Bδi map a to an element ajbk with j relatively

prime to p while elements of the set ∪pm−1−1
i=0 Bδipν map a to an element of

form ajbk with j divisible by the prime p. So the cosets Bδi (0 ≤ i ≤ pm − 1)
and Bδjpν (0 ≤ j ≤ pm−1 − 1) are all distinct. There remained to show that
these are all the cosets, using relations only. For this aim we shall need the
remaining three relations. The relations (4.42) and (4.43) are immediate as in
Theorem 2.1, and imply that, in fact, the automorphisms α, γ and δ generate
the whole automorphism group. Furthermore, for 0 ≤ v ≤ pm−1 − 1

δvp−1γ(a) = avpb, δvp−1γ(b) = avp−1b.
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On the other hand, if tj ≡ vp− 1 (mod pm), we have

αjβ−jγvp−1δ
vp

1−vp ν(a) = αjβ−jγvp−1δ
vp

1−vp (b−1) = αjβ−jγvp−1(a
vp

vp−1 b−1)

= αjβ−j(a
vp

vp−1 bvp−1) = avpb = δvp−1γ(a),

αjβ−jγvp−1δ
vp

1−vp ν(b) = αjβ−jγvp−1δ
vp

1−vp (a)

= αjβ−j(abvp−1) = avp−1b = δvp−1γ(b).

The relation (4.5) follows.
By the relation (4.23) Bδuα = Bδ

u
t , and by the relations (4.42)–(4.43)

Bδupνα = Bδupβν = Bδupβν = Bδuptν.

(clearly, by the relations (4.21)-(4.32) the automorphism αβ is central). By

the relations (4.41) Bδuγ = Bδ
u

u+1 (u 6≡ −1 (mod p)), by the relation (4.5)

Bδvp−1γ = Bδ
vp

1−vp ν and, since by the relation (4.33) νγ = γ−1δ,

Bδvpνγ = Bδvpγ−1δ = Bδ
vp

1−vp δ = Bδ
1

1−vp .

Finally,

Bδvpνδ = Bδvpν−1δ = Bδvpδ−1γδ−1δ = Bδvp−1γ = Bδ
vp

1−vp ν.

Hence there are no more cosets, the elements δi (i = 0, . . . , pm − 1), δpjν
(j = 0, . . . , pm−1 − 1) form a right transversal to the subgroup B, and the
relations (4.1)–(4.5) determine the group operation completely.

Let ℧ be the characteristic subgroup generated by ap and bp, then the
factor-group 〈a, b〉/℧ is elementary abelian of order p2. The automorphisms
α, γ and δ act on this factor-group, the induced automorphisms may be viewed
as elements of the linear group GL(2, p) of order (p2 − 1)(p2 − p). Hence the
group Aut(Cpm × Cpm) maps homomorphically into the group GL(2, p), and
by Theorem 2.1 this homomorphism is onto, and its kernel is of order p4m−4.

In the course of the proof a permutation representation has been given
on the right cosets of the subgroup B. Clearly, the group Aut(Cpm ×Cpm) is
solvable if and only if the linear group GL(2, p) is solvable (that is, if p = 3).

5. The case of the group
G = 〈a, b | ap

m

= bp
m

= cp = 1, [a, b] = c, [a, c] = 1, [b, c] = 1〉 with
m > 1, |G| = p2m+1

Theorem 5.1. Consider the automorphism group Aut(G) (with G as in
the title). Let the automorphism α be induced by the substitution a 7→ at with
t primitive root modulo pm (1 < t < pm) and b 7→ b; the automorphism β
by the substitution a 7→ a, b 7→ bt; the automorphism γ by the substitution
a 7→ ab, b 7→ b; the automorphism δ by the substitution a 7→ a, b 7→ ab, the
automorphism η by the substitution a 7→ ac, b 7→ b; and the automorphism θ
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by the substitution a 7→ a, b 7→ bc. Then the automorphism group Aut(G) is
generated by the automorphisms α, β, γ, δ. Furthermore, the group of inner
automorphisms is Inn(G) = 〈η, θ〉 and the factor-group Aut(G)/ Inn(G) of
outer automorphisms is isomorphic to the group Aut(Cpm × Cpm).

Proof. Let G = 〈a′, b′ | a′
pm

= b′
pm

= c′
p
= 1, [a′, b′] = c′, [a′, c′] =

1, [b′, c′] = 1〉 be another presentation. As an element aibjck is of order pm if
and only if gcd(i, p) = 1 or gcd(j, p) = 1, there are p2m+1 − p2m−1 choices for
the generator a′. Let b′ be any of the possible choices for the second generator.

Then the element a′
i
b′

j
c′

k
can be chosen to be another second generator if

only if its order is pm, it does not commute with a′ and 〈a′〉 ∩ 〈a′
i
b′

j
c′

k
〉 =

{1}. These three requirements are fulfilled if and only if gcd(j, p) = 1, so
there are ϕ(pm)pm+1 choices for the generator b′. So altogether there are
(p2m+1−p2m−1)ϕ(pm)pm+1 = p4m−1(p2−1)(p−1) choices, which is the order
of the automorphism group. Notice that this is just p2|Aut(Cpm × Cpm)|.

Put C = 〈c〉, then the factor-group G/C is of type Cpm × Cpm . The
automorphisms α, β, γ and δ act on the factor-group G/C, the induced
automorphisms may be viewed as elements of the automorphism group
Aut(Cpm ×Cpm) of order p4m−3(p2 − 1)(p− 1). Hence the group 〈α, β, γ, δ〉
maps homomorphically into the group Aut(Cpm × Cpm). The generating
relations for the group Aut(G) are analogous to the relations (4.1)–(4.5) of the
previous paragraph but not identical, because factors of inner automorphisms

may appear as, for instance, in α−1γα = η−
t−1
2 γt and β−1δβ = θ−

t−1
2 δt.

Clearly, the group of inner automorphisms is Inn(G) = 〈η〉× 〈θ〉 of type Cp ×
Cp. We see that the group of inner automorphism is contained in the group
〈α, β, γ, δ〉. By Theorem 4.1 of the previous paragraph the homomorphism
〈α, β, γ, δ〉 → Aut(Cpm×Cpm) is onto, it maps inner automorphisms to 1, and
since |Aut(G)| = p2|Aut(Cpm × Cpm)|, the group 〈α, β, γ, δ〉 coincides with
the whole automorphism group. That is, the factor-group Aut(G)/ Inn(G) is
isomorphic to the automorphism group Aut(Cpm × Cpm).

One can determine the generating relations as well on the basis of
Theorem 4.1 easily as the only difference is a factor of an inner automorphism
at certain places, and actions of the automorphisms α, β, γ, δ on the group
of inner automorphisms Inn(G) are the same as in Theorem 3.1. Clearly, the
group Aut(G) is not solvable but in case p = 3.

6. The automorphism group Aut(Cpm × Cpn) where m > n > 0

Theorem 6.1. Consider the automorphism group Aut(Cpm ×Cpn) (m >
n > 0) of the abelian group 〈a〉×〈b〉 of type Cpm ×Cpn . Let the automorphism
α be induced by the substitution a 7→ at with t primitive root modulo pm

(1 < t < pm) and b 7→ b; the automorphism β by the substitution a 7→ a,
b 7→ bt, notice that t is a primitive root modulo pn also; the automorphism
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γ by the substitution a 7→ ab, b 7→ b; the automorphism δ by the substitution

a 7→ a, b 7→ ap
m−n

b. Then the automorphism group Aut(Cpm × Cpn) is of
order pm+3n−2(p − 1)2, and is presented with generators α, β, γ and δ, and
with generating relations

(6.1) |α| = ϕ(pm), |β| = ϕ(pn), |γ| = pn, |δ| = pn,

(6.2) α−1βα = β, α−1γα = γt, α−1δα = δ
1
t ,

(6.3) β−1γβ = γ
1
t , β−1δβ = δt,

(6.4) δuγ = αiβ−iγupm−n+1δ
u

upm−n+1 ,

where 1
t is the multiplicative inverse of t modulo pn, an integer between 1

and pn, 1 ≤ u ≤ pn − 1, 1
upm−n+1 is the multiplicative inverse of upm−n + 1

modulo pn, an integer between 1 and pn, and ti ≡ upm−n + 1 (mod pm)
with i an integer between 1 and pm. Moreover, there is a homomorphism
Aut(Cpm × Cpn) → GL(2, p) with a p-group kernel and a metabelian image.
In particular, the group Aut(Cpm × Cpn) is solvable.

Proof. Let 〈a′〉 × 〈b′〉 be another presentation. As an element aibj is
of order pm if and only if gcd(i, p) = 1, there are ϕ(pm)pn choices for the
generator a′ (it is understood that the cyclic subgroup 〈a′〉 of maximal order
always has a direct complement). Let b′ be any one of the choices for the other

generator. To assure that 〈a′〉 ∩ 〈a′
i
b′

j
〉 be trivial and a′

i
b′
j
be of order pn

it is necessary that j and p be relatively primes, as otherwise (a′
i
b′

j
)p

n−1

=

a′ip
n−1

, and this property together with i = pm−ni1 is sufficient also. So
there are pnϕ(pn) choices for the second generator. This way altogether there
are ϕ(pm)pnpnϕ(pn) = pm+3n−2(p − 1)2 choices, which is the order of the
automorphism group by virtue of Theorem 1.1.

The relations (6.1)–(6.3) can be checked just as in the foregoing. For
1 ≤ u ≤ pn − 1, if ti ≡ 1 + upm−n (mod pm) where i is an integer between 1
and pm,

δuγ(a) = aup
m−n+1b, δuγ(b) = aup

m−n

b,

and on the other hand, with 1

1+upm−n the multiplicative inverse of 1 + upm−n

modulo pn, an integer between 1 and pn,

αiβ−iγupm−n+1δ
u

upm−n+1 (a) = αiβ−i(abup
m−n+1)

= αi(ab) = aup
m−n+1b = δuγ(a),

αiβ−iγupm−n+1δ
u

upm−n+1 (b) = αiβ−iγupm−n+1(a
upm−n

upm−n+1 b)

= αiβ−i(a
upm−n

upm−n+1 bup
m−n+1) = αi(a

upm−n

upm−n+1 b) = aup
m−n

b = δuγ(b).

The relation (6.4) follows.
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We prove now that these four automorphisms generate the whole
automorphism group. The subgroup A = 〈α, β〉 is of order ϕ(pm)ϕ(pn),
and elements of this subgroup map a to an a-power and b to a b-power, while
nonidentity automorphisms in the subgroup 〈γ〉 do not. Hence A∩〈γ〉 = {1},
and by the relations (6.22) and (6.31), the subgroup B = 〈A, γ〉 is the
semidirect product A⋉ 〈γ〉 of order ϕ(pm)ϕ(pn)2pn, of index pn. Since

αiβjγk(a) = at
i

bt
jk

(0 ≤ i ≤ ϕ(pm)− 1, 0 ≤ j ≤ ϕ(pn)− 1, 0 ≤ k ≤ pn − 1) equals a only if i = 0,
k = 0, we see that nonidentity automorphisms in the subgroup 〈δ〉 are not
in the subgroup B, and the subgroup 〈B, δ〉 is of order ϕ(pm)ϕ(pn)2p2n at
least. But this is the order of the whole automorphism group Aut(Cpm×Cpn),
which is thus generated by these four automorphisms.

By the relation (6.23) Bδuα = Bδ
u
t , and by the relation (6.32) Bδuβ =

Bδut. By the relations (6.4) Bδuγ = Bδ
u

upm−n+1 . Hence there are no more
cosets, the elements δi (i = 0, . . . , pn − 1) form a right transversal to the
subgroup B, and the relations (6.1)–(6.4) determine the group operation
completely.

Let ℧ be the characteristic subgroup generated by ap and bp, then the
factor-group 〈a, b〉/℧ is elementary abelian of order p2. Hence the group
Aut(Cpm × Cpn) maps homomorphically into the group GL(2, p). Its kernel
consists of automorphisms fixing cosets of the subgroup ℧. One finds that
such an automorphism may substitute the element a with any element in the

coset a℧, and the element b with any element of form aip
m−n

b1+pj, so the
order of the kernel is pm+3n−3, and the image is of order p(p − 1)2. As the
automorphism δ is in the kernel, the image is metabelian by Theorem 2.1.

In the course of the proof a permutation representation has been given
on the right cosets of the subgroup B.

7. The case of the group
G = 〈a, b | ap

m

= bp
n

= cp = 1, [a, b] = c, [a, c] = 1, [b, c] = 1〉 with
m > n > 0, |G| = pm+n+1

Theorem 7.1. Consider the automorphism group Aut(G) (with G as in
the title). Let the automorphism α be induced by the substitution a 7→ at with
t primitive root modulo pm (1 < t < pm) and b 7→ b; the automorphism β
by the substitution a 7→ a, b 7→ bt (note that t is a primitive root modulo
pm and hence modulo pn); the automorphism γ by the substitution a 7→ ab,

b 7→ b; the automorphism δ by the substitution a 7→ a, b 7→ ap
m−n

b, the
automorphism η by the substitution a 7→ ac, b 7→ b; and the automorphism θ
by the substitution a 7→ a, b 7→ bc. Then the automorphism group Aut(G) is
generated by the automorphisms α, β, γ, δ and θ. Furthermore, the group of
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inner automorphisms is Inn(G) = 〈η, θ〉 and the factor-group Aut(G)/ Inn(G)
of outer automorphisms is isomorphic to the group Aut(Cpm × Cpn). In
particular, the group Aut(G) is solvable.

Proof. Let G = 〈a′, b′ | a′p
m

= b′p
n

= c′p = 1, [a′, b′] = c′, [a′, c′] =
1, [b′, c′] = 1〉 be another presentation. As an element aibjck is of order pm

if and only if gcd(i, p) = 1, there are ϕ(pm)pn+1 choices for the generator a′

(since it is of maximal order, is not in Gp and every such choice is possible).
Let b′ be any of the possible choices for the second generator. To assure that

〈a′〉 ∩ 〈a′
i
b′

j
c′

k
〉 be trivial and a′

i
b′

j
c′

k
be a noncentral element of order pn

it is necessary that j and p be relatively primes, as otherwise for n = 1 the

elements a′ and a′
i
b′

j
c′

k
= a′

i
c′

k
commute, and for n > 1 (a′

i
b′

j
c′

k
)p

n−1

=

a′
ipn−1

, and this property together with i = pm−ni1 is sufficient also. So
there are pn+1ϕ(pn) choices for the second generator. This way altogether
there are ϕ(pm)pn+1pn+1ϕ(pn) = pm+3n(p − 1)2 choices, which is the order
of the automorphism group. Notice that this is just p2|Aut(Cpm × Cpn)|.

Put C = 〈c〉, then the factor-group G/C is of type Cpm × Cpn . The
automorphisms α, β, γ, δ and θ act on the factor-group G/C, the induced
automorphisms may be viewed as elements of the automorphism group
Aut(Cpm × Cpn) of order pm+3n−2(p − 1)2. Hence the group 〈α, β, γ, δ, θ〉
maps homomorphically into the group Aut(Cpm ×Cpn). Generating relations
for the group Aut(G) are analogous to the relations (6.1)–(6.4) of Theorem 6.1
of the previous paragraph but not identical, because factors of inner automor-

phisms may appear as, for instance, in α−1γα = η−
t−1
2 γt. Clearly, the group

of inner automorphisms is Inn(G) = 〈η〉×〈θ〉 of type Cp×Cp. By Theorem 6.1
the homomorphism 〈α, β, γ, δ, θ〉 → Aut(Cpm × Cpn) is onto, and its kernel
contains the subgroup Inn(G). Since |Aut(G)| = p2|Aut(Cpm × Cpn)|, the
group 〈α, β, γ, δ, θ〉 coincides with the whole automorphism group. That is,
the factor-group Aut(G)/ Inn(G) is isomorphic to the automorphism group
Aut(Cpm × Cpn). Clearly, the group Aut(G) is solvable by Theorem 6.1.

One can determine the generating relations as well on the basis of
Theorem 6.1 easily as the only difference is a factor of an inner automorphism
at certain places, and actions of the automorphisms α, β, γ, δ on the group
of inner automorphisms Inn(G) are identical as in Theorem 3.1 with few
exceptions, such as δ−1ηδ = η.

We have completed the description of automorphism groups of minimal
nonabelian p-groups for odd primes p in case (B). Case (A) for odd primes
and the 2-group case will be subjects of forthcoming papers.
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8. Solvable automorphism groups of finite abelian groups

As a byproduct of the foregoing investigations, we are able to characterize
finite abelian groups with solvable automorphism groups. From now on we
relax the assumption that the prime p is odd.

Theorem 8.1. Let A be a finite abelian group, p a prime divisor of
its order and P the primary component belonging to the prime p. The
automorphism group Aut(A) is solvable if and only if the following statements
are satisfied:

(i) For p = 2 the primary component P is of type either C2k , C2k × C2k

or C2k1 × C2k2 × · · · × C2kr with k1 ≥ k2 ≥ · · · ≥ kr > 0 (r > 1) such
that an exponent k may appear at most twice in the orders of the direct
cyclic factors;

(ii) For p = 3 the primary component P is of type either C3k , C3k × C3k

or C3k1 × C3k2 × · · · × C3kr with k1 ≥ k2 ≥ · · · ≥ kr > 0 (r > 1) such
that an exponent k may appear at most twice in the orders of the direct
cyclic factors;

(iii) For p ≥ 5 the primary component P is of type either Cpk , or Cpk1 ×
Cpk2 × · · · × Cpkr with k1 > k2 > · · · > kr > 0 (r > 1).

Proof. For, we see at once that, as primary components are characteri-
stic, the automorphism group Aut(A) is the direct product of the automor-
phism groups of the primary components, hence the automorphism group
Aut(A) is solvable if and only if the automorphism group of every primary
component is solvable.

Sufficiency. We have to show that in each of the cases (i), (ii) and (iii)
the automorphism groups of the primary components P are solvable. This is
evident if the primary component P is cyclic, of type C2 ×C2 or C3 ×C3 and
has just been proved above for the type C3k × C3k .

Let p = 2, and let P = 〈a1〉 × 〈a2〉 × · · · × 〈ar〉 be of type C2k1 × C2k2 ×
· · · × C2kr with k1 ≥ k2 ≥ · · · ≥ kr > 0 (r > 1) with at most two consecutive
exponents coinciding. We shall prove by induction that the automorphism
group Aut(P ) is of order of form 2i3j, which at once implies that it is solvable
by Burnside’s Theorem. Let 〈a′1〉×〈a′2〉×· · ·×〈a′r〉 be another presentation.

If the exponent k1 is alone, since a cyclic subgroup of maximal order
always has a direct complement, for a′1 we may choose any element of order

2k1 , number of which is ϕ(2k1) |P |
2k1

, a 2-power.
If the exponents k1 and k2 coincide then for a′1 we may choose any element

of order 2k1 from the subgroup 〈a1〉×〈a2〉, number of which is 22k1 −22k1−2 =
22k1−2 ·3, multiplied by any element of the subgroup 〈a3〉×· · ·×〈ar〉, 2-power
in number. If a′ is any of the possible choices for the second new basis element
and P = 〈a′1〉 × 〈a′〉 × P ′

3, then for a′2 we may choose any element of order
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2k1 , with 〈a′1〉 ∩ 〈a′2〉 = {1}, ϕ(2k1) |P |
2k1

in number, which is a 2-power. If the
group P is of type C2k × C2k then the proof of solvability stops here.

Assume that the new basis elements a′1, . . . , a′s−1 have been already
chosen, if the exponent ks−1 has a pair then ks−2 = ks−1, and the number of
possible choices up to this point is a 2-power times a 3-power. Put P ′

s−1 =
〈a′1〉×〈a′2〉×· · ·×〈a′s−1〉. If the exponent ks is alone then, since in the factor-
group P/P ′

s−1 every cyclic subgroup of maximal order is a direct factor, any
element a′s of order 2ks with 〈a′s〉∩P ′

s−1 = {1} can be chosen to be the new
generator. Let a′ be any of the possible choices, P ′

s+1 a direct complement to

P ′
s−1 × 〈a′〉. The new generators a′s are of form ua′

i
v, where gcd(i, 2) = 1,

u ∈ P ′
s−1 is of order dividing 2ks , v ∈ P ′

s+1. The number of the i’s is ϕ(2ks),
a 2-power, the u’s form a subgroup in P ′

s−1, so the number of the u’s is a
2-power, and, clearly, the number of the v’s is also a 2-power.

If ks = ks+1 and a′ and b′ are any of the possible choices for the two new
basis elements and P = P ′

s−1×〈a′〉×〈b′〉×P ′
s+2, then for a′s we may choose

any element of order 2ks with 〈a′s〉 ∩ P ′
s−1 = {1}, these are of form ua′ib′jv

with u ∈ P ′
s−1 of order dividing 2ks , the element a′

i
b′

j
is of order 2ks , and

v ∈ P ′
s+2. Such elements u form a subgroup, so their number is a 2-power,

the number of the elements a′ib′j is 22ks − 22ks−2 = 22ks−2 · 3, and, clearly,
the number of the v’s is a 2-power. For a′s+1 we may choose any element
satisfying 〈a′s+1〉 ∩ P ′

s−1 × 〈a′s〉 = {1} of order 2ks . Let b′′ be any of the
possible choices, P ′′

s+2 a direct complement to P ′
s−1 ×〈a′s〉× 〈b′′〉. The new

generators a′s+1 are of form ub′′
i
v, where gcd(i, 2) = 1, u ∈ P ′

s−1 × 〈a′s〉 of
order dividing 2ks , v ∈ P ′′

s+2. The number of the i’s is ϕ(2ks), a 2-power, the
u’s form a subgroup in P ′

s−1 × 〈a′s〉, so the number of the u’s is a 2-power,
and, clearly, the number of the v’s is also a 2-power.

By virtue of induction applying Theorem 1.1 we conclude that the order
of the automorphism group Aut(P ) is of form 2i3j.

Let p = 3, and let P = 〈a1〉 × 〈a2〉 × · · · × 〈ar〉 be of type C3k1 × C3k2 ×
· · · × C3kr with k1 ≥ k2 ≥ · · · ≥ kr > 0 (r > 1) with at most two consecutive
exponents coinciding. We shall prove by induction that the automorphism
group Aut(P ) is of order of form 2i3j, which at once implies that it is solvable
by Burnside’s Theorem. Let 〈a′1〉×〈a′2〉×· · ·×〈a′r〉 be another presentation.

If the exponent k1 is alone, since a cyclic subgroup of maximal order
always has a direct complement, for a′1 we may choose any element of order

3k1 , number of which is ϕ(3k1) |P |
3k1

, a 2-power times a 3-power.
If the exponents k1 and k2 coincide, then for a′1 we may choose any

element of order 3k1 from the subgroup 〈a1〉×〈a2〉, number of which is 32k1 −
32k1−2 = 32k1−2 ·8, multiplied by any element of the subgroup 〈a3〉×· · ·×〈ar〉,
3-power in number. For a′2 we may choose any element of order 3k1 with

〈a′1〉 ∩ 〈a′2〉 = {1}, ϕ(3k1) |P |
3k1

in number, which is a 2-power times a 3-power.
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Assume that the new basis elements a′1, . . . , a′s−1 have been already
chosen, if the exponent ks−1 has a pair then ks−2 = ks−1, and the number of
possible choices up to this point is a 2-power times a 3-power. Put P ′

s−1 =
〈a′1〉×〈a′2〉×· · ·×〈a′s−1〉. If the exponent ks is alone then, since in the factor-
group P/P ′

s−1 every cyclic subgroup of maximal order is a direct factor, any
element a′s of order 3ks with 〈a′s〉∩P ′

s−1 = {1} can be chosen to be the new
generator. Let a′ be any of the possible choices, P ′

s+1 a direct complement to

P ′
s−1 × 〈a′〉. The new generators a′s are of form ua′

i
v, where gcd(i, 3) = 1,

u ∈ P ′
s−1 of order dividing 3ks , v ∈ P ′

s+1. The number of the i’s is ϕ(3ks),
a 2-power times a 3-power, the u’s form a subgroup in P ′

s−1, so the number
of the u’s is a 3-power, and, clearly, the number of the v’s is also a 3-power.

If ks = ks+1 and a′ and b′ are any of the possible choices for the two new
basis elements and P = P ′

s−1×〈a′〉×〈b′〉×P ′
s+2, then for a′s we may choose

any element of order 3ks with P ′
s−1 ∩ 〈a′s〉 = {1}, these are of form ua′

i
b′

j
v

with u ∈ P ′
s−1 of order dividing 3ks , the element a′

i
b′

j
is of order 3ks , and

v ∈ P ′
s+2. Such elements u form a subgroup, so their number is a 3-power,

the number of the elements a′
i
b′

j
is 32ks −32ks−2 = 32ks−2 ·8, and, clearly, the

number of the v’s is a 3-power. For a′s+1 we may choose any element of order
3ks with P ′

s−1 × 〈a′s〉 ∩ 〈a′s+1〉 = {1}. Let b′′ be any of the possible choices,
P ′′

s+2 a direct complement to P ′
s−1×〈a′s〉× 〈b′′〉. The new generators a′s+1

are of form ub′′
i
v, where gcd(i, 3) = 1, u ∈ P ′

s−1×〈a′s〉 of order dividing 3ks ,
v ∈ P ′′

s+2. The number of the i’s is ϕ(3ks), a 2-power times a 3-power, the
u’s form a subgroup in P ′

s−1 × 〈a′s〉, so the number of the u’s is a 3-power,
and, clearly, the number of the v’s is also a 3-power.

By virtue of induction we conclude that the order of the automorphism
group Aut(P ) is of form 2i3j.

Consider the case p ≥ 5. Let P = 〈a1〉 × 〈a2〉 × · · · × 〈ar〉 of type Cpk1 ×
Cpk2 × · · · × Cpkr with k1 > k2 > · · · > kr > 0 (r > 1). We shall prove by

induction that the automorphism group Aut(P ) is of order of form pi(p− 1)r.
Let 〈a′1〉×〈a′2〉× · · ·×〈a′r〉 be another presentation. Since a cyclic subgroup
of maximal order always has a direct complement, for a′1 we may choose any

element of order pk1 , number of which is ϕ(pk1) |P |
pk1

, which is of form pi(p−1).

Assume that the new basis elements a′1, . . . , a
′
s−1 have been already chosen,

and the number of possible choices up to this point is of form pi(p − 1)s−1.
Put P ′

s−1 = 〈a′1〉 × 〈a′2〉 × · · · × 〈a′s−1〉. Since in the factor-group P/P ′
s−1

every cyclic subgroup of maximal order is a direct factor, any element a′s of
order pks with 〈a′s〉∩P ′

s−1 = {1} can be chosen to be the new generator. Let
a′ be any of the possible choices, P ′

s+1 a direct complement to P ′
s−1 × 〈a′〉.

The new generators a′s are of form ua′
j
v, where gcd(j, p) = 1, u ∈ P ′

s−1 of
order dividing pks , v ∈ P ′

s+1. The number of the j’s is ϕ(pks) = pks−1(p−1),
the u’s form a subgroup in P ′

s−1, so the number of the u’s is a p-power,
and, clearly, the number of the v’s is also a p-power. By virtue of induction
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we conclude that the order of the automorphism group Aut(P ) is of form
pi(p− 1)r.

Finally, we shall show that the automorphism group Aut(P ) factors into
the product of a p-Sylow subgroup and an abelian subgroup E. Indeed, let
αi be the automorphism determined by the substitution ai 7→ ati, aj 7→ aj
(j 6= i), where t is a primitive root modulo pk1 (and hence modulo pk2 , . . . ,
pkr also, i = 1, . . . , r). Obviously, the αi are of order ϕ(pki) and generate
an abelian subgroup of type Cϕ(pk1 ) ×Cϕ(pk2 ) × · · · ×Cϕ(pkr ). The subgroup

E = 〈αpk1−1

1 〉 × 〈αpk2−1

2 〉 × · · · × 〈αpkr−1

r 〉 is abelian of type Cr
p−1, its order

is relatively prime to p, hence it has the trivial intersection with the p-Sylow
subgroup. The product of their orders is the order of the whole automorphism
group, thus the required factorization has been obtained. By the theorem of
Kegel and Wielandt the automorphism group Aut(P ) is solvable as a product
of two nilpotent groups. The proof of sufficiency is complete.

Necessity. Notice that if a group has a direct factor then the automorphism
group of the whole group has a subgroup isomorphic to the automorphism
group of this direct factor. Considering the facts that the automorphism
groups of groups of type C2 ×C2 ×C2, C3 ×C3 ×C3 and Cpm ×Cpm (p ≥ 5
andm ≥ 1) are nonsolvable (these facts are well-known or has just been proved
above), there remained to prove that the automorphism group of a group of
type C2m ×C2m ×C2m or C3m ×C3m ×C3m (m > 1) is nonsolvable, because
these properties together imply that in all the left-out cases in (i), (ii) and
(iii) for the primary component P the automorphism group is nonsolvable.

Let the group T = 〈a〉×〈b〉×〈c〉 be of type C2m ×C2m ×C2m (m ≥ 2) and
let 〈a′〉×〈b′〉×〈c′〉 be another presentation. By applying analogous arguments
as in the foregoing, for the new generator a′ there are 23m−23(m−1) = 23m−3 ·7
choices, for b′ there are (22m−22(m−1))2m = 3 ·23m−2 choices, and for c′ there
are ϕ(2m)22m = 23m−1 choices. Therefore altogether there are 29m−6 · 3 · 7
choices, which is the order of the automorphism group Aut(T ). Let ℧ be
the characteristic subgroup generated by a2, b2 and c2, then the factor-group
T/℧ is elementary abelian of order 8. Automorphisms of Aut(T ) act on the
factor-group G/℧, the induced automorphisms may be viewed as elements of
the linear group GL(3, 2) of order 23 · 3 · 7. The kernel of the homomorphism
consists of those automorphisms that map a to an element of the coset a℧,
b to an element of the coset b℧ and c to an element of the coset c℧. So in
case of elements of the kernel for the substitutions a 7→ a′ there are 23(m−1)

choices as any a′ ∈ a℧ will do. In case of the substitutions b 7→ b′, b′ also
may be any element of the coset b℧ since these elements are of order 2m and
the property 〈a′〉 ∩ 〈b′〉 = {1} will also be satisfied, hence there are 23(m−1)

choices. Similarly for c′ there are 23(m−1) choices. We conclude that the kernel
is of order 29m−9, the homomorphism is onto and Aut(T ) has a nonsolvable
homomorphic image and is nonsolvable.
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Let the group T = 〈a〉×〈b〉×〈c〉 be of type C3m ×C3m ×C3m (m ≥ 2) and
let 〈a′〉×〈b′〉×〈c′〉 be another presentation. By applying analogous arguments
as in the foregoing, for the new generator a′ there are 33m − 33(m−1) = 2 ·
33m−3 · 13 choices, for b′ there are (32m − 32(m−1))3m = 23 · 33m−2 choices,
and for c′ there are ϕ(3m)32m = 2 · 33m−1 choices. Therefore altogether there
are 25 · 39m−6 · 13 choices, which is the order of the automorphism group
Aut(T ). Let ℧ be the characteristic subgroup generated by a3, b3 and c3,
then the factor-group T/℧ is elementary abelian of order 27. Automorphisms
of Aut(T ) act on the factor-group G/℧, the induced automorphisms may be
viewed as elements of the linear group GL(3, 3) of order 25·33·13. The kernel of
the homomorphism consists of those automorphisms that map a to an element
of the coset a℧, b to an element of the coset b℧ and c to an element of the
coset c℧. So in case of elements of the kernel for the substitutions a 7→ a′

there are 33(m−1) choices as any a′ ∈ a℧ will do. In case of the substitutions
b 7→ b′, b′ also may be any element of the coset b℧ since these elements are of
order 3m and the property 〈a′〉 ∩ 〈b′〉 = {1} will also be satisfied, hence there
are 33(m−1) choices. Similarly for c′ there are 33(m−1) choices. We conclude
that the kernel is of order 39m−9, the homomorphism is onto and Aut(T ) has
a nonsolvable homomorphic image and is nonsolvable.
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