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A NOTE ON TRIVIAL FIBRATIONS

Petar Pavešić

University of Ljubljana, Slovenia

Abstract. We study the conditions on spaces B and F given which,
every fibration with base B or with fibre F is fibre-homotopy trivial. In
particular, we prove that every fibration whose base is a CW-complex and
fibre an Eilenberg-MacLane space K(G, 1) with G a complete group is
fibre-homotopy trivial.

Introduction

It is well-known that every fibration over a contractible base is fibre
homotopically trivial. In fact, it is easy to see that this property characterizes
contractible spaces. It is less clear whether a fibration with contractible
fibre must also be fibre homotopically trivial, and whether the triviality of
all fibrations with a given fibre implies the contractibility of that fibre. In
this paper we study complexes with a surprising property that they are non-
contractible and yet they can only be fibres of trivial fibrations.

In the first section we list the relevant facts about fibrations and their
classification, while in the second section we study bases and fibres that
automatically make fibrations trivial.

1. Preliminaries on fibrations

Although the classification of fibrations is formally analogous to the
classification of fibre bundles, there are some delicate issues regarding explicit
constructions and the scope of the results, which is evident from a series of
different approaches to these problems. To fix the ideas we give the list of
definitions and results which we are going to use.
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By fibration we mean a projection p : E → B which has the homotopy
lifting property from arbitrary spaces (i.e., a Hurewicz fibration). If B is
path-connected then all fibres of p are homotopy equivalent so we will often

use the notation F →֒ E
p

−→ B, where F denotes the fibre over some point
in B.

Fibrations p : E → B and p′ : E′ → B are fibre-homotopy equivalent

if there are fibre-preserving maps f : E → E′ and g : E′ → E and fibre-
preserving homotopies between fg and 1E , and between gf and 1E′ .

There is a technical difficulty when considering fibrations with respect
to the relation of fibre-homotopy equivalence, because a fibre space (i.e., a
fibre-wise space in the sense of [6]) which is fibre-homotopy equivalent to a
fibration is not necessarily a fibration. To avoid this difficulty we define a fibre
space p : E → B to be an h-fibration, if it is fibre-homotopy equivalent to a
fibration, or equivalently if it satisfies the following weak homotopy lifting
property: for every map h : A → E and every homotopy H : A × I → B

starting at H0 = ph there is a homotopy H̃ : A× I → E which covers H but

H̃0 is only fibre-homotopic to h. Clearly, the classification of fibrations up to
fibre-homotopy equivalence coincides with that of h-fibrations.

A fibration F →֒ E
p

−→ B is fibre-homotopy trivial if it is fibre-homotopy
equivalent to the product fibration prB : B × F → B. A fibration is locally

trivial if there is a covering {Uλ} of the base B, such that the restrictions
p : p−1(Uλ) → Uλ are fibre-homotopy trivial. We usually require that the
covering {Uλ} is numerable, i.e., that admits a subordinated partition of unity.
When a fibration is locally trivial with respect to a numerable covering, we
say that it is numerably trivial. The existence of a partition of unity is a
technical condition that allows gluing of maps and spaces, and is required in
the classification theorems.

If p : E → B is a fibration, and if U ⊆ B can be deformed in B to a
point (i.e., if the inclusion U →֒ is homotopic to a constant map), then the
restriction p : p−1(U) → U is fibre-homotopy trivial. This fact motivates the
following definition: a space B which admits a numerable covering {Uλ} such
that all Uλ can be deformed in B to a point is called Dold space (cf. [8, 9]).
The class of Dold spaces contains all spaces of the homotopy type of a CW-
complex, all paracompact locally contractible spaces, the classifying spaces of
topological monoids, unreduced suspensions and joins. Clearly, every fibration
whose base is a Dold space is numerably trivial.

The well-known classification of fibre bundles with fibre F and structure
group G through homotopy classes of maps into classifying spaces can be
extended to fibrations. In that case the role of the structure group is taken
by the space aut(F ) of all self-homotopy equivalences of the fibre F . Since
aut(F ) is only a topological monoid and not a group, the construction of
the corresponding classifying space is not as straightforward as in the case
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of groups, and there are several variants, each of them with its advantages
and disadvantages. We are going to use the formulation of [4] that there is
a universal fibration F →֒ B aut∗(F ) → B aut(F ) that classifies fibrations
over CW-complexes, in the sense that for every CW-complex B the pull-
back operation induces a bijection between [B,B aut(F )] and the set of fibre-
homotopy equivalence classes of (h)-fibrations with fibre F over B. Here
aut∗(F ) denotes the space of self-homotopy equivalences of F which preserve
the base-point, and B(−) is a functor which for every topological monoid with
a homotopy inverse H constructs the corresponding classifying space BH .
The functor B is inverse to the loop-space construction in the sense that
B(ΩX) ≃ X and the classifying fibration corresponds to the prolongation
(in the sense of the Puppe-Barratt sequences) of the evaluation fibration

aut∗(F ) →֒ aut(F )
ev
−→ F .

2. Automatically trivial fibrations

Let us begin with the following characterization of the contractibility of
a space B in terms of fibrations over B. If B is contractible then every h-
fibration over B is fiber-homotopy trivial. This implies in particular that the
path fibration ΩB →֒ PB → B must be trivial. As the based path space PB

is contractible, the homotopy equivalence PB ≃ B × ΩB implies that B is
contractible. Thus we have proved the following result.

Proposition 2.1. The following conditions are equivalent for an arbitrary

space B.

1. B is contractible;

2. The path fibration over B is fiber-homotopy trivial.

3. Every fibration with base B is fiber-homotopy trivial.

We are going to show that the situation is more complex when one tries
to relate the contractibility of the fibre with the triviality of the fibration.

Proposition 2.2. Every numerably trivial h-fibration with contractible

fibre is fibre-homotopy trivial.

Proof. By the equivalence between (d) and (e) in Theorem 3.1. of [3]
every such fibration is locally shrinkable, which by Corollary 3.3.of [3] implies
that it is fibre-homotopy trivial.

In particular, every h-fibration with contractible fibre over a Dold space
is fibre homotopy trivial. This is however not true for arbitrary bases, as can
be seen from the following example.

Example 2.3. Let W denote the Warsaw circle: then the space of loops
ΩW is contractible, which means that every numerably trivial fibration with
fibre ΩW must be fibre-homotopy trivial. However, the path fibration over
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ΩW →֒ PW → W cannot be fibre-homotopy trivial, as it would imply that
W × ΩW ≃ PW ≃ ∗, which is impossible, since W is not contractible.
Therefore, the above proposition cannot be extended to fibrations which are
not numerably trivial.

Is there a test fibration with fibre F (like the path-fibration for base B)
whose triviality would imply that all fibrations with fibre F are fibre-homotopy
trivial? If we restrict our attention to fibrations over CW-complexes, then the
natural candidate is the classifying fibration

F →֒ B aut∗(F ) → B aut(F ),

described in the previous section. Of course, since the total space B aut∗(F )
is in general not contractible, we cannot deduce that the triviality of the
classifying fibrations implies the contractibility of F but we have the following
characterization instead:

Theorem 2.4. The following conditions are equivalent for a CW-complex

F :

1. Every fibration with fibre F over a CW-complex is fibre-homotopy

trivial.

2. The classifying space B aut(F ) is weakly contractible.

3. The inclusion map F →֒ B aut∗(F ) is a weak homotopy equivalence.

Moreover, the above conditions are implied by

4. The classifying fibration F →֒ B aut∗(F ) → B aut(F ) is fibre-

homotopy trivial.

If aut(F ) has the homotopy type of a CW-complex then 1.-4. are all equivalent.

Proof. The equivalence between 1. and 2. follows from the fact that
a space is weakly contractible if, and only if every map from a CW-complex
to it is nulhomotopic. The equivalence between 2. and 3. follows from the
homotopy exact sequence of the classifying fibration. Condition 4. clearly
implies 1., and if aut(F ) is a CW-complex then so is B aut(F ) so 1. implies
that [B aut(F ), B aut(F )] is trivial, hence B aut(F ) is contractible.

It is not at all clear, whether there exists a non-contractible space F

satisfying the above conditions. To find an answer, let us consider the

evaluation fibration aut∗(F ) →֒ aut(F )
ev
−→ F , which is the continuation of

the Puppe-Barratt sequence of the classifying fibration, and which therefore
contains the same homotopy information.

If F is a connected H-space, then the multiplication by an element x ∈ F

determines a translation τx, which is a self-homotopy equivalence of F (cf.
Theorem 1.3.1. of [10]). Since we can always assume that F has a strict
unit, the map F → aut(F ), x 7→ τx determines the section of the evaluation
fibration ev : aut(F ) → F , therefore aut(F ) ≃ F × aut∗(F ).
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Proposition 2.5. Assume that a connected CW-complex F admits an

H-space structure. Then every fibration with fibre F and base a CW-complex

is trivial if, and only if F is contractible.

In particular, the assumptions of the Propositions are satisfied when F is
an Eilenberg-MacLane space K(G,n) with G abelian.

The case F = K(G, 1) with G non-abelian is more complicated. We
will first show that the higher homotopy groups of the space of un-based
self-homotopy equivalences aut(F ) are trivial. Since aut(F ) is a topological
monoid it is sufficient to prove that every α : (Sn, s0) → (aut(F ), 1F ) is freely
homotopic to the constant map c : (Sn, s0) → (aut(F ), 1F ). Let α̂ : S

n×F →
F be the adjoint map of α. Homotopy classes of maps into an Eilenberg-
MacLane space F = K(G, 1) are classified by their action on the fundamental
group, which is in turn determined by the inclusion i : F → Sn × F , u(x) =
(s0, x). Since α̂u(x) = x = ĉu(x) (where ĉ is the adjoint of the constant map),
we conclude that α̂ is homotopic to ĉ, therefore α is (freely) homotopic to the
constant map. We conclude that aut(F ) is aspherical, hence aut∗(F ), being
the fibre of a map between two aspherical spaces, must be also aspherical.

It remains to compute i♯ : π1(F ) → π1(B aut∗(F )) or equivalently
i♯ : π0(ΩF ) → π0(aut∗(F )), where i : ΩF → aut∗(F ) is given by the standard
action of the loops on the base to the fibre in the evaluation fibration. More
explicitly, given a loop α ∈ Ω(F ), i(α) : F → F is obtained by using the
homotopy extension property to ’translate’ the identity map on F along α. It
is easily verified that u(α)♯ : π1(F ) → π1(F ) is precisely the conjugation by α,
where we view α as an element of π1(F ). If we identify π1(F ) = π0(ΩF ) = G

and π1(B aut∗(F )) = π0(aut∗(F )) = AutG then i♯ : π1(F ) → π1(B aut∗(F ))
corresponds to the standard conjugation homomorphism c : G → Aut(G),
given by [c(g)](h) = g−1hg. We conclude that F →֒ B aut∗(F ) is a weak
homotopy equivalence if, and only if the above homomorphism is bijective, so
by Theorem 2.4 we obtain the following characterization.

Theorem 2.6. Every fibration with fibre K(G, 1) and base a CW-complex

is fibre-homotopy trivial if, and only if the conjugation homomorphism G →
Aut(G) is an isomorphism.

The groups for which the conjugation homomorphism is an isomorphism
are called complete groups and are much studied especially in connection with
simple groups. Examples of complete groups include all symmetric groups
Sn except for n = 2, 6 (see [7, Theorem 7.5]). By perusing the Atlas of
Finite Groups we find that generically the simple groups are not complete.
In particular, none of the alternating groups An and only a few among linear
groups are complete. All sporadic groups are either complete (e.g. the
Mathieu groups M11,M23,M24, Conway groups Co1,Co2,Co3, Janko groups
J1, J4, the Baby Monster, the Monster, and few others), or have the outer
automorphism group of order 2. Moreover by a famous theorem of Burnside,
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the automorphism group of every non-abelian simple group is complete (see [7,
Theorem 7.14]). Another source of complete groups is Wielandt’s theorem on
the automorphism tower, which says that for every finite group the sequence

G → Aut(G) → Aut(Aut(G)) → . . .

stabilizes after finitely many iterations, and the limit is obviously a complete
group.

To complete the picture, let us mention a characterization of complete
groups due to Hölder and Baer, that is an algebraic counterpart of Theorem
2.6: a group G is complete if, and only if, whenever G is a normal subgroup
of a group H it follows that G is a direct factor of H (see [7], Theorems 7.15
and 7.17).

Is there any other example of a fibre, which would automatically cause
the triviality of the fibrations? If F is a simply-connected coH-space then by
[1, Proposition 1.13], F has a homotopy inverse, which is clearly a homotopy
equivalence of order 2. Therefore π0(aut∗(F )) is non-trivial, while π(ΩF ) =
π1(F ) = 0 so ΩF 6≃ aut∗(F ).

If F is simply connected and homotopically n-dimensional (i.e., πn(F ) 6= 0
and πk(F ) = 0 for k > n) then we can use the spectral sequence, developed by
G. Didierjean ([2]) (a variant of the Federer spectral sequence) that computes
the homotopy groups of aut∗(F ). When F is as above the spectral sequence
collapses and yields πn(aut∗(F )) = πn(F ) 6= 0. As πn(ΩF ) = πn+1(F ) = 0
it follows that ΩF 6≃ aut∗(F ). For general F the structure of the spectral
sequence is much more complicated, but it still seems unplausible that for a
non-contractible simply connected complex ΩF and aut∗(F ) have isomorphic
homotopy groups, so we are lead to the following:

Conjecture: For a connected CW-complex F the loop-space ΩF is
weakly homotopy equivalent to aut∗(F ) if, and only if F = K(G, 1) for a
complete group G.

Finally, let us observe that since there exist non-trivial fibrations with
contractible total space, then up to homotopy there are no particular
limitations for a space E to be the total space of a non-trivial fibration. In fact
E ≃ E ×R and the standard covering map gives a fibration E ×R → E ×S1

which is not fibre-homotopy trivial. In this context it is more interesting to
ask which spaces can be total spaces of non-trivial fibrations with base and
fibre a compact CW-complex, or which suspensions can be total spaces of
non-trivial fibrations (for more information see [5]).
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