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Vol. 46(66)(2011), 415 – 431

A FINITE-DIMENSIONAL APPROACH TO WAVELET

SYSTEMS ON THE CIRCLE

Brody Dylan Johnson

Saint Louis University, USA

Abstract. Motivated by recent developments in the study of finite-
dimensional frames, this work develops an independent theory of finite-
dimensional wavelet systems on the circle. Using natural translation

and dilation operators, trigonometric polynomial, orthonormal scaling
functions are constructed which give rise to finite-dimensional multireso-
lution analyses and, consequently, orthonormal wavelet systems. It is
shown that the finite-dimensional systems so constructed can lead to
arbitrarily close approximation of square-integrable functions on the circle.
Departures from the existing theory of periodic wavelets are encountered,
e.g., the finite-dimensional equivalent of the Smith-Barnwell equation
describes both a necessary and sufficient condition on a candidate low-pass
filter for the existence of an orthonormal scaling function. Moreover, this
finite-dimensional framework allows for a natural analog to the Shannon
wavelet, in contrast to the classical periodic wavelets.

1. Introduction

Wavelets on the circle, or periodic wavelets, have been studied by a number
of previous authors. The earliest constructions (see [8] or [5]) rely on the
periodization of functions on the line through application of the operator
P : L1(R) → L1(T),

Pf(x) =
∑

k∈Z

f(x+ k), x ∈ T,

where T will be associated with the interval [0, 1). In such constructions,
periodization of an L1-scaling function associated with a cardinal multire-
solution analysis leads to a multiresolution structure and associated wavelet
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basis for L2(T). Another approach to periodic wavelets involves the direct
construction of multiresolution structures on the circle independent of the
theory on the line, e.g., [3], [9], and [2]. Each of these constructions bears
elements of the usual wavelet theory on the line, yet none explicitly considers
a notion of dilation on the circle. Moreover, each is concerned with the study
of infinite-dimensional systems in L2(T).

The goal of this article is to develop a notion of finite-dimensional wavelet
theory for the circle which is rooted in its inherent algebraic structure. A
natural choice for translation is given by the finite group action of ZN = Z/NZ

(N ∈ N) via the circular translation,

(1.1) TNf(x) = f(x−N−1), x ∈ T.

The space of the N -dimensional space of complex-valued functions on ZN will
be denoted by ℓ(ZN ). Dilation will be achieved by the mapping D : L2(T) →
L2(T) defined by

Df(x) = 2−1
(
f(2−1x) + f(2−1x+ 2−1)

)
, x ∈ T.

This definition is motivated in part by the relationship between dilation
on the line and the periodization map P discussed above, but also by the
commutativity relationship this creates for TN and D. Before explaining this
further, it is convenient to pause long enough to establish notation for Fourier
analysis on T, Z, and ZN .

1. The Fourier transform of f ∈ L2(T) will be denoted by f̂ and is given
by

f̂(k) =

∫

T

f(x)e−2πikx dx, k ∈ Z.

These are the Fourier series coefficients of f .

2. The Fourier transform of f ∈ ℓ2(Z) will also be denoted by f̂ and is
defined for f ∈ ℓ1 ∩ ℓ2(Z) by

f̂(ξ) =
∑

k∈Z

f(k)e−2πikξ, ξ ∈ T.

3. The Fourier transform on ℓ(ZN ) will be denoted by FN : ℓ(ZN ) →
ℓ(ZN ) and is defined for f ∈ ℓ(ZN ) by

FNf(n) = f̂(n) =
1√
N

∑

k∈ZN

f(k)e−2πikn/N , n ∈ ZN .

The meaning of the hat -notation for the Fourier transform will be clear from
context. Now, to examine the relationship between D and TN , observe that
for f ∈ L2(T),

D̂f(k) = f̂(2k) and T̂Nf(k) = e−2πik/N f̂(k), k ∈ Z.

It follows from these identities that T 2
ND = DTN , which mirrors the

relationship between translation and dilation on R and plays an important
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role in the development of multiresolution structures (see [6]). Also note that
the above identity shows that D performs a downsampling of the Fourier
coefficients of functions in L2(T) and, therefore, is not invertible. One
implication of this observation is that any associated multiresolution structure
on the circle must be one-sided, i.e., only positive powers of the dilation
operator may be used.

The organization of the article is as follows. Section 2 describes
basic facts about principal shift-invariant subspaces of L2(T) in terms of
a finite-dimensional bracket product. In particular, the bracket product
provides a simple characterization of functions whose translates over ZN are
orthonormal. Section 3 consists of a study of refinable functions on the circle
which leads to a corresponding notion of finite-dimensional multiresolution
analyses (MRAs). The main results of this work are presented in this section.
Theorem 3.5 provides a characterization of those refinable functions which are
orthonormal scaling functions for an MRA in terms of the bracket product
and a finite-dimensional version of the familiar Smith-Barnwell equation.
Meanwhile, Theorem 3.6 shows that given a candidate low-pass filter satisfying
the Smith-Barnwell equation, one can construct a corresponding orthonormal
scaling function of any finite order N = 2J . The lack of further restrictions
on the low-pass filter, such as Cohen’s condition, illustrates the added
flexibility found in the finite-dimensional setting and represents a significant
departure from MRA theory on the real line. Section 4 builds on the MRA
theory developed in Section 3 by offering a corresponding description of
orthonormal wavelet bases for certain subspaces of L2(T). Finally, in Section
5, the approximation error of the systems constructed in Sections 3 and 4
is considered. It is shown that the finite-dimensional systems developed in
Sections 3 and 4 can lead to arbitrarily small approximation error for functions
in L2(T). The section concludes with an example motivated by the Shannon
wavelet on R, which is not suitable for the periodization approach found in
the classical treatments of periodic wavelets.

2. Principal shift-invariant spaces

The theory of shift-invariant spaces on the line is well understood in terms
of the bracket product studied by de Boor, DeVore, and Ron ([1]) and later
by Ron and Shen ([10]). The machinery developed on the real line carries over
quite naturally to the circle as the translation group Z found on R is replaced
by ZN on T. Rather than develop this theory in its entirety, however, the
purpose of this section is to collect only the results necessary in the subsequent
sections. The reader is referred to the work of Plonka and Tasche ([9]) for a
broader treatment of this material which deals with multiple generators and
the case of general frames. Basic information about frames can be found in
the texts [4], [5], and [7].
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Definition 2.1. The bracket product of order N of two functions f, g ∈
L2(T) is the vector [f̂ , ĝ]N ∈ ℓ(ZN ) defined by

[f̂ , ĝ]N (n) = N
∑

k∈Z

f̂(n+ kN) ĝ(n+ kN), 0 ≤ n ≤ N − 1.

Notice that the square-integrability of f and g ensures that [f̂ , ĝ] is well-
defined. As on the line, the bracket product of f and g on the circle is closely
related to the inner products of f with the translates of g. In particular,
the following proposition shows how the finite-dimensional Fourier transform
relates the two objects.

Proposition 2.2. For all f, g ∈ L2(T),

FN
(
{〈f, T n

Ng〉}N−1
n=0

)
=

1√
N

[f̂ , ĝ]N .

Proof. For 0 ≤ n ≤ N − 1 observe that

〈f, T n
Ng〉 =

∑

k∈Z

f̂(k) T̂ n
Ng(k) =

∑

k∈Z

N−1∑

ℓ=0

f̂(ℓ+ kN) ĝ(ℓ + kN)e2πinℓ/N

=
1

N

N−1∑

ℓ=0

[f̂ , ĝ]N (ℓ)e2πinℓ/N =
1√
N

(
F−1

N [f̂ , ĝ]N

)
(n).

The following definition makes clear how the finite groups ZN lead to
shift-invariant spaces on the circle.

Definition 2.3. Given φ ∈ L2(T) and N ∈ N, the principal shift-
invariant space of order N generated by φ is the finite-dimensional space
VN (φ) given by

VN (φ) = span{T n
Nφ : 0 ≤ n ≤ N − 1}.

The collection {T nφ : 0 ≤ n ≤ N − 1} will be denoted hereafter by XN (φ).

The following characterization of orthonormal generators of PSI spaces is
an immediate consequence of Proposition 2.2.

Corollary 2.4. Let φ ∈ L2(T). Then XN (φ) is an orthonormal basis

for VN (φ) if and only if [φ̂, φ̂]N (n) = 1, n ∈ ZN .

3. Refinable functions and multiresolution analysis

In this section, a notion of multiresolution analysis will be developed
through an examination of refinable functions on the circle.
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Definition 3.1. A function φ ∈ L2(T) is said to be refinable of order N
(N ∈ N) if there exists a mask c ∈ ℓ(ZN ) such that

(3.1) Dφ =
∑

n∈ZN

c(n)T n
Nφ.

As on the line, the refinability of a function on the circle is well understood
in terms of its Fourier transform.

Lemma 3.2. Suppose that φ ∈ L2(T) is refinable of order N , then there
exists m ∈ ℓ(ZN ) such that

(3.2) φ̂(2k) = m(k)φ̂(k), k ∈ Z.

Proof. By hypothesis, there exists c ∈ ℓ(ZN ) such that (3.1) holds,
which is equivalent to

φ̂(2k) =

( ∑

n∈ZN

c(n)e−2πink/N

)
φ̂(k), k ∈ Z.

Thus, defining m(k) =
√
Nĉ(k), k ∈ ZN , the lemma is proven.

The finite-dimensional vector m in Lemma 3.2 is often referred to as the
filter associated with the refinable function φ. Observe that if φ is a refinable

function, then the lemma implies that either φ̂(0) = 0 or the associated filter
m satisfies m(0) = 1. Thus, it is necessary that m(0) = 1 if the associated
refinable function is to have a nonzero integral.

Definition 3.3. A multiresolution analysis (MRA) of order N = 2J

(J ∈ N) is a collection of closed subspaces of L2(T), {Vj}Jj=0, satisfying

1. For 0 ≤ j ≤ J − 1, Vj+1 ⊆ Vj;
2. For 0 ≤ j ≤ J − 1, f ∈ Vj if and only if Df ∈ Vj+1;
3. VJ is the subspace of constant functions;

4. There exists a scaling function ϕ ∈ V0 such that X2−jN (2
j

2Djϕ) is an
orthonormal basis for Vj.

Notice that MRA properties (1.) and (4.) imply that a scaling function ϕ
is necessarily refinable of order N . Moreover, it follows from MRA properties
(3.) and (4.) that DJϕ must be constant and nonzero, implying that ϕ̂(0) 6= 0.

Remark 3.4. Suppose that ϕ ∈ L2(T) is refinable of order N = 2J

(J ∈ N) with associated filter m ∈ ℓ(ZN ). Applying the dilation operator to
(3.1) j times, one obtains

Dj+1ϕ =
∑

n∈ZN

c(n)DjT n
Nϕ.
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Recall that T 2
ND = DTN , so DjT n

N = T 2jn
N Dj = T n

2−jND
j , so the above

refinement equation can be restated as

Dj+1ϕ =
∑

n∈ZN

c(n)T n
2−jND

jϕ.

Now, observe that the summation over ZN results in duplicated translates,
allowing for another restatement with the sum over Z2−jN ,

Dj+1ϕ =
∑

n∈Z2−jN




2j−1∑

ℓ=0

c(n+ ℓ2−jN)


T n

2−jND
jϕ.

The upshot of these observations is that Djϕ is refinable of order 2−jN
and the associated mask is obtainable from the original via periodization.
Denoting the mask as cj ∈ ℓ(Z2−jN ), observe that the corresponding filter is

(2−jN)
1
2 ĉj = m(2j·).

The next theorem characterizes those refinable functions which are scaling
functions for an MRA in terms of the bracket product and a variation of the
familiar Smith-Barnwell equation for low-pass filters.

Theorem 3.5. Suppose ϕ ∈ L2(T) is a refinable function of order N = 2J

(J ∈ N) with ϕ̂(0) 6= 0. Then ϕ is the scaling function of an MRA of order
N if and only if

(3.3) |m0(k)|2 + |m0(k + 2−1N)|2 = 1, k ∈ ZN ,

and

(3.4) [ϕ̂, ϕ̂]N (n) = 1, n ∈ ZN .

Proof. Some preliminary observations will simplify the proof. Recall
that the dilation operator is not unitary, but satisfies T 2

ND = DTN . Hence,
if ϕ is refinable (satisfies (3.1)) then

T k
2−1NDϕ = T 2k

N Dϕ =
∑

n∈ZN

c(n)T n+2k
N ϕ, 0 ≤ k ≤ 2J−1 − 1.

Moreover, observe that

[2
1
2 D̂ϕ, 2

1
2 D̂ϕ]N

2
(n) = N

∑

k∈Z

|D̂ϕ(n+ k
N

2
)|2

= N
∑

k∈Z

|ϕ̂(n+ k
N

2
)|2 |m0(n+ k

N

2
)|2

= N
[∑

k∈Z

|ϕ̂(n+ kN)|2 |m0(n+ kN)|2

+
∑

k∈Z

|ϕ̂(n+
N

2
+ kN)|2 |m0(n+

N

2
+ kN)|2

]
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= [ϕ̂, ϕ̂]N (n)|m0(n)|2 + [ϕ̂, ϕ̂]N (n+
N

2
)|m0(n+

N

2
)|2

The necessity of (3.4) follows from the j = 0 statement of MRA property
4. and Theorem 2.4. Given (3.4), the above calculation shows that

[2
1
2 D̂ϕ, 2

1
2 D̂ϕ]2−1N (n) = |m0(n)|2 + |m0(n+ 2−1N)|2,

demonstrating the necessity of (3.3).
To see the sufficiency, assume that m0 satisfies (3.3) and ϕ satisfies (3.4).

Define Vj = V2−jN (2
j

2Djϕ), 0 ≤ j ≤ J . MRA property (2.) is immediate,
while MRA property (1.) follows from the refinability of ϕ in light of the
preliminary observations above.

It is assumed that ϕ̂(0) 6= 0, so Lemma 3.2 implies that m0(0) = 1 and
(3.3) implies m0(2

J−1) = 0. Observe that

D̂Jϕ(k) = ϕ̂(2Jk) = ϕ̂(k)

J−1∏

j=0

m0(2
jk), k ∈ Z.

If k /∈ NZ, then the product on the right-hand side of the last equality must
contain a factor equal to m0(2

J−1), which is zero. For k ∈ NZ notice that
ϕ̂(k) can be expanded similarly,

ϕ̂(k) = ϕ̂(2−Jk)

J−1∏

j=0

m0(2
j−Jk),

so ϕ̂(k) = 0 by the same reasoning. Therefore D̂Jϕ(k) = 0 for all k 6= 0, while

D̂Jϕ(0) = ϕ̂(0) 6= 0. This proves that DJϕ is a constant, nonzero function
and demonstrates MRA property (3.).

Finally, observe that the calculation of [2
1
2 D̂ϕ, 2

1
2 D̂ϕ]2−1N given above

shows that X2−1N (2
1
2Dϕ) is an orthonormal basis for V1. The corresponding

statement for Vj , 2 ≤ j ≤ J , follows by induction in light of Remark 3.4,
completing the demonstration of MRA property (4.) as well as the proof of
the theorem.

The following theorem shows that a candidate low-pass filterm0 satisfying
m0(0) = 1 and (3.3) always leads to a corresponding trigonometric polynomial
scaling function. This is somewhat surprising given that the Smith-Barnwell
condition is far from sufficient for the existence of an orthonormal scaling
function on the real line, yet, at the same time, it is the leap from finite to
infinite which prompts further restrictions on the filter, e.g., Cohen’s condition
([5]).

Theorem 3.6. Fix N = 2J , J ∈ N. Suppose m0 ∈ ℓ(ZN ) satisfies (3.3)
with m0(0) = 1. Then m0 is the low-pass filter of a trigonometric polynomial
scaling function of order N .
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Proof. The proof will consist of the construction of an orthonormal
scaling function ϕ associated with m0. Combining Lemma 3.2 with Theorem
2.4, respectively, ϕ must satisfy

(3.5) ϕ̂(2k) = m0(k) ϕ̂(k), k ∈ Z,

and

(3.6) 1 = N
∑

k∈Z

|ϕ̂(n+ kN)|2, n ∈ ZN .

Notice that (3.5) can be used to specify ϕ̂ recursively on dyadic sequences
originating at odd integers. In order to satisfy (3.6) for each odd index n ∈ ZN

it is sufficient to specify φ̂(k) for each odd index between −2−1N and 2−1N .
With these preliminary observations ϕ̂ will be constructed as follows.

1. Let ϕ̂(0) = 1√
N
.

2. For −2J−2 ≤ k ≤ 2J−2 − 1, let ϕ̂(2k + 1) = 1√
N
.

3. For −2J−2 ≤ k ≤ 2J−2 − 1 and 1 ≤ j ≤ J − 1, define ϕ̂(2j(2k + 1))
according to (3.5), i.e.,

ϕ̂(2j(2k + 1)) = m0(2
j−1(2k + 1)) ϕ̂(2j−1(2k + 1)).

The remainder of the proof will justify this definition. Observe that
because m0(0) = 1, (3.3) implies m0(2

J−1) = 0, which forces each dyadic
sequence to terminate after 2J−1 steps. Indeed,

ϕ̂(2J(2k + 1)) = ϕ̂(2J+1k + 2J) = m0(2
J−1) ϕ̂(2Jk + 2J−1) = 0,

which shows both that the above definition satisfies (3.5) for all k ∈ Z and
that the corresponding refinable function, ϕ, is a trigonometric polynomial of
degree at most 2J−1(2−1N − 1).

It must now be shown that (3.6) holds for each n ∈ ZN . The n = 0 case
rests solely on ϕ̂(0), which is immediate based on the construction above.
Moreover, the recursion (3.5) implies that for each odd n ∈ ZN , only the
coefficients ϕ̂(n) and ϕ̂(n − N) contribute to (3.6) and only one of these is
nonzero. Thus, the construction above also guarantees (3.6) is satisfied for
each odd n ∈ ZN .

It remains to demonstrate (3.6) for nonzero, even n ∈ ZN , a set of 2J−1−1
elements. In order to determine the coset in which a given Fourier coefficient
will occur, the map k 7→ 2k must be understood on ZN . The doubling map
on ZN is two-to-one and satisfies

(3.7) 2j(2k + 1) = 2j(2k + 1 + 2−jmN), −2j−1 ≤ m ≤ 2j−1 − 1,

for j ≥ 0. Consider the j = 1 version of this identity, which states that
2(2k+1) and 2(2k+1−N/2) are equivalent in ZN . Suppose that n = 2(2k+1),
where 0 < 2k + 1 < 2−1N . It follows from the above construction that
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2k+1 and 2k+1−N/2 are the only indices corresponding to nonzero Fourier
coefficients of ϕ̂ whose double is congruent to n. In other words,

∑

k∈Z

|ϕ̂(n+ kN)|2 =
1

N

(
|m0(2k + 1)|2 + |m0(2k + 1−N/2)|2

)
=

1

N
.

Considering the range 1 ≤ 2k + 1 ≤ 2−1N − 1, observe that n takes on 2J−2

distinct values in ZN .
In general, for 1 ≤ j ≤ J−1, 2J−j−1 distinct indices n occur in (3.7) over

the range 1 ≤ 2k + 1 ≤ 2−1N , each with multiplicity 2j+1. The multiplicity
is the maximum possible after doubling j times, so the corresponding indices
must be distinct both among themselves and from those for smaller values of
j. Notice that as j ranges from 1 to J − 2 the number of distinct values is
given by 2J−2 + 2J−3 + · · · + 1 = 2J−1 − 1, precisely the number of indices
unaccounted for above. Hence, the validity of the construction rests on sums
of the form,

2j−1−1∑

m=−2j−1

|ϕ̂(2j(2k + 1 + 2−jmN))|2, 0 ≤ k ≤ N

4
− 1.

Employing (3.5) and (3.3) while noting that all of the nonzero, odd Fourier
coefficients of ϕ̂ are identical, it follows that

2j−1−1∑

m=−2j−1

|ϕ̂(2j(2k + 1 + 2−jmN))|2

=

2j−1−1∑

m=−2j−1

j−1∏

ℓ=0

∣∣m0(2
ℓ(2k + 1 + 2−jmN))

∣∣2 |ϕ̂(2k + 1 + 2−jmN)|2

=
1

N

2j−2−1∑

m=−2j−2

j−1∏

ℓ=1

∣∣m0(2
ℓ(2k + 1 + 2−jmN))

∣∣2

×
(
|m0(2k + 1 + 2−jmN)|2 + |m0(2k + 1 + 2−jmN − 2−1N)|2

)

=
1

N

2j−2−1∑

m=−2j−2

j−1∏

ℓ=1

∣∣∣m0(2
ℓ(2k + 1 + 2−(j−1)mN))

∣∣∣
2

.

By extracting the lowest-index term from the product at each successive
step in the computation, this eventually reduces to a single summand 1

N ,
completing the proof.

The construction described in the proof of Theorem 3.6 is just one
possibility among infinitely many choices. However, the chosen construction
has the advantage of leading to a scaling function of minimal degree. The
next proposition shows that the low-pass filter associated with an orthonormal
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scaling function on the real line often induces a scaling function for an MRA
on the circle through Theorem 3.6.

Proposition 3.7. Suppose c ∈ ℓ2(Z) is an absolutely summable sequence
whose Fourier transform m = ĉ satisfies

|m(ξ)|2 + |m(ξ + 2−1)|2 = 1, ξ ∈ T,

If c0 ∈ ℓ(ZN ) is defined by

c0(n) =
∑

k∈Z

c(n+ kN), n ∈ ZN ,

where N = 2J (J ∈ N), then m0 =
√
Nĉ0 satisfies (3.3).

Proof. The absolute summability of c ensures both that the definition
of c0 makes sense and that pointwise evaluation of m is appropriate. Notice
that

m0(n) =
∑

k∈ZN

∑

ℓ∈Z

c(k + ℓN)e−2πin(k+ℓN)/N

=
∑

k∈Z

c(k)e−2πink/N = m(n/N),

while m0(n+ 2−1N) = m(n/N + 2−1) by a similar calculation. Thus,

|m0(n)|2 + |m0(n+N/2)|2 = |m(n/N)|2 + |m(n/N + 2−1)|2 = 1, n ∈ ZN ,

proving that (3.3) holds.

Example 3.8. It will be beneficial to discuss a concrete example of the
construction described in the proof of Theorem 3.6. Fix N = 8 and consider
the low-pass filter induced by the Haar mask c ∈ ℓ(ZN ) given by c(0) =
c(1) = 1

2 with c(n) = 0 for n 6= 0, 1. The low-pass filter m0 ∈ ℓ(ZN ) is given
by

m0(n) = e−πin/8 cos (nπ/8), n ∈ Z8.

This filter satisfies (3.3) as a consequence of Proposition 3.7. The construction
used to prove Theorem 3.6 leads to the definition of ϕ by

ϕ̂(−3) =
1√
8

−→ ϕ̂(−6) = ϕ̂(−3)m0(5) −→ ϕ̂(−12) = ϕ̂(−6)m0(5)m0(2),

ϕ̂(−1) =
1√
8

−→ ϕ̂(−2) = ϕ̂(−1)m0(7) −→ ϕ̂(−4) = ϕ̂(−2)m0(7)m0(6),

ϕ̂(0) =
1√
8
,

ϕ̂(1) =
1√
8

−→ ϕ̂(2) = ϕ̂(1)m0(1) −→ ϕ̂(4) = ϕ̂(1)m0(1)m0(2),

ϕ̂(3) =
1√
8

−→ ϕ̂(6) = ϕ̂(3)m0(3) −→ ϕ̂(12) = ϕ̂(6)m0(3)m0(6),
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where each strand terminates because m0(4) = 0. This definition makes ϕ
refinable of order 8 and it is evident that ϕ is a real-valued trigonometric
polynomial of degree 12. It is routine to verify that [ϕ̂, ϕ̂]N (n) = 1 for n ∈ Z8,
showing that ϕ is an orthonormal scaling function. Figure 1 shows the graph
of ϕ on T.
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Figure 1. Haar scaling function ϕ of order N = 8.

Remark 3.9. Consider the stretched Haar filter,

m(ξ) =
1

2

(
1 + e−2πi3ξ

)
,

which fails to produce an orthonormal scaling function on the line. Proposition
3.7 shows how this filter can be used to produce finite-dimensional filters
satisfying m0(0) = 1 and the Smith-Barnwell identity, (3.3). Consequently,
one can also construct corresponding orthonormal scaling functions in light
of Theorem 3.6.

4. MRA wavelets

Given an MRA of the sort described in the previous section, one hopes
to obtain an orthonormal wavelet basis for V0 ⊖ VJ . This is the motivation
for the following definition.
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Definition 4.1. Let {Vj}Jj=0 be an MRA of order N = 2J (J ∈ N). A
function ψ ∈ V0 is a wavelet for the MRA if the collection

{2 j
2T n

2−jND
j−1ψ : 1 ≤ j ≤ J, n ∈ Z2−jN}

is an orthonormal basis for V0 ⊖ VJ .

The construction of an MRA wavelet will center on a decomposition of
Vj as Vj = Vj+1 ⊕Wj+1, 0 ≤ j ≤ J − 1, where Wj is of the form Wj+1 =
V2−(j+1)N (Djψ). The main result of this section shows that the decomposition
just described is possible through a natural extension of the notion of a high-
pass filter on the line ([5, 7]).

Theorem 4.2. Suppose that ϕ is the scaling function of an MRA of order
N = 2J (J ∈ N) and define ψ ∈ V0 by

ψ̂(k) = m1(k)ϕ̂(k), k ∈ Z,

where m1 ∈ ℓ(ZN ) is chosen as

(4.1) m1(n) = m0(n+ 2−1N) e−2πin/N , n ∈ ZN .

Then ψ is a wavelet for the MRA.

Proof. First it will be shown thatW1 is orthogonal to V1 via the bracket
product,

[2
1
2 D̂ϕ, 2

1
2 ψ̂]N

2
(n) = N

∑

k∈Z

D̂ϕ(n+ kN/2) ψ̂(n+ kN/2)

= N
∑

k∈Z

|ϕ̂(n+ kN/2)|2m0(n+ kN/2)m1(n+ kN/2)

= N
[∑

k∈Z

|ϕ̂(n+ kN)|2m0(n)m1(n)

+
∑

k∈Z

|ϕ̂(n+N/2 + kN)|2m0(n+N/2)m1(n+N/2)
]

= m0(n)m1(n) +m0(n+N/2)m1(n+N/2)

= 0,

using (3.3) and (4.1). The fact that W1 is the orthogonal complement of V1
in V0 follows from dimensional considerations, while the orthonormality of
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X2−1N (2
1
2ψ) follows from the calculation,

[2
1
2 ψ̂, 2

1
2 ψ̂]2−1N (n) = N

∑

k∈Z

|ψ̂(n+ kN/2)|2

= N
∑

k∈Z

|ϕ̂(n+ kN/2)|2 |m1(n+ kN/2)|2

= N
[∑

k∈Z

|ϕ̂(n+ kN)|2|m1(n)|2

+
∑

k∈Z

|ϕ̂(n+N/2 + kN)|2|m1(n+N/2)|2
]

= |m0(k +N/2)|2 + |m0(k +N/2)|2

= 1.

The picture at scale j is analogous, in light of Remark 3.4, so the result
follows by induction on j as in Theorem 3.5.

Example 4.3. Returning to the Haar example of the previous section, let
m1 ∈ ℓ(Z8) chosen according to (4.1) with m0 as in Example 3.8. This leads
to a trigonometric polynomial orthonormal wavelet ψ of degree 12, which is
depicted in Figure 2.
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Figure 2. Haar wavelet ψ of order N = 8.
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5. Approximation

The goal of this section is to show that MRAs of finite order can be used
to obtain arbitrarily close approximations of functions in L2(T).

Lemma 5.1. Suppose that ϕ is a scaling function for an MRA of order
N = 2J (J ∈ N). The orthogonal projection onto V0 = VN (ϕ) is described by

P̂ f(k) = [f̂ , ϕ̂]N (k)ϕ̂(k), k ∈ Z.

Proof. Because XN(ϕ) forms an orthonormal basis for VN (ϕ) the
orthogonal projection is given by

Pf =
∑

n∈ZN

〈f, T nϕ〉T nϕ.

Under the Fourier transform this is equivalent to

P̂ f(k) =
∑

n∈ZN

〈f, T nϕ〉e−2πink/N ϕ̂(k),

which reduces to the claimed expression as a consequence of Proposition 2.2.

Suppose that f is a trigonometric monomial, i.e., f̂(k) = δrk for some

r ∈ Z. In this case, [f̂ , ϕ̂]N is given by

[f̂ , ϕ̂]N (n) =

{
0, n 6≡ r,

Nϕ̂(r), n ≡ r.

The error of approximation is thus given by

‖Pf − f‖2 =
(
N |ϕ̂(r)|2 − 1

)2
+
∑

k 6=0

|Nϕ̂(r)ϕ̂(r + kN)|2,

but the fact that XN (ϕ) is an orthonormal basis means

1 = [ϕ̂, ϕ̂]N (r) = N |ϕ̂(r)|2 +N
∑

k 6=0

|ϕ̂(r + kN)|2.

Hence, the approximation error can be rewritten as

‖Pf − f‖2 =
(
N |ϕ̂(r)|2 − 1

)2
+N |ϕ̂(r)|2

(
1−N |ϕ̂(r)|2

)
= 1−N |ϕ̂(r)|2,

which tends to zero as |ϕ̂(r)| → 1√
N
. Recall that the construction used to

prove Theorem 3.6 begins with ϕ̂(k) = 1√
N

for all odd k satisfying |k| <
N
2 . Therefore, these scaling functions lead to perfect approximation of the
corresponding odd trigonometric monomials. The approximation error for
even trigonometric monomials rests on the properties of the low-pass filter
m0.

Assume thatm(ξ) is a continuous function on the circle satisfying m(0) =
1 and (3.3). Given N = 2J (J ∈ N), m induces a low-pass filter m0 ∈ ℓ(ZN )
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according to Proposition 3.7. One can then construct a scaling function ϕ
associated to m0 through the construction described in the proof of Theorem
3.6. Define the error of approximation, EN (k) by

EN (k) =
(
1−N |ϕ̂(k)|2

) 1
2 , k ∈ Z.

Hence, EN (k) represents the approximation error ‖Pf − f‖ where f = e2πikx

and P is the orthogonal projection onto VN (ϕ). The following proposition
shows that arbitrarily small approximation error can be achieved using an
MRA of sufficiently high order.

Proposition 5.2. Fix r ∈ N and ε > 0. Then there exists N = 2J

(J ∈ N) such that EN (k) < ε for |k| < r, where ϕ is constructed as above.

Proof. Let j = ⌈log2 r⌉, then each integer |k| < r can be written as
k = 2ℓn where 0 ≤ ℓ ≤ j and n < r is odd. Because m is continuous and
m(0) = 1, there exists δ > 0 such that

|m0(ξ)|j >
√
1− ε2, |ξ| < δ.

Choose J ∈ N such that r
N = 2−Jr < δ. Thus, if |k| < r and k = 2ℓn (as

above), then

|ϕ̂(k)| = 1√
N

ℓ−1∏

p=0

|m0(2
pn)| = 1√

N

ℓ−1∏

p=0

|m(2pn/N)| > 1√
N

√
1− ε2,

and, consequently, EN (k) < ε, as desired.

Example 5.3. Proposition 5.2 certainly does not represent the only path
to good approximation with the finite MRAs considered here. Motivated by
the Shannon wavelet on the line, let m0 ∈ ℓ(ZN ) be defined by

m0(n) =





1, n < N
4 or n > 3N

4 ,
1√
2
, n = N

4 or n = 3N
4 ,

0, otherwise,

n ∈ ZN ,

where N = 2J for a natural number J > 2. Because m0 satisfies (3.3) with
m0(0) = 1 there is an orthonormal scaling function ϕ associated to m0. In
particular, if ϕ is constructed as in Theorem 3.6 it follows that ϕ̂(k) = 1√

N

whenever |k| < N
2 . Thus, the associated error of approximation EN (k) is zero

for |k| < N
2 . The scaling function for this example corresponding to N = 64

is shown below as Figure 3. The corresponding wavelet with N = 64 is shown
in Figure 4.



430 B. D. JOHNSON

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−2

0

2

4

6

8

10

Figure 3. Shannon-like scaling function φ of order N = 64.
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Figure 4. Shannon-like wavelet ψ of order N = 64.
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