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AN ALTERNATE PROOF THAT THE FUNDAMENTAL

GROUP OF A PEANO CONTINUUM IS FINITELY

PRESENTED IF THE GROUP IS COUNTABLE

J. Dydak and Ž. Virk

University of Tennessee, USA

Abstract. We give an alternate proof, using coarse geometry, that if
the fundamental group of a compact, connected, locally connected metric
space is countable, then the fundamental group is finitely presented. This

result was first proved by Katsuya Eda and the argument can be found in
[5].

1. Introduction

This paper is motivated by a question posed to the second author by
Mladen Bestvina during his talk at the Spring Topology and Dynamics
Conference in Gainesville (March 7-9, 2009):

Question 1.1. Is the fundamental group of a Peano continuum finitely
presented if it is countable?

It turns out that question was also posed by de la Harpe ([10, p. 48]) and
it is relevant in view of the following:

Theorem 1.1 (Shelah [16]). If X is a Peano continuum and π1(X) is
countable, then π1(X) is finitely generated.

Pawlikowski ([13]) presented another proof of 1.1 from which we extract
the following (see the paragraph preceding Lemma 2 in [13] or Theorems 2
and 8 in [8]):
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Theorem 1.2 (Pawlikowski [13]). If X is a Peano continuum and π1(X)
is countable, then X is semi-locally simply connected.

Notice that the second author constructed (see [17]), for each countable
group G, a 2-dimensional path-connected subcontinuum XG of R4 whose
fundamental group is G (see [12] and [14] for earlier constructions of compact
spaces with a given fundamental group).

Our solution to 1.1 is based on an application of methods of geomet-
ric group theory: we construct a geometric action of π1(X) on a coarsely

1-connected proper geodesic space X̃ and we use Švarc-Milnor Lemma ([2,
page 140]) plus the fact G is finitely presented if and only if it is coarsely
1-connected.

Let a groupG act on a topological spaceX by homeomorphisms. Consider
a subgroup H ⊂ G. One then says that a set Y is precisely invariant under
H in G if

∀h ∈ H, h(Y ) = Y and ∀g ∈ G−H, gY ∩ Y = ∅.

Then let Gx be the stabilizer of x in G. One says that G acts
discontinuously at x in X if the stabilizer Gx is finite and there exists a
neighborhood U of x that is precisely invariant under Gx in G. If G acts
discontinuously at every point x in X , then one says that G acts properly
discontinuously on X .

In geometric group theory, a geometry is any proper, geodesic metric
space. An action of a finitely-generated group G on a geometryX is geometric
if it satisfies the following conditions:

1. Each element of G acts as an isometry of X .
2. The action is cocompact, i.e., the quotient space X/G is a compact

space.
3. The action is properly discontinuous, with each point having a finite

stabilizer.

As noted, we shall employ the following:

Theorem 1.3 (Švarc-Milnor [2] or [3]). A group G acting properly
discontinuously and cocompactly via isometries on a length space X is finitely
generated and induces a quasi-isometry equivalence g → g ·x0 for any x0 ∈ X.

We were informed by Greg Conner ([7]) that Katsuya Eda answered
1.1 about 5 years ago (unpublished). The argument is contained in [5]: by
1.2 the space is semi-locally simply-connected and homotopically Hausdorff.
Corollary 5.7 says such space has finitely presented fundamental group.

Alternatively, it is pointed out in Lemma A.3 in [6] that this shows that
such a space has finitely presented fundamental group. Here is the argument
from Lemma A.3. Semilocally simply-connected implies that the space is two-
set simple – see [4]. This implies that the fundamental group is group is the
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fundamental group of the nerve of a finite cover which implies that it’s finitely
presented, again from [4].

2. Coarse 1-connectivity of uniformly path connected spaces

In order to complete the proof of our main result 3.5, we need to relate
coarse 1−connectedness to simple connectedness.

Recall (X, d) is t-chain connected for t > 0 if every pair of points x, y ∈ X
can be connected by a t−chain, i.e., if there exist points x0 = x, x1, . . . , xk = y
in X so that d(xi, xi+1) ≤ t, ∀i. Space (X, d) is coarsely 1-connected if it is
t-chain connected for some t > 0 (that is equivalent to (X, d) being coarsely
0-connected - see [11]) and for each r > 0 there is R > r such that the
induced map Ripsr(X) → RipsR(X) induces the trivial homomorphism of
the fundamental groups (see Definition 42 on p.19 of [11]). Here Ripsr(X) is
the Rips complex of X , i.e., the complex whose vertices are the points of X
and whose simplices are given by finite subsets A of X of diameter at most r.

Definition 2.1. A path connected metric space (X, d) is uniformly path
connected if there is a function α : (0,∞) → (0,∞) so that every two points
x, y ∈ X can be connected by a path of diameter at most α(d(x, y)).

The fundamental group π1(X, x0) of a path connected metric space X is
uniformly generated (see [9]) if it has a generating set of loops of diameter at
most R for some R > 0. Equivalently, every map f : (S1, 0) → (X, x0) can be
extended over the 1−skeleton of some subdivision τ of (B2, 0) to a map F so
that the diameter F (∂∆) is at most R, for every simplex ∆ of τ .

Theorem 2.2. Suppose X is a uniformly path connected space. X is
coarsely 1−connected if and only if π1(X, x0) is uniformly generated.

Proof. Assume X is coarsely 1−connected. Fix positive numbers r, R
so that π1 applied to Ripsr(X) → RipsR(X) is trivial. Furthermore, let l be
a positive number so that every two points of X that are at most R apart
can be connected by a path of diameter at most l. Let α : (S1, 0) → (X, x0)
be a loop. Subdivide (S1, 0) to obtain a subdivision τ (notation: S1

τ ) so that
the diameter of α(∆) is at most r for every edge ∆ of τ . The map α|(S1

τ
)(0)

induces a simplicial map α̃ : (S1
τ , 0) → (Ripsr(X), x0), which extends to a

map β̃ : (B2, 0) → RipsR(X). We may assume σ is a subdivision of (B2, 0)

so that β̃ is simplicial and σ|S1 is a subdivision of τ. Then β̃ induces a map

β : ((B2
σ)

(1), 0) → (X, x0) as follows: β equals β̃ on vertices and S1 and for
every edge E of B2

σ \S
1 we can connect two boundary points β(∂E) by a path

of diameter at most l. Hence we obtain an extension β : ((B2
σ)

(1), 0) → (X, x0)
of α so that diameter of β(∆) is at most 2 · l for every simplex ∆ of B2

σ. This
means that π1(X, x0) is 2 · l-generated.

Assume π1(X, x0) is uniformly generated by loops of diameter at most D.
Fix r > 0, l > 0 so that every two points of distance at most r can be connected
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by a path of diameter at most l. We can assume D > l. Pick any simplicial
map α : (S1

τ , 0) → (Ripsr(X), x0). It induces a map α̃ : ((S1
τ )

(0), 0) → (X, x0)
as follows: for every edge E of S1

τ we connect two boundary points α̃(∂E) by
a path of diameter at most l to obtain a map α̃ : (S1

τ , 0) → (X, x0). Such map
extends over 1−skeleton of some subdivision σ (containing τ) of (B2, 0) to a

map β̃ so that diameter β̃(∂∆) is at most D, for every simplex ∆ of σ. Then

β̃ induces a map β : ((B2
σ)

(0), 0) → RipsD(X) which extends over B2
σ. Note

that β|(∂B2,0) ≃ α: for every edge E of τ the set β(E) ∪ α(E) is contained in
a simplex of RipsD(X) because of uniform path connectedness and D > l.

3. Main result

Given a Peano continuum X we assume it has a geodesic metric dX
(see [1]). Pick a base point x0 of X and consider the space X̃ of homotopy
(rel. endpoints) classes of paths in X originating at x0.

In this section we assume X is semi-locally simply connected.

Definition 3.1. Given [α] ∈ X̃ and a path β in X originating at α(1),

the canonical lift β̃ of β is a path in X̃ defined by β̃(t) = [α ∗ (β|[0,t])], the
concatenation of α and β restricted to interval [0, t].

Given two elements [α] and [β] of X̃ we define the distance d([α], [β]) as
the infimum of lengths l(γ) of all paths γ from α(1) to β(1) such that γ is
homotopic rel.endpoints to α−1 ∗ β.

Proposition 3.2. (X̃, d) is a proper geodesic space such that the endpoint

projection p : X̃ → X is 1-Lipschitz and canonical lifts of geodesics in X are
geodesics in X̃.

Proof. Let δ > 0 be a number such that any loop in X of diameter less
than 4 · δ is null-homotopic in X . Notice that any two paths at distance less
than δ are homotopic rel.endpoints if they join the same two points.

Given two elements [α], [β] of X̃ the path α−1 ∗β can be approximated by
a piecewise-geodesic path γ. As l(γ) is finite, so is d([α], [β]). If d([α], [β]) = 0,
then α(1) = β(1). As d([α], [β]) = 0 there is a loop γ at x1 of length less than
δ satisfying γ ∼ α−1 ∗ β. That means α ∼ β as γ is null-homotopic in X .
Thus [α] = [β] if d([α], [β]) = 0. It is easy to see d is symmetric and satisfies
the Triangle Inequality.

Notice d([α], [β]) ≥ dX(α(1), β(1)), so p is 1-Lipschitz. Also, it is clear

that canonical lifts of geodesics in X are geodesics in X̃.
Suppose γn is a sequence of paths in X joining α(1) and β(1) such that

l(γn) converges to M = d([α], [β]) and γn ∼ α−1 ∗ β for all n ≥ 1. We
may assume each γn is parameterized so that the length of γn|[0,t] is t · l(γn).
Subdivide the interval [0, 1] into points y0 = 0, y1, . . . , yk = 1 such that 0 <
yi+1 − yi <

δ
2·M for all 0 ≤ i < k. We may assume γn(yi) converges to zi ∈ X
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for each 0 ≤ i ≤ k. The piecewise-geodesic path ω from α(1) to β(1) obtained
by connecting points z0, z1, . . . ,zk is homotopic to γn for n large enough.
Also, l(ω) equals the limit of l(γn), so l(ω) = d([α], [β]). Notice the canonical

lift of ω is a geodesic from [α] to [β] in X̃.

To show (X̃, d) is a proper metric space assume {[αn]}n≥1 is a bounded

sequence in X̃. We may assume αn(1) converges to x1 and then alter each αn

by concatenating it with a geodesic from αn(1) to x1. It suffices to show that

the resulting sequence of elements [βn] of X̃ has a convergent subsequence.
First of all, we may assume the sequence of lengths l(βn) converges to M > 0
(if M = 0, then [βn] converge to [x0]), each βn is piecewise-geodesic and the
length of βn|[0,t] is t · l(βn). Subdivide the interval [0, 1] into points y0 =

0, y1, . . . , yk = 1 such that 0 < yi+1 − yi < δ
2·M for all 0 ≤ i < k. We

may assume βn(yi) converges to zi ∈ X for each 0 ≤ i ≤ k. The piecewise-
geodesic path ω from x0 to x1 obtained by connecting points z0, z1, . . . ,zk
is homotopic to βn for n large enough. That means [βn] is constant starting
from a sufficiently large n.

Proposition 3.3. (X̃, d) is simply connected and the endpoint projection

p : X̃ → X is a covering map.

Proof. Let δ > 0 be a number such that any loop in X of diameter less
than 4 · δ is null-homotopic in X .

Claim 1. For any [α] ∈ X̃ the restriction of p to the ball B([α], δ) is an
isometry onto B(α(1), δ).

Proof of Claim. Given β, ω ∈ B([α], δ) let γ be a geodesic path from
β(1) to ω(1). As d([β], [ω]) < 2 · δ there is a path λ from β(1) to ω(1) of
length less than 2 · δ such that λ ∼ β−1 ∗ ω. Observe λ ∼ γ as both paths
are of diameter less than 2 · δ. That means d([β], [ω]) = dX(β(1), ω(1)) as the
length of γ equals dX(β(1), ω(1)) and d([β], [ω]) ≥ dX(β(1), ω(1)).

Given [β] ∈ X̃ with β(1) ∈ B(x1, δ) let γ be a geodesic path from β(1) to
x1. Observe d([β], [β ∗ γ]) < δ and p([β ∗ γ]) = x1. That means p−1(B(x1, δ))
is the union of balls B([α], δ) with α ranging over all paths in p−1(x1). By
Claim we conclude p is a covering projection.

To show X̃ is simply connected suppose α is a loop in X̃ based at the
trivial path. Since p(α) can be homotoped to a piecewise-geodesic loop and

canonical lifts of piecewise-geodesic loops are paths in X̃ , we may assume α is
the canonical lift of a piecewise-geodesic loop β based at x0. The canonical lift
of β is a loop if and only if β is null-homotopic. As p is a covering projection,
α is null-homotopic as well.

Proposition 3.4. The action of G = π1(X, x0) on X̃ (g · [α] being [β∗α],
where [β] = g) is geometric.
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Proof. G acts by isometries as d(g · [α], g · [β]) = d([α], [β]) for all α, β ∈

X̃.
Let δ > 0 be a number such that any loop in X of diameter less than

4 · δ is null-homotopic in X . Given [α] ∈ X̃ let U be the δ-ball around [α]

in X̃. If [β] ∈ U ∩ (g · U) there are paths γi, i = 1, 2, such that β ∼ α ∗ γ1,
β ∼ g · α ∗ γ2 and l(γi) < δ for i = 1, 2. Thus g = [α ∗ γ1 ∗ γ

−1
2 ∗ α−1] equals

1 in G as γ1 ∼ γ2 (both are paths of diameter less than δ and join the same

points). That proves the action of G on X̃ is properly discontinuous.

Since p : X̃ → X is open and, set-theoretically, equals X̃ → X̃/G, X̃/G

is homeomorphic to X proving that the action of G on X̃ is cocompact.

Theorem 3.5. The fundamental group of a Peano continuumX is finitely
presented if it is countable.

Proof. X̃ is uniformly path connected as is it geodesic according to
3.2. By the Švarc-Milnor Lemma and 3.4 the group G = π1(X, x0) is finitely

generated and is quasi-isometric to X̃. As X̃ is coarsely 1-connected (see 2.2)
and coarse 1-connectivity is an invariant of quasi-isometries (see Corollary 47
in [11]), G is also coarsely 1-connected. As G is a finitely generated group,
G is necessarily finitely presented (see the proof of Corollary 51 in [11] on
p.22 or Proposition 8.24 in [2]). Alternatively, the fundamental group of the
Cayley graph Γ(G) of G must be uniformly generated by 2.2 which means G
is finitely presented.
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