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Entropy functions and functional equations
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Abstract. The purpose of this note is to give a general solution of two functional equations
connected to the Shannon entropy and also to the Tsallis entropy. As a result of this, we
present a regular solution of these equations as well. Furthermore, we point out that the
regularity assumptions used in previous works can be weakened substantially.

AMS subject classifications: Primary 39B22; Secondary 94A17

Key words: functional equation, entropy, Shannon entropy, Tsallis entropy

1. Introduction and preliminaries

Since the celebrated paper of Claude E. Shannon (see [10]) appeared, the infor-
mation theory has become an extensive branch of mathematics. Furthermore, it
is known that information measures can be characterized via functional equations.
Concerning this, the reader can consult the two basic monographs Aczél–Daróczy
[1] and Ebanks–Sahoo–Sander [4].

Although the characterization problem of information measures nearly comes to
the end, from time to time one can meet new functional equations from this area.
A possible explanation for this is that the Shannon entropy and also the entropy of
degree alpha (or Tsallis entropy) has been re–discovered by physicists and engineers,
see Daróczy [3] and Tsallis [12].

The aim of this note is to give a general solution of two functional equations
connected to the notion of the Shannon entropy and also that of the Tsallis entropy.
More precisely, in the second section we will firstly solve the equation

f(xy) + f((1− x)y)− f(y) = (f(x) + f(1− x)) yq, (1)

which is supposed to hold for the unknown function f :]0, 1] → R for all x ∈]0, 1[
and y ∈]0, 1], where q ∈ R is a fixed parameter.

For the unknown function f :]0, 1] → R the equation

f(xy) =
(

xα + xβ

2

)
f(y) +

(
yα + yβ

2

)
f(x) (2)

will also be solved which is assumed to hold for all x, y ∈]0, 1], where α, β ∈ R are
fixed parameters.
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These two functional equations were solved in Sharma–Taneja [11] and also in
Furuichi [5] under the assumptions that the unknown function is nonnegative and
differentiable and they called the solutions of these equations entropy functions –
to which alludes the title of the present work. First, we give a general solution
of these equations and then we point out that the regularity suppositions (that is,
nonnegativity and differentiability) can essentially be weakened to get the same
result as that of [5, 11].

In what follows some preliminary definitions and results will be listed, mainly
from the theory of functional equation. These results can also be found in Kuczma
[8].

Definition 1. Let I ⊂ R and A = {(x, y)|x, y, x + y ∈ I} . A function a : I → R is
called additive on A if

a (x + y) = a (x) + a (y) (3)

holds for all pairs (x, y) ∈ A.
Consider the set I = {(x, y)|x, y, xy ∈ I} . We say that µ : I → R is multiplicative
on I if the functional equation

µ (xy) = µ (x)µ (y) (4)

is fulfilled for all (x, y) ∈ I.
A function ` : I → R is called logarithmic on I if it satisfies the functional equation

` (xy) = ` (x) + ` (y) (5)

for all (x, y) ∈ I.

Henceforth, for all n ≥ 2 we define the set Dn by

Dn =

{
(x1, . . . , xn) ∈ Rn|x1, . . . , xn,

n∑

i=1

xi ∈]0, 1[

}
.

As we wrote above, we will also determine the regular solutions of equations (1)
and (2). To do this, the following regularity theorems will be applied.

Lemma 1. Let a :]0, 1[→ R be an additive function on the set D2 and assume that

(i) a is bounded above or below on the subset of ]0, 1[ that has a positive Lebesgue
measure;

(ii) or a is Lebesgue measurable.

Then there exists c ∈ R such that

a(x) = cx

holds for all x ∈]0, 1[.
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Lemma 2. Let ` :]0, 1[→ R be a logarithmic function on the set

L̃ = {(x, y)|x, y, xy ∈]0, 1[}
and assume that

(i) ` is bounded above or below on the subset of ]0, 1[ that has a positive Lebesgue
measure;

(ii) or ` is Lebesgue measurable.

Then there exists c ∈ R such that

`(x) = ln(x)

holds for all x ∈]0, 1[.

We also mention that in case a :]0, 1[→ R is an additive function on the set D2,
then it can be uniquely extended to the function ã : R→ R which is additive on R
(cf. Kuczma [8]). For the sake of simplicity, we will always bear in mind this fact,
and the extension of the function in question will always be denoted by the same
character.

The notion of derivations will also be utilized in the next section, see Kuczma
[8].

Definition 2. An additive function a : R → R is termed to be a real derivation, if
it also fulfills the equation

d(xy) = xd(y) + yd(x)

for all x, y ∈ R.

From this definition it immediately follows that every real derivation vanishes at
the rationals. Additionally, something more is true. Namely, every real derivation is
identically zero on the set of algebraic numbers (over the rationals). Furthermore,
if a real derivation is Lebesgue measurable or bounded above or below on the set
that has a positive Lebesgue measure, then it is identically zero. Therefore, it can
be seen that the non–trivial real derivations can be very irregular. Although it is
surprising, there exists non identically zero real derivation, see Theorem 14.2.2 in
Kuczma [8].

The following lemma was proved in [6].

Lemma 3. Suppose that the function ϕ :]0,+∞[→ R is such that

ϕ(xy) = xϕ(y) + yϕ(x) (x, y ∈]0, 1[)

and the function g :]0, 1[→ R defined by

g(x) = ϕ(x) + ϕ(1− x) (x ∈]0, 1[)

is Lebesgue measurable or it is bounded (above and below) on a subset of ]0, 1[ that has
a positive Lebesgue measure. Then there exist c ∈ R and a real derivation d : R→ R
such that

ϕ(x) = cx ln(x) + d(x)

is fulfilled for any x ∈]0, 1[.
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In the proof of our main theorem concerning equation (1) we will apply a result
concerning the so–called cocycle equation, see Jessen–Karpf–Thorup [7]. However,
in the proof this equation (i.e., the cocycle equation) will not be satisfied on the
whole domain but only on a restricted one. Therefore, we will apply a result of Ng
[9], in which the author solves the cocycle equation on a restricted domain, see also
Aczél–Ng [2] and Ebanks–Sahoo–Sander [4].

Theorem 1 (See [9]). Let µ :]0, 1[→ R be a given multiplicative function and G :
D2 → R a function. Then a general solution of the system of functional equations

G(x, y) = G(y, x); ((x, y) ∈ D2) (6)
G(x, y) + G(x + y, z) = G(y, z) + G(x, y + z); ((x, y, z) ∈ D3) (7)

and
G(tx, ty) = µ(t)G(x, y) (t ∈]0, 1[, (x, y) ∈ D2) (8)

is given by in case µ(x) = x,

G(x, y) = ϕ(x) + ϕ(y)− ϕ(x + y), ((x, y) ∈ D2) (9)

where ϕ :]0, +∞[→ R is such that

ϕ(xy) = yϕ(x) + xϕ(y), (x, y ∈]0,+∞[)

otherwise there exists c ∈ R such that

G(x, y) = c [µ(x) + µ(y)− µ(x + y)]

is fulfilled for all (x, y) ∈ D2.

2. Main results

In this section we will find the general solutions of equations (1) and (2). After
this, the regular solutions of these equations will be presented. Furthermore, it will
be pointed out that the regularity assumptions of [5] and [11] can be substantially
weakened. Moreover, in some cases these suppositions can even be omitted.

Theorem 2. Let q ∈ R be arbitrarily fixed, then the function f :]0, 1] → R fulfills
equation

f(xy) + f((1− x)y)− f(y) = (f(x) + f(1− x)) yq (10)

for all x ∈]0, 1[ and y ∈]0, 1], in case q 6= 1, if and only if, there exist c ∈ R and an
additive function a : R→ R such that

f(x) =
{

a(x) + cxq, if x ∈]0, 1[
0, if x = 1 .

Furthermore, in case q = 1, if and only if there exists an additive function a : R→ R
and a function ϕ :]0, +∞[→ R such that

ϕ(xy) = xϕ(y) + yϕ(x) (x, y ∈]0, +∞[)
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and

f(x) =
{

a(x) + ϕ(x), if x ∈]0, 1[
0, if x = 1

is fulfilled.

Proof. Assume that the function f :]0, 1] → R fulfills equation (10). With the
substitution y = 1 we immediately get that f(1) = 0. Therefore it is enough to
restrict ourselves to the interval ]0, 1[. Let (u, v) ∈ D2 and in equation (10) let us
replace x by

u

u + v
and y by (u + v), respectively. In this case we obtain that

f(u) + f(v)− f(u + v) =
[
f

(
u

u + v

)
+ f

(
v

u + v

)]
(u + v)q (11)

holds for all (u, v) ∈ D2.
Define the functions Cf and Rf on the set D2 by

Cf (u, v) = f(u) + f(v)− f(u + v) ((u, v) ∈ D2)

and

Rf (u, v) =
[
f

(
u

u + v

)
+ f

(
v

u + v

)]
(u + v)q. ((u, v) ∈ D2)

With these notations equation (11) yields

Cf (u, v) = Rf (u, v). ((u, v) ∈ D2)

Let us observe that the function Rf is q–homogeneous. Indeed, for all t ∈]0, 1[ and
(u, v) ∈ D2

Rf (tu, tv) =
[
f

(
tu

tu + tv

)
+ f

(
tv

tu + tv

)]
(tu + tv)q

= tq
[
f

(
u

u + v

)
+ f

(
v

u + v

)]
(u + v)q = tqRf (u, v).

This implies that the function Cf is also a q–homogeneous function. Furthermore,
the function Cf is symmetric and it also fulfills the cocycle equation. All in all, this
means that the function Cf satisfies equations (6), (7) and (8) with the multiplicative
function µ(t) = tq. Thus by Theorem 1, in case q 6= 1 there exists c ∈ R such that

Cf (x, y) = c [xq + yq − (x + y)q] , ((x, y) ∈ D2) (12)

and in case q = 1 there exists a function ϕ :]0,+∞[→ R such that

ϕ(xy) = xϕ(y) + yϕ(x) (x, y ∈]0, +∞[)

and
Cf (x, y) = ϕ(x) + ϕ(y)− ϕ(x + y) ((x, y) ∈ D2) (13)

is satisfied.
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Firstly, we deal with the case q 6= 1. Define the function f̃ :]0, 1[→ R by

f̃(x) = f(x)− cxq, (x ∈]0, 1[) ,

then equation (12) yields that the function f̃ is additive on the set D2. Regarding
the function f this shows that there exists an additive function a : R→ R such that

f(x) = cxq + a(x)

holds for any x ∈]0, 1[. Since f(1) = 0, the function f has the form which had to be
proved.

If q = 1, then let us define the function f̃ :]0, 1[→ R by

f̃(x) = f(x)− ϕ(x). (x ∈]0, 1[)

Equation (13) yields that the function f̃ is an additive function on D2. Concerning
the function f , from this we get that there exists an additive function a : R → R
such that

f(x) = ϕ(x) + a(x)

is fulfilled for any x ∈]0, 1[, where the function ϕ :]0,+∞[→ R satisfies

ϕ(xy) = xϕ(y) + xϕ(y). (x, y ∈]0,+∞[)

Since f(1) = 0 has to hold, the function f is of the form

f(x) =
{

a(x) + ϕ(x), if x ∈]0, 1[
0, if x = 1

that had to be proved. The converse direction is an easy computation.

The following corollary contains the regular solutions of equation (10).

Corollary 1. Let q ∈ R be arbitrary and suppose that the function f :]0, 1] → R
satisfies equation (10) for all x ∈]0, 1[ and y ∈]0, 1]. If q 6= 1, assume further that
one of the following is true.

(i) f is bounded above or below on a subset of ]0, 1[ that has a positive Lebesgue
measure;

(ii) f is Lebesgue measurable.

Then there exist c, c∗ ∈ R such that

f(x) =
{

c∗x + cxq, if x ∈]0, 1[
0, if x = 1

In case q = 1, suppose additionally that one of the statements below holds.

(i) f is bounded (above and below) on a subset of ]0, 1[ that has a positive Lebesgue
measure;
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(ii) f is Lebesgue measurable.

Then there exist c, c∗ ∈ R such that

f(x) =
{

cx ln(x) + c∗x, if x ∈]0, 1[
0, if x = 1

is fulfilled.

Proof. Firstly, we investigate the case q 6= 1. From Theorem 2 we obtain that

f(x) = a(x) + cxq

holds for all x ∈]0, 1[ and f(1) = 0. If we rearrange this, it follows that

a(x) = f(x)− cxq. (x ∈]0, 1[)

By our assumptions f is bounded above or below on a subset of ]0, 1[ that has a
positive Lebesgue measure, or f is a Lebesgue measurable function.

This implies that the additive function a fulfills condition (i) or (ii) of Lemma 1.
From this, we obtain that there exists a constant c∗ ∈ R such that a(x) = c∗x. This
implies however that

f(x) = c∗x + cxq

holds for all x ∈]0, 1[ and f(1) = 0.
Secondly, we assume that q = 1. From Theorem 2, we obtain that f(1) = 0 and

f(x) = ϕ(x) + a(x), (x ∈]0, 1[)

where ϕ :]0,+∞[→ R fulfills equation

ϕ(xy) = xϕ(y) + yϕ(x) (x, y ∈]0, +∞[)

and a : R→ R is an additive function. Define the function g :]0, 1[→ R by

g(x) = f(x) + f(1− x)− a(1). (x ∈]0, 1[)

In this case, the function g is Lebesgue measurable or bounded on a subset of ]0, 1[
that has a positive Lebesgue measure. Furthermore,

g(x) = f(x)+f(1−x)−a(1) = ϕ(x)+a(x)+ϕ(1−x)+a(1−x)−a(1) = ϕ(x)+ϕ(1−x),

where we used that a is an additive function. All in all, this implies that the function
g satisfies the assumptions of Lemma 3. Thus there exist c ∈ R and a real derivation
d : R→ R such that

ϕ(x) = cx ln(x) + d(x). (x ∈]0, 1[)

Concerning the function f this yields that

f(x) = cx ln(x) + d(x) + a(x), (x ∈]0, 1[)
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or if we rearrange this,

f(x)− cx ln(x) = d(x) + a(x). (x ∈]0, 1[)

By our assumptions the function f is bounded on a subset of ]0, 1[ that has a positive
Lebesgue measure or it is Lebesgue measurable. Furthermore, the function d(x) +
a(x) is a sum of two additive functions, that is, this function is also additive, which
is bounded on a subset of ]0, 1[ with a positive Lebesgue measure or it is Lebesgue
measurable. In view of Lemma 1, there exists c∗ ∈ R such that d(x) + a(x) = c∗x
holds for all x ∈ R. Thus

f(x) = cx ln(x) + c∗x

holds for all x ∈]0, 1f and f(1) = 0.

Remark 1. Under the assumptions of the previous corollary, in case for the function
limx→1− f(x) exists and limx→1− f(x) = f(1), then in case q 6= 1,

f(x) = c∗(x− xq) (]0, 1])

is fulfilled with some c∗ ∈ R. Furthermore, in case q = 1,

f(x) = cx ln(x) (x ∈]0, 1])

is satisfied with a certain c ∈ R.

At this point of the paper we turn to deal with equation (2). Before this, we
present a more general equation. Thus the solutions of the above mentioned func-
tional equation will be showed as a corollary of the following result. Additionally,
the regular solutions of (2) will be dealt with, too.

The following lemma was proved by E. Vincze in 1962 for commutative groups.
Although (]0, 1], ·) is not a group, only a semigroup, we remark that the method
used in Satz 5 in Vincze [13] is appropriate for commutative semigroups as well.

Lemma 4. Let g :]0, 1] → R be a given function, and f :]0, 1] → R be such that

f(xy) = g(y)f(x) + g(x)f(y) (14)

holds for all x, y ∈]0, 1].
If g is a multiplicative function, then

f(x) = g(x)`(x), (x ∈]0, 1])

where ` :]0, 1] → R is a logarithmic function, and in case g is not a multiplicative
function, that is, there exist t1, t2 ∈]0, 1] such that g(t1t2) 6= g(t1)g(t2), then

f(x) =
[g(t1x)− g(t1)g(x)] f(t1)

g(t1t2)− g(t1)g(t2)

holds for all x ∈]0, 1].
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Corollary 2. Let α, β ∈ R be arbitrary, f :]0, 1] → R a function for which

f(xy) =
(

xα + xβ

2

)
f(y) +

(
yα + yβ

2

)
f(x) (15)

holds for any x, y ∈]0, 1]. Then we have the following two possibilities.

(i) if α 6= β, then there exists c ∈ R such that

f(x) = c
(
xα − xβ

)
, (x ∈]0, 1])

(ii) if β = α, then there exists a logarithmic function ` :]0, 1] → R such that

f(x) = cxα`(x)

holds for all x ∈]0, 1].

Proof. Firstly, let us suppose that α 6= β . In this case the function g :]0, 1] → R
defined by g(x) = 1

2

(
xα + xβ

)
is not a multiplicative function. Furthermore, with

this notation, equation (14) follows from (15). Thus, by Lemma 4,

f(x) =
[g(t1x)− g(t1)g(x)] f(t1)

g(t1t2)− g(t1)g(t2)

holds for all x ∈]0, 1], where t1, t2 ∈]0, 1] are arbitrarily fixed. After using the form
of the function g, we get that

f(x) =
f(t1)

tα2 − tβ2

(
xα − xβ

)
, (x ∈]0, 1])

that is, there exists a constant c ∈ R such that

f(x) = c
(
xα − xβ

)

is satisfied for all x ∈]0, 1].
Secondly, assume that α = β. In this case the function g :]0, 1] → R defined by

g(x) = xα is a multiplicative function. Additionally, let us observe that with these
notations (15) becomes equation (14). Therefore, due to Lemma 4, there exist c ∈ R
and a logarithmic function ` :]0, 1] → R such that

f(x) = cxα`(x)

is fulfilled for all x ∈]0, 1].
Finally, a facile computation shows the correctness of the converse direction.

From this corollary we can effortlessly get the regular solutions of equation (15).
Let us observe that in case α 6= β, the solutions of this equation are regular already.
Therefore, in this case the regularity assumptions (that is, the nonnegativity and the
differentiability) are superfluous in the papers [5] and [11]. Furthermore, if α = β,
then the above mentioned regularity suppositions can be significantly weakened.
Namely, making use of Lemma 2 the following statement can be proved.
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Corollary 3. Let α ∈ R be arbitrarily fixed and assume that the function f :]0, 1] →
R fulfills equation

f(xy) = yαf(x) + xαf(y) (16)

for all x, y ∈]0, 1]. Suppose further that one of the following statements is true.

(i) f is bounded above or below on a subset of ]0, 1[ that has a positive Lebesgue
measure;

(ii) f is Lebesgue measurable.

Then there exists c ∈ R such that

f(x) = cxα ln(x). (x ∈ R)
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