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Abstract. Retractions between hyperspaces have been studied by
many authors. We study retractions form m-fold hyperspaces onto n-fold
symmetric products.

1. Introduction.

Retractions between hyperspaces have been studied by many authors, for
example see: [13, 14] [8, 15, 25–27, 29]. In most cases retractions between 2X

and C(X) or 2X and F1(X) or C(X) and F1(X) have been investigated. Very
few results involving 2X and Fn(X) or Cn(X) and Fn(X) exist ([25–27]). Here
we investigate the existence of a retraction from Cm(X) onto Fn(X), where
m and n are positive integers such that m ≥ n.

The paper is divided in four sections. After the definitions and notations,
in section 3, we give some results that we use later, for example, we prove
that if X is a proper circle-like continuum, then its second symmetric product
does not have trivial shape (Theorem 3.4). In section 4, we present our main
results, for example, we give necessary conditions in order to have that Fn(X)
is a retract of Cm(X) (Theorem 4.1). The arc is the only arc-like continuum
X for which there is a retraction from Cm(X) onto Fn(X) (Corollary 4.3).
If X is a one-dimensional continuum containing a simple closed curve, then
there does not exist a retraction from Cm(X) onto Fn(X) (Theorem 4.5). If
Fn(X) is an absolute retract, then Fn(X) is a strong deformation retract
of Cm(X) (Theorem 4.9). For a continuum X , the existence of a retraction
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R : Cm(X)→→Cn(X) such that A ⊂ R(A) for all A ∈ Cm(X) is equivalent to
the fact that X is locally connected (Theorem 4.16).

2. Definitions and notation.

Given a subset A of a metric space Z with metric d, we denote by Cl(A)
the closure of A. Also, Vr(A) denotes the open ball of radius r about A.

A map is a continuous function. Let f : X→→Z be a surjective map
between metric spaces and let ε > 0. Then f is an ε-map provided that
diam(f−1(z)) < ε for all z ∈ Z. Let Z be a metric space and let A be a
closed subset of Z. A retraction from Z onto A is a map r : Z→→A such that
r(a) = a for all a ∈ A. The set A is called a retract of Z.

Let Z be a metric space. By a deformation we mean a map H : Z ×
[0, 1]→→Z such that H((z, 0)) = z. Let A = {H((z, 1)) | z ∈ Z}. If the map
r : Z→→A given by r(z) = H((z, 1)) is a retraction from Z onto A, then H

is a deformation retraction from Z onto A. If H is a deformation retraction
from Z onto A and for each a ∈ A and each t ∈ [0, 1], H((a, t)) = a, then
H is a strong deformation retraction from Z onto A. The set A is called
a deformation retract of Z (strong deformation retract of Z, respectively).
A metric space Z is an absolute retract provided that for each embedding
e : Z → X of Z into a metric space X such that e(Z) is closed in X , e(Z) is
a retract of X .

A compact metric space Z lying in the Hilbert cube Q is movable if
for every neighborhood U of Z in Q, there exists a neighborhood U0 of Z
contained in U which is deformable inside U into any neighborhood of Z.

A continuum is a nonempty compact connected metric space. A
continuumX has trivial shape provided that each map fromX into an absolute
neighborhood retract is homotopic to a constant map. A tree is a continuum
which can be written as a finite union of arcs, any two of which are either
disjoint or intersect at only one of their end points and not containing a simple
closed curve.

A continuum X is arc-like (circle-like or tree-like) provided that for each
ε > 0, there exists an ε-map f : X→→[0, 1] (f : X→→S1, where S1 is the unit
circle or f : X→→Y , where Y is a tree). A proper circle-like continuum is a
circle-like continuum which is not an arc-like continuum. The continuum X

is weakly chainable if it is a continuous image of an arc-like continuum.
A continuum X is unicoherent provided that every time X is the union of

two subcontinua A and B, we have that A ∩B is connected. The continuum
X is hereditarily unicoherent if each of its subcontinua is unicoherent. An
arcwise connected continuum is arcwise decomposable if there exist two proper
arcwise connected subcontinua A and B of X such that X = A ∪ B. An
arcwise connected continuum X is uniquely arcwice connected if X does not
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contain simple closed curves. A dendroid is an arcwise connected hereditarily
unicoherent continuum. A dendrite is a locally connected dendroid.

Given a continuum X , we consider the following hyperspaces of X :

2X = {A ⊂ X | A is nonempty and closed}

and

Cn(X) = {A ∈ 2X | A has at most n components},

where n is a positive integer. Cn(X) is called the n-fold hyperspace of X .
These spaces are topologized with the Hausdorff metric defined as follows:

H(A,B) = inf{ε > 0 | A ⊂ Vε(B) and B ⊂ Vε(A)},

H always denotes the Hausdorff metric on 2X . When n = 1, we write C(X)
instead of C1(X).

The symbol Fn(X) denotes the n-fold symmetric product of X ; that is:

Fn(X) = {A ∈ Cn(X) | A has at most n points}.

Note that, by definition, Fn(X) ⊂ Cn(X). It is known that if X is a
continuum, then 2X and Cn(X) are arcwise connected continua (for 2X and
C(X) see [29, (1.13)]; for Cn(X) and n ≥ 2, see [24, 3.1]). Also, Fn(X) is a
continuum for all positive integers n ([4, p. 877]).

A continuum X has the property of Kelley provided that for each ε > 0,
there exists δ > 0 such that for every pair of points x and y of X such that
d(x, y) < δ and each subcontinuum A of X such that x ∈ A, there exists a
subcontinuum B of X such that y ∈ B and H(A,B) < ε.

If A is a nonempty subset of X , Cn(A) denotes the set {B ∈ Cn(X) | B ⊂
A}.

3. Preliminary Results

The following theorem is due to David P. Bellamy and it is part of [1,
Example II].

Theorem 3.1. If X is a continuum which is the continuous image of the
Cantor fan, then X is arcwise decomposable.

Proof. Let FC be the Cantor fan, and let f : FC→→X be a surjective
map. By the Kuratowski-Zorn lemma ([19, Theorem 25, p. 33]), there exists
a subcontinuum K of FC such that f(K) = X and f(L) 6= X for any proper
subcontinuum L of K. If the vertex ν of FC is such that K \ {ν} is not
connected, then K is the union of two arcwise connected proper subcontinua.
If K \ {ν} is connected, then K is an arc. In either case, there exist two
arcwise connected proper subcontinuaK1 andK2 ofK such thatK = K1∪K2.
Hence, by the minimality ofK, f(K1) and f(K2) are arcwise connected proper
subcontinua of X such that X = f(K1) ∪ f(K2). Therefore, X is arcwise
decomposable.



474 S. MACÍAS

The following result is known, but we could not find a proof of it.

Theorem 3.2. If X is a continuum with trivial shape and Y is a
subcontinuum of X which is a retract of X, then Y has trivial shape.

Proof. Let r : X→→Y be a retraction. Let Z be an absolute neighborhood
retract and let f : Y → Z be a map. Since X has trivial shape, the map
f ◦ r : X → Z is homotopic to a constant map. Let H : X × [0, 1] → Z be a
homotopy such that H((x, 0)) = f ◦ r(x) and H((x, 1)) = z0 for all x ∈ X and
some z0 ∈ Z. Let G = H |Y×[0,1]. Then G : Y × [0, 1] → Z is a homotopy such
that G((y, 0)) = f ◦ r(y) = f(y) and H((y, 1)) = z0 for each y ∈ Y . Hence, f
is homotopic to a constant map. Therefore, Y has trivial shape.

From the proof of [17, 1.1], we obtain the following lemma. It is worth
mentioning that this result does not extend to n-fold symmetric products for
n ≥ 3. It is known that F3(S1) is homeomorphic to the 3-sphere S3 ([5]) and
any map from S3 into S1 is inessential ([11, p. 343]).

Lemma 3.3. Let X be a continuum such that there exists an essential
map from X onto S1. Then there exists an essential map from F2(X) onto
S1.

Theorem 3.4. If X is a proper circle-like continuum, then F2(X) does
not have trivial shape.

Proof. By [20, 3.1], there exists an essential map fromX onto S1. Then,
by Lemma 3.3, there exists an essential map from F2(X) onto S1. Therefore,
F2(X) does not have trivial shape.

Question 3.1. If X is a proper circle-like continuum and n ≥ 3, then is
it true that Fn(X) does not have trivial shape?

Recall that a convex metric ρ on a continuum X is a metric which satisfies
that for every two points x and y in X , there exists a point z in X such that
ρ(x, z) = ρ(y, z) = 1

2ρ(x, y). If X is a continuum with a convex metric ρ and
n is a positive integer, we define the following two functions:

Kρ : [0,∞)× 2X → 2X

and

αn
ρ : 2

X → IR

by

Kρ((t, A)) = {x ∈ X | ρ(x, a) ≤ t for some a ∈ A}

and

αn
ρ (A) = inf{t ≥ 0 | Kρ((t, A)) ∈ Cn(X)}.

Lemma 3.5. Let X be a locally connected continuum with a convex metric
ρ and let n and m be positive integers such that m ≥ n. Then
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(1) If A ∈ Cm(X) and s ∈ [0, 1], then αn
ρ (Kρ((s · αn

ρ (A), A))) = (1 − s) ·
αn
ρ (A).

(2) Let R : Cm(X)→→Cn(X) be given by R(A) = Kρ((α
n
ρ (A), A)). If A ∈

R−1(B) and s ∈ [0, 1], then Kρ((s · α
n
ρ (A), A)) ∈ R−1(B).

Proof. We show (1). Note that, by [29, (0.65.3) (c)], we have that:

Kρ(((1 − s) · αn
ρ (A),Kρ((s · α

n
ρ (A), A))))

= Kρ(((1− s) · αn
ρ (A) + s · αn

ρ (A), A))

= Kρ((α
n
ρ (A), A)).

Now, it follows that αn
ρ (Kρ((s · αn

ρ (A), A))) = (1 − s) · αn
ρ (A).

To prove (2), let B ∈ Cn(X), let A ∈ R−1(B) and let s ∈ [0, 1]. Then it
follows from the definition of R, (1) and [29, (0.65.3) (c)], that

R(Kρ((s · α
n
ρ (A), A))) = Kρ((α

n
ρ (Kρ((s · α

n
ρ (A), A))),Kρ((s · α

n
ρ (A), A))))

= Kρ(((1 − s) · αn
ρ (A),Kρ((s · α

n
ρ (A), A))))

= Kρ((α
n
ρ (A), A)) = B.

4. Retracts

Theorem 4.1. Let X be a continuum and let n and m be positive integers
such that m ≥ n. If Fn(X) is a retract of Cm(X), then:

(1) X is arcwise connected;
(2) Fn(X) is arcwise decomposable:
(3) Fn(X) is uniformly pathwise connected:
(4) Fn(X) is weakly chainable;
(5) Fn(X) has trivial shape;
(6) Fn(X) is movable.

Proof. Suppose Fn(X) is a retract of Cm(X). Since n-fold hyperspaces
are arcwise connected continua (see [24, 3.1] or [26, 1.8.12]), we have that
Fn(X) is arcwise connected. Thus, X is arcwise connected ([10, 2.7]). By [18,
Theorem 2.3 and the Remark on p. 29], there exists a map from the Cantor fan
FC onto Cm(X). Hence, there exists a map from FC onto Fn(X). This implies
that Fn(X) is arcwise decomposable, by Theorem 3.1, and uniformly pathwise
connected ([22, 3.5]). By [10, 3.3], Cm(X) is weakly chainable. Thus, Fn(X)
is weakly chainable. Since Cm(X) has trivial shape ([24, 4.6] or [26, 6.2.2]), by
Theorem 3.2, Fn(X) has trivial shape. Since Fn(X) has trivial shape, Fn(X)
is movable ([3, (3.2)]).

Recall that if S1 is the unit circle, then F2(S1) is homeomorphic to the
Möbius strip ([4, p. 877]), which is not unicoherent. Note the following:
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Corollary 4.2. Let X be a continuum and let m ≥ 2 be an integer. If
F2(X) is a retract of Cm(X), then F2(X) is unicoherent.

Proof. By Theorem 4.1, F2(X) has trivial shape. Hence, by [21, 2.1],
F2(X) is contractible with respect to any absolute neighborhood retract. In
particular, F2(X) is contractible with respect to S1. Hence, by [23, Theorem
1, p. 434], F2(X) is unicoherent.

Corollary 4.3. An arc-like continuum X is an arc if and only if Fn(X)
is a retract of Cm(X) for some positive integers n and m.

Proof. Let X be an arc-like continuum such that there Fn(X) is a
retract of Cm(X) for some positive integers m and n such that m ≥ n.
By Theorem 4.1, X is arcwise connected. Since the arc is the only arcwise
connected arc-like continuum, we have that X is an arc.

The reverse implication follows from Corollary 4.10.

Corollary 4.4. If X is a circle-like continuum and m ≥ 2 is an integer,
then there does not exist a retraction from Cm(X) onto F2(X).

Proof. If X is also an arc-like continuum, it follows from [6, Theorem 3]
that X is either indecomposable or the union of two indecomposable continua.
Hence, by Corollary 4.3, there does not exist a retraction from Cm(X) onto
F2(X). Suppose X is a proper circle-like continuum. Then, by Theorem 3.4,
F2(X) does not have trivial shape. Therefore, by Theorem 4.1, there does
not exist a retraction from Cm(X) onto F2(X).

Theorem 4.5. If X is a k-dimensional continuum containing a k-sphere
and n and m are positive integers such that m ≥ n, then there does not exist
a retraction from Cm(X) onto Fn(X).

Proof. By definition, a k-sphere does not have trivial shape. Since X is
a k-dimensional continuum containing a k-sphere S, there exists a retraction
from X onto S ([16, Theorem VI 4, p. 83]). Hence, by Lemma 3.2, X does
not have trivial shape. Therefore, by Theorem 4.1, there does not exist a
retraction from Cm(X) onto Fn(X).

In [8, 3.1] it is shown that if X is a one-dimensional continuum and
F1(X) is a retract of C(X), then X is a dendroid. Related to this, we have
the following:

Corollary 4.6. Let X be a one-dimensional continuum and let n and
m be positive integers such that m ≥ n. If Fn(X) is a retract of Cm(X), then
X is uniquely arcwise connected.

The following theorem extends [8, 3.1] to n-fold hyperspaces.
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Theorem 4.7. Let X be a one-dimensional continuum and let n be an
integer. If F1(X) is a retract of Cn(X), then X is a uniformly pathwise
connected dendroid.

Proof. Since F1(X) is homeomorphic to X , by Theorem 4.1, X is a
uniformly pathwise connected continuum with trivial shape. By [21, 2.1
(B)], X is tree-like. Since tree-like continua are hereditarily unicoherent
([7, Theorem 1]), we have that X is a dendroid.

Theorem 4.8. Let X be a continuum, let Y be a subcontinuum of X

which is a retract of X, and let n and m be positive integers such that m ≥ n.
If Fn(X) is a retract (a deformation retract or a strong deformation retract,
respectively) of Cm(X), then Fn(Y ) is a retract (a deformation retract or a
strong deformation retract, respectively) of Cm(Y ).

Proof. Let r : X→→Y be a retraction. Then Cm(r) : Cm(X)→→Cm(Y ) is
a retraction.

Suppose Fn(X) is a retract of Cm(X). Let R : Cm(X)→→Fn(X) be a
retraction. Define L : Cm(Y )→→Fn(Y ) by L(A) = Cm(r)(R(A)). Then L is
well defined and continuous. If A ∈ Fn(Y ), then L(A) = Cm(r)(R(A)) =
Cm(r)(A) = A. Therefore, L is a retraction.

Now, suppose that Fn(X) is a (strong) deformation retract of Cm(X).
Let H : Cm(X) × [0, 1]→→Cm(X) be a map such that H((A, 0)) = A and
H((A, 1)) = R(A), where R : Cm(X)→→Fn(X) is a retraction (and H((A, t)) =
A for all A ∈ Fn(X) and all t ∈ [0, 1]). Define G : Cm(Y ) × [0, 1]→→Cm(Y )
by G((A, t)) = Cm(r)(H((A, t))). Then G is well defined and continuous.
Also, we have that G((A, 0)) = Cm(r)(H((A, 0))) = Cm(r)(A) = A and
G((A, 1)) = Cm(r)(H((A, 1))) = Cm(r)(R(A)) ∈ Fn(Y ) (and G((A, t)) =
Cm(r)(H((A, t))) = Cm(r)(A) = A for all A ∈ Fn(Y ) and all t ∈ [0, 1]).
Therefore, Fn(Y ) is a (strong) deformation retract of Cm(Y ).

We continue noting that [27, 3.2] can be strengthened as follows:

Theorem 4.9. Let X be a locally connected continuum and let n and m

be positive integers such that m ≥ n. If Fn(X) is an absolute retract, then
Fn(X) is a strong deformation retract of Cm(X).

Proof. Observe that in the proof of [27, 3.1], it is only used the fact that
Fn(X) is an absolute retract. Hence, we conclude that there exists a strong
deformation retraction H : 2X × [0, 1]→→2X from 2X onto Fn(X).

Since X is locally connected, Cm(X) is an absolute retract ([32, Théorème
IIm]). Hence, there exists a retraction r : 2X→→Cm(X). Thus, the map r ◦
(

H |Cm(X)×[0,1]

)

: Cm(X) × [0, 1]→→Cm(X) is a strong deformation retraction
from Cm(X) onto Fn(X).

As a consequence of Theorem 4.9 and the fact that the n-fold symmetric
product of an absolute retract is an absolute retract ([12, p. 316]), we have:
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Corollary 4.10. If X is an absolute retract and n and m are positive
integers such that m ≥ n, then Fn(X) is a strong deformation retract of
Cm(X).

Since dendrites are absolute retracts ([23, Theorem 16, p. 344]), we obtain:

Corollary 4.11. If X is a dendrite and n and m are positive integers
such that m ≥ n, then Fn(X) is a strong deformation retract of Cm(X).

Theorem 4.12. Let X be a locally connected continuum and let n and m

be positive integers such that m ≥ n. Then Fn(X) is a retract of Cm(X) if
and only if Fn(X) is an absolute retract.

Proof. If Fn(X) is an absolute retract, then, clearly, Fn(X) is a retract
of Cm(X). Suppose Fn(X) is a retract of Cm(X). Since X is locally connected,
Cm(X) is an absolute retract ([32, Théorème IIm]). Hence, Fn(X) is an
absolute retract ([23, Theorem 6, p. 341]).

The next result strengthens [25, 4.13] (see also [26, 6.7.17]).

Corollary 4.13. Let X be a locally connected continuum and let n and
m be positive integers such that m ≥ n. Then the following are equivalent:

(1) Fn(X) is an absolute retract;
(2) Fn(X) is a retract of Cm(X);
(3) Fn(X) is a deformation retract of Cm(X);
(4) Fn(X) is a strong deformation retract of Cm(X).

Proof. Clearly, (4) implies (3) and (3) implies (2). By Theorem 4.12,
(2) implies (1). By Theorem 4.9, (1) implies (4).

Theorem 4.14. Let X be a continuum and let n and m be positive integers
such that m ≥ n. If Fn(X) is a deformation retract (or a strong deformation
retract) of 2X, then Fn(X) is a deformation retract (or a strong deformation
retract) of Cm(X).

Proof. Let H : 2X × [0, 1]→→2X be a deformation retraction from 2X

onto Fn(X). Let R : Cm(X)→→Fn(X) be given by R(A) = H((A, 1)). Define
G : Cm(X)× [0, 1]→→Cm(X) by

G((A, t)) =

{

∪{H((A, s)) | 0 ≤ s ≤ 2t}, if t ∈ [0, 12 ];

∪{H((A, s)) | 2t− 1 ≤ s ≤ 1}, if t ∈ [ 12 , 1].

Note that if t = 1
2 , then both definitions of G give the value ∪{H((A, s)) | 0 ≤

s ≤ 1}. Let t ∈ [0, 12 ]. Since H is continuous, {H((A, s)) | 0 ≤ s ≤ 2t} is a

closed subset of 2X that contains the element H((A, 0)) = A, and A ∈ Cm(X).
In fact, G|Cm(X)×[0, 1

2
] is a segment homotopy ([29, (16.4)]). Hence, G((A, t)) ∈

Cm(X) for each (A, t) ∈ Cm(X)× [0, 12 ] ([9, Proposition 3]). Now let t ∈ [ 12 , 1].
By the continuity of H , {H((A, s)) | 2t − 1 ≤ s ≤ 1} is a closed subset of
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2X that contains the element H((A, 1)) ∈ Fn(X). Again, G|Cm(X)×[ 1
2
,1] is a

segment homotopy, in reverse order, from G((A, 1
2 )) ∈ Cm(X) to G((A, 1)) =

H((A, 1)) ∈ Fn(X). Thus, G((A, t)) ∈ Cm(X) for each (A, t) ∈ Cm(X)× [ 12 , 1]
([9, Proposition 3]). Hence, G is well defined. SinceH and the union map ([29,
(1.48)]) are continuous, it follows that G is continuous. Note that G((A, 0)) =
H((A, 0)) = A and G((A, 1)) = H((A, 1)) = R(A) ∈ Fn(X). Therefore,
Fn(X) is a deformation retract of Cm(X).

Let H : 2X × [0, 1]→→2X be a strong deformation retraction from 2X onto
Fn(X). If G is defined as in the previous paragraph, then G((A, t)) = A

for each A ∈ Fn(X) and each t ∈ [0, 1]. Hence, G is a strong deformation
retraction. Therefore, Fn(X) is a strong deformation retract of Cm(X).

The next theorem strengthens [25, 4.14 and 4.15] (see also [26, 6.7.18]),
with some changes in the proof, we include the details for the convenience of
the reader.

Theorem 4.15. Let X be a locally connected continuum and let n and m

be positive integers such that m ≥ n. Then the following hold:

(1) Cn(X) is a retract of Cm(X);
(2) Cn(X) is a deformation retract of Cm(X);
(3) Cn(X) is a strong deformation retract of Cm(X).

Proof. Since X is locally connected, by [32, Théorème IIm], Cn(X) is
an absolute retract. Hence, (1) holds. Next, note that, since X is locally
connected, then X has the property of Kelley ([29, (16.11)]). Hence, Cm(X)
is contractible ([24, 3.8]). Thus, by [31, 32E.4], (1) and (2) are equivalent. By
[26, 6.7.14], (3) is equivalent to the fact that X is locally connected.

The next result extends [29, (6.12)] to n-fold hyprespaces. We include the
details of the proof in order to present the appropriate changes needed.

Theorem 4.16. Let X be a continuum and let n and m be positive integers
such that m ≥ n + 1. Then there exists a retraction R : Cm(X)→→Cn(X)
such that A ⊂ R(A) for each A ∈ Cm(X) if and only if X is locally
connected. Furthermore, if X is locally connected, then there exists a
retraction R : Cm(X)→→Cn(X) such that A ⊂ R(A) for each A ∈ Cm(X),
such that R is monotone and, moreover, R−1(B) is contractible for every
B ∈ Cn(X).

Proof. Suppose R : Cm(X)→→Cn(X) is a retraction such that A ⊂ R(A)
for all A ∈ Cm(X). Suppose X is not locally connected. Then there exists a
point p of X such that X is not connected im kleinen at p. Hence, there exist
ε > 0 and a sequence {Kℓ}∞ℓ=1 of components of Cl(Vε(p)) converging to a
continuum K ⊂ Cl(Vε(p)) such that p ∈ K and K ∩Kℓ = ∅ for each positive
integer ℓ ([30, (12.1), p. 18]). Let {pℓ}∞ℓ=1 be a sequence of points of Cl(Vε(p))
converging to p such that pℓ ∈ Kℓ for every positive integer ℓ. Given a positive
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integer j, let Aj = {p}∪{pj+ℓ}
m−1
ℓ=1 . Observe that Aj∩K 6= ∅ and Aj∩Kj+ℓ 6=

∅ for each positive integer j and every ℓ ∈ {1, . . . ,m−1}. By hypothesis, each
Aj is a subset of R(Aj). Hence, R(Aj)∩K 6= ∅ and R(Aj)∩Kj+ℓ 6= ∅ for each
positive integer j and every ℓ ∈ {1, . . . ,m − 1}. Let j be a positive integer.
Since R(Aj) has at most n components, m ≥ n + 1 and must intersect m

pairwise disjoint subsets of Cl(Vε(p)), there exists a component Bj of R(Aj)
such that Bj ∩ (X \ Cl(Vε(p))) 6= ∅. Thus, diam(R(Aj)) ≥ ε. Note that, by
construction, the sequence {Aj}∞j=1 converges to {p}. Hence, by the continuity

of R, the sequence {R(Aj)}∞j=1 converges to R({p}). Since R is a retraction,
and {p} ∈ Cn(X), R({p}) = {p}. Hence, the sequence {R(Aj)}∞j=1 converges

to {p}. A contradiction to the fact that diam(R(Aj)) ≥ ε for all positive
integers j. Therefore, X is locally connected.

Next, assume that X is locally connected with a convex metric ρ ([2]
or [28]). Let R : Cm(X)→→Cn(X) be given by R(A) = Kρ((α

n
ρ (A), A)). By

[25, 4.9] or [26, 6.7.13], R is well defined and continuous. It is easy to prove
that R is a retraction. Let B ∈ Cn(X). For each (A, s) ∈ R−1(B) × [0, 1],
let h : R−1(B) × [0, 1]→→R−1(B) be given by h((A, s)) = Kρ((s · αn

ρ (A), A)).
By (2) of Lemma 3.5, h is well defined. Since Kρ and αn

ρ are continuous
([29, (0.65.3) (f)] and [25, 4.9], respectively), h is continuous. Note that
h((A, 0)) = Kρ((0, A)) = A and h((A, 1)) = Kρ((α

n
ρ (A), A)) = R(A) = B for

all A ∈ R−1(B). Therefore, R−1(B) is contractible.
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[24] S. Maćıas, On the hyperspaces Cn(X) of a continuum X, Topology Appl. 109 (2001),
237–256.
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