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CORRECTING TAYLOR’S CELL-LIKE MAP

Katsuro Sakai

University of Tsukuba, Japan

Abstract. J. L. Taylor constructed a cell-like map of a compactum
X onto the Hilbert cube IN such that X is not cell-like. In this note, we
point out a defect in the construction and show how to fix it.

Using Adams’ example in [1], J. L. Taylor constructed in [7] a cell-like map
of a compactum X onto the Hilbert cube IN such that X is not cell-like. This
Taylor’s example is very important in Shape Theory and its related theories.
In fact, it was widely used by many authors for various counterexamples. In
this note, we point out a defect in the construction and show how to fix it.

In [1], J. F. Adams constructed a compact polyhedron A with a map α :
ΣrA → A from the r-fold suspension of A onto A such that every composition

α ◦ Σrα ◦ · · · ◦ Σ(i−1)rα : ΣirA → A

is not null-homotopic. Taylor defined the compactum X as the inverse limit
of the inverse sequence:

A ΣrA
α

Σ2rA
Σrα

· · ·
Σ2rα

.

Then, the inverse limit projection of X to A is not null-homotopic, which
implies X is not cell-like. Observe that ΣirA is homeomorphic to (≈) the
quotient space

I
ir ×A

/{

{z} ×A
∣

∣ z ∈ ∂Iir
}

.

The Hilbert cube I
N can be regarded as the inverse limit of the sequence:

I
r

I
2rp1

I
3rp2

· · ·
p3

,
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where pi : I
(i+1)r = I

ir × I
r → I

ir is the projection. For each space Y and
n ∈ N, the following definition is adopted:

(1) ΣnY = I
n × Y

/

{{z} × Y
∣

∣ z ∈ ∂In
}

.

Let qnY : In × Y → ΣnY be the quotient map. As is easily observed, the
projection pr

Iir
: Iir × A → I

ir induces the map fi : ΣirA → I
ir . Taylor’s

map f : X → I
N is defined by the following commutative diagram:

(⋆)

A ΣrA

f1

α
Σ2rA

f2

Σrα
Σ3rA

f3

Σ2rα
· · ·

Σ3rα

I
r

I
2r

p1
I
3r

p2
· · · .

p3

In the above diagram (⋆), the map Σirα : ΣirΣrA → ΣirA is induced by
the map id×α : Iir×ΣrA → I

ir×A, that is, the following diagram commutes:

I
ir ×A

qir
A

I
ir × ΣrA

qirΣrA

id
Iir

×α

ΣirA ΣirΣrA.
Σirα

It should be remarked that ΣirΣrA ≈ Σ(i+1)rA but ΣirΣrA 6= Σ(i+1)rA with
respect to our definition of n-fold suspension (1). In fact, observe

ΣirΣrA = I
ir × ΣrA

/{

{z} × ΣrA
∣

∣ z ∈ ∂Iir
}

= I
ir × I

r ×A
/{

{z} × I
r ×A, {y} ×A

∣

∣ z ∈ ∂Iir, y ∈ (0, 1)ir×∂Ir
}

Thus, the commutativity of the diagram (⋆) depends on how to identify
ΣirΣrA with Σ(i+1)rA. In the following diagram, the outside pentagon is
commutative but we have to find a homeomorphism θ : Σ(i+1)rA → ΣirΣrA

making the bottom rectangle (♯) commutative:

I
ir × I

r ×A

id×qr
A

id×αqr
A

I
(i+1)r ×A

q
(i+1)r
A

pr
I
(i+1)r

I
ir ×A

qir
A

pr
Iir

I
ir × ΣrA

qirΣrA

id
Iir

×α

ΣirA

fi

ΣirΣrA
Σirα

(♯)

Σ(i+1)rA
≈

θ

fi+1

I
ir

I
(i+1)r.

pi
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Assume that such a homeomorphism θ exists and take a point y ∈ ∂Iir.
Since qirΣrA({y} × ΣrA) is a singleton in ΣirΣrA, it follows that

θ
(

q
(i+1)r
A ({(y, z)} ×A)

)

= qirΣrA({y} × ΣrA) for each z ∈ I
r.

If z 6= z′ ∈ (0, 1)r then q
(i+1)r
A ({(y, z)} × A) and q

(i+1)r
A ({(y, z′)} × A) are

distinct singletons in Σ(i+1)rA. This is a contradiction because θ is a bijection.
Therefore, we cannot identify ΣirΣrA with Σ(i+1)rA so that the diagram (⋆)
is commutative.

In the rest of this note, we shall show how to fix this defect. To this end,
we now adopt the following definition:

(2) ΣnY = B
n × Y

/{

{z} × Y
∣

∣ z ∈ S
n−1

}

,

where B
n is the unit closed ball of Rn and S

n−1 (= ∂Bn) is the unit sphere.
Let qnY : Bn × Y → ΣnY be the quotient map. In this definition (2), we have

ΣirΣrA = B
ir × ΣrA

/{

{z} × ΣrA
∣

∣ z ∈ S
ir−1

}

= B
ir ×B

r ×A
/{

{z} ×B
r ×A, {y} ×A

∣

∣ z ∈ S
ir−1,

y ∈ (Bir \ Sir−1)× S
r−1

}

.

Of course, Σ(i+1)rA 6= ΣirΣrA. For each i ∈ N, let pi : B
(i+1)r → B

ir be the
restriction of the projection of R(i+1)r = R

ir ×R
r onto R

ir, and define a map
ϕi : B

ir ×B
r → B

(i+1)r as follows:

ϕi(y, z) =

{

(y,
√

1− ‖y‖2z) if z 6= 0,

(y, 0) if z 6= 0.

Then, we have the following commutative diagram:

B
ir ×B

r

pr
Bir

ϕi

B
ir

B
(i+1)r.

pi

For each z ∈ S
ir−1, ϕ({z} × B

r) is a singleton with ϕ−1(ϕ({z} × B
r)) =

{z} ×B
r. The restriction ϕi|(B

ir \ Sir−1)×B
r is injective and

ϕ−1(S(i+1)r−1) = (Sir−1 ×B
r) ∪ ((Bir \ Sir−1)× S

r−1).
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As is easily observed, ϕi × idA induces the homeomorphism ϕ̃i : Σ
irΣrA →

Σ(i+1)rA which makes the following diagram commutative:

B
ir ×B

r ×A

id×qr
A

ϕi×idAid×αqr
A

B
ir ×A

qir
A

pr
Bir

B
ir × ΣrA

qirΣrA

id
Bir ×α

B
(i+1)r ×A

q
(i+1)r
A

pr
B

(i+1)rΣirA

fi

ΣirΣrA
Σirα

≈

ϕ̃i

Σ(i+1)rA

fi+1

B
ir

B
(i+1)r.

pi

Identifying each ΣirΣrA with Σ(i+1)rA by this homeomorphism ϕ̃i, we have
the following commutative diagram:

A ΣrA

f1

α
Σ2rA

f2

Σrα
Σ3rA

f3

Σ2rα
· · ·

Σ3rα

B
r

B
2r

p1
B

3r
p2

· · · .
p3

Let Y be the inverse limit of the bottom sequence above. Then, we can
obtain the map f : X → Y induced by maps fi, i ∈ N. Just as in the proof
given in [7], it can be proved that f is a cell-like map. It should be noticed
that Y can be regarded as an infinite-dimensional compact convex set in the
Fréchet space1 R

N. Indeed, RN can be regarded the inverse limit of the top
sequence in the following commutative diagram:

R
r

∪

R
2rp̃1

∪

R
3rp̃2

∪

· · ·
p̃3

B
r

B
2r

p1
B

3r
p2

· · · ,
p3

where p̃i : R
(i+1)r = R

ir × R
r → R

ir is the projection. Then, we can apply
the classical result of Keller ([4]) to show Y ≈ I

N. Indeed, every infinite-
dimensional compact convex set in a Fréchet space is affinely homeomorphic to
an infinite-dimensional compact convex set in Hilbert space ℓ2 ([2, Chapter III,
Proposition 3.1]), which is homeomorphic to the Hilbert cube I

N by Keller’s
Theorem [4] (cf. [2, Chapter III, Theorem 3.1]).

1A completely metrizable locally convex topological linear space is called a Fréchet
space.
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Remark 1. To show Y ≈ I
N, we can also apply Toruńczyk’s characteri-

zation of the Hilbert cube [8] (cf. [6], [9]). In fact, it is easy to verify that Y
has the disjoint cells property.

Remark 2. To see that Y is an AR, since every pi is a fine homotopy
equivalence, we can also apply Theorem 6.3 in [3].
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[2] C. Bessaga and A. Pe lczyński, Selected topics in infinite-dimensional topology, Mono-

grafie Matematyczne 58, PWN Polish Scientific Publishers, Warsaw, 1975.
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