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Abstract. The sum-connectivity index R′(G) of a graph G is the sum of the weights

(du +dv)−
1
2 of all edges uv of G, where du and dv are the degrees of the vertices u and v in

G. This index was recently introduced in [B. Zhou, N. Trinajstić, On a novel connectivity
index, J. Math. Chem. 46(2009), 1252–1270]. In this paper, we give the sharp lower bound
of the sum-connectivity index of n-vertex unicyclic graphs with k pendent vertices.
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1. Introduction

All graphs considered in this paper are finite, undirected and simple. For terminology
and notation not defined here we follow those in Bondy and Murty [1]. For a
graph G = (V (G), E(G)), the weight of an edge e = uv ∈ E(G) is defined to be
we = (du + dv)−

1
2 , where du, dv denote the degree of u, v in G, respectively.

Recall that the Randić connectivity index of a graph G is the sum of the weights
w′e, where e = uv and w′e = (dudv)−

1
2 . The Randić connectivity index is a graphic

invariant much studied in both mathematical and chemical literature; for details
see a survey book written by Li and Gutman [8] and the references cited therein.
Thus, the graphic invariant studied in this paper can be looked as a novel variant
of the Randić index. It is also due to the fact that the two graphic invariants are
highly intercorrelated quantities; for example, the value of the correlation coefficient
is 0.99088 for 136 trees representing the lower alkanes taken from Ivanciuc et al.
[4]. In [12], the Randić connectivity index is called the product connectivity index,
whereas the sum of edge weights studied in this paper is called the sum-connectivity
index. However, it is remarkable that until now, the sum-connectivity index eluded
the attention of both “pure” and applied graph theoreticians. The aim of the present
paper is to contribute towards filling this gap.
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In [12], Zhou and Trinajstić first introduced the sum-connectivity index. They
determined the upper and lower bounds of this index for trees in terms of other
graph invariants. They determined the unique tree with fixed numbers of vertices
and pendent vertices with the minimum value of the sum-connectivity index, and
trees with the minimum, second-minimum and third-minimum, and the maximum,
second-maximum and third-maximum values of this index. Additionally, they dis-
cussed the properties of the sum-connectivity index for a class of trees representing
acyclic hydrocarbons. In [7], Lučić, Trinajstić and Zhou report the relationship
between the two versions of the connectivity index for a set of lower benzenoid
hydrocarbons. They also study the relationship between connectivity indices and
π-electronic energy of benzenoids, which implies that the sum-connectivity index
even in this case outperforms the product-connectivity index. They finally draw
the conclusion that the sum-connectivity index is closely related to molecular de-
scriptors. In [6], we determined the sharp bounds on the sum-connectivity index of
trees and unicyclic graphs with a perfect matching in term of vertices, respectively.
Additionally, a sharp lower bound on this index of trees and unicyclic graphs with
a given size of matching was characterized, respectively. In [5], we determined the
n-vertex unicyclic graph of a given girth with the minimum value of this index. We
also characterized the unicyclic graphs with the minimum, the second-minimum,
the maximum and the second-maximum values of this index. The corresponding ex-
tremal graphs were characterized. Some more recent results on the sum-connectivity
index can be found in [2, 3, 11, 13].

In this paper, we study an extremal problem on the sum of edge weights of
unicyclic graphs: determine the sharp lower bound of the sum-connectivity index of
n-vertex unicyclic graphs with the given number of pendent vertices. The extremal
graphs with a minimal value of the sum-connectivity index in the set of a unicyclic
graph with k pendent vertices are completely characterized.

2. Notations and Lemmas

For a vertex x of the graph G, we denote the neighborhood and the degree of x by
NG(x) and dx (or dG(x)), respectively. The number ∆(G) := max{dv|v ∈ V (G)} is
the maximum degree of G. The Randić connectivity index [10] R = R(G) of G is
defined as

R = R(G) =
∑

uv∈E(G)

1√
dudv

.

The sum of edge weights R′ = R′(G) of G, which is called the sum-connectivity index
[12], is defined as

R′ = R′(G) =
∑

uv∈E(G)

1√
du + dv

.

We call R(G) and R′(G) the product-connectivity index and the sum-connectivity
index, respectively.
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Given a graph G, if W ⊆ V (G), by G−W we denote the subgraph of G obtained
by deleting the vertices of W and the edges incident with them; Specially, when
W = {v}, we write G− v instead of G−{v}. A pendent vertex is a vertex of degree
one. Let P = v0v1 . . . vs be a path of G with d(v1) = d(v2) = · · · = d(vs) = 2 (unless
s = 1). If d(v0) = 1 and d(vs) ≥ 3, then we call P a pendent path of G; If d(v0) ≥ 3
and d(vs) ≥ 3, then we call P an internal path of G

Unicyclic graphs are connected graphs with n vertices and n edges. Denote

Un,k = {G : G is a unicyclic graph with n vertices and k pendent vertices}.
By Pn, Cn and K1,n−1 we denote the path, the cycle and the star on n vertices,
respectively. Let Un

k denote the graph obtained by attaching k pendent vertices to
exactly one vertex of Cn−k; whereas U(n, k, p) denotes the graph obtained by con-
necting the center of the star graph K1,k and one vertex of Cn−k−p by an internal
path P = u0u1 . . . up. Graphs Un

k and U(n, k, p) are depicted in Figure 1.
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Figure 1: Graphs Un
k and U(n, k, p)

In this section, we give some lemmas which will be used in the next section. Let

φ(n, k) =
2√

k + 4
+

k√
k + 3

+
n− k − 3

2
.

Lemma 1 (See [9]). Let G ∈ Un,k, then ∆(G) ≤ k + 2.

Lemma 2. Let G ∈ Un,1. Then

R′(G) ≥ φ(n, 1). (1)

Furthermore, the equality in (1) holds if and only if G ∼= Un
1 .

Proof. First we note that if G ∼= Un
1 , then the equality in (1) holds obviously.

Since G ∈ Un,1, by Lemma 1, it is easy to see that G is isomorphic to the graph
obtained from a cycle Cp by attaching a path of length n−p to a vertex of Cp. Then
if G 6∼= Un

1 , we have

R′(G)−R′(Un
1 ) =

(
1√
3

+
3√
5

+
n− 4

2

)
−

(
2√
5

+
1
2

+
n− 4

2

)
=

1√
3

+
1√
5
− 1

2
> 0.

Thus, the lemma follows.

Lemma 3. Let f(x) :=
√

x − 3√
x

+ 2√
x+1

, g(x) :=
√

x + 2 − 3√
x+2

+ 2√
x+3

and
h(x) :=

√
x + 2 − 2√

x+2
+ 2√

x+3
, where x is a positive real number. Then f(x) −

f(x + 1), g(x)− g(x + 1) and h(x)− h(x + 1) are strictly monotone increasing in x.
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Proof. Note that for x ≥ 0, we have

∂2f(x)
∂x

= −1
4
· 1
x

3
2
− 9

4
· 1
x

5
2

+
3
2
· 1
(x + 1)

5
2

< −1
4
· 1
x

3
2
− 9

4
· 1
x

5
2

+
3
2
· 1
x

5
2

< 0.

Hence, f ′(x) is a strict monotone decreasing function for x > 0. In order to show
that f(x)− f(x+1) is a strict monotone increasing function in x, it suffices to show
that (f(x)−f(x+1))′ > 0. In fact, as f ′(x) is a strict monotone decreasing function
for x > 0, we have (f(x)− f(x + 1))′ = f ′(x)− f ′(x + 1) > 0, as desired.

On the other hand,

∂2g(x)
∂x

= − 1
4(x + 2)

3
2
− 9

4(x + 2)
5
2

+
3

2(x + 3)
5
2

< − 1
4(x + 2)

3
2
− 9

4(x + 2)
5
2

+
3

2(x + 2)
5
2

< 0.

Hence, g′(x) is a strict monotone decreasing function for x > 0. Hence, (g(x)−g(x+
1))′ = g′(x)− g′(x + 1) > 0, which implies that g(x)− g(x + 1) is a strict monotone
increasing function in x.

By a similar discussion as above, we can also show that h(x)−h(x+1) is strictly
monotone increasing in x. We omit the procedure here.

This completes the proof.

It is straightforward to check that the following lemma is true.

Lemma 4. Let t(x) = x√
x+2

− x−1√
x+1

and p(x) = 1√
x+3

− 1√
x+2

, where x ≥ 0. Then
both t(x) and p(x) are monotone increasing.

Lemma 5. For x > 0, the function q(x) = x−2√
x+1

+ 1√
x+2

− x−2√
x

is monotone
decreasing in x.

Proof. Let l(x) =
√

x− 2√
x

+ 1√
x+1

. Note that

q(x) =
x− 2√
x + 1

+
1√

x + 2
− x− 2√

x

=
√

x+1−√x− 3√
x + 1

+
2√
x

+
1√

x + 2
= l(x + 1)− l(x).

As

l′′(x) = − 1
4x

3
2
− 3

2x
5
2

+
3

4(x + 1)
5
2

< − 1
4x

3
2
− 3

2x
5
2

+
3

4(x)
5
2

< 0,

we obtain l(x+1)−l(x) is monotone decreasing, i.e., q(x) is monotone decreasing.
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3. Minimum R′(G)-value of graphs in Un,k

In this section, mathematical properties of the sum R′(G) of edge weights of uni-
cyclic graphs are studied. We determine the unique n-vertex unicyclic graph with k
pendent vertices having the minimum R′-value. The product-connectivity index for
unicyclic graphs with k pendent vertices has been studied in [9].

Theorem 1. Let G ∈ Un,k. Then

R′(G) ≥ φ(n, k) (2)

and the equality in (2) holds if and only if G ∼= Un
k .

Proof. Note that if G ∼= Un
k , then by an elementary calculation the equality in (2)

holds. Now we proceed by induction on k to show that if G ∈ Un,k, then (2) holds
and the equality in (2) holds only if G ∼= Un

k .
For k = 0, Un,0 = {Cn}, whence the theorem holds obviously. By Lemma 1,

Theorem 1 holds for k = 1. So in what follows, we assume that k ≥ 2.
Let V0 = {u : u is a pendent vertex of G}, V1 =

⋃
u∈V0

N(u) and
V2 = V (G)\(V0 ∪ V1).

Case 1. There exists some v ∈ V1 such that |N(v)\V0| ≥ 2.

In this case, let dv = t. Then t = |N(v)| ≥ 3 and by Lemma 1, t ≤ k + 2.
Denote N(v)∩V0 = {v1, v2, . . . , vr} and N(v)\V0 = {x1, x2, . . . , xt−r}. Then t− r =
|N(v)\V0| ≥ 2 and all d(xi) = di ≥ 2. Let G′ = G− v1. Then G′ ∈ Un−1,k−1. Thus,
by the definition of the sum-connectivity index, we have

R′(G) = R′(G′) +
r√

t + 1
− r − 1√

t
−

t−r∑

i=1

(
1√

t + di − 1
− 1√

t + di

)

≥ R′(G′) +
r√

t + 1
− r − 1√

t
− (t− r)

(
1√

t + 1
− 1√

t + 2

)
(3)

= R′(G′) +
√

t + 1−
√

t +
1√
t
− 1√

t + 1
+ (t− r)

(
1√
t
− 2√

t + 1
+

1√
t + 2

)

≥ φ(n− 1, k − 1) +
√

t + 1−
√

t +
1√
t
− 1√

t + 1
(4)

+2
(

1√
t
− 2√

t + 1
+

1√
t + 2

)

= φ(n, k)−
(

2√
k + 4

+
k√

k + 3
+

n− k − 2
2

)

+
(

2√
k + 3

+
k − 1√
k + 2

+
n− k − 2

2

)

+
t√

t + 1
− t− 1√

t
+ 2

(
1√
t
− 2√

t + 1
+

1√
t + 2

)

= φ(n, k)+
(

k − 1√
k + 2

− k − 2√
k + 3

− 2√
k + 4

)
−

(
t− 3√

t
− t− 4√

t + 1
− 2√

t + 2

)
. (5)
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Equality in (4) holds if and only if di = 2, i = 1, 2, . . . , t− r, whereas equality in (5)
holds if and only if R′(G′) = φ(n− 1, k − 1) and t− r = 2.

Let f(x) =
√

x− 3√
x

+ 2√
x+1

. Then, by (5), we have

R′(G) ≥ φ(n, k) + (f(k + 2)− f(k + 3))− (f(t)− f(t + 1))
≥ φ(n, k). (6)

The last inequality follows from Lemma 3 as t ≤ k + 2. The equality in (6) holds if
and only if t = k + 2.

Hence, R′(G) = φ(n, k) holds if and only if equalities in (3), (4) and (6) hold,
i.e.,

R′(G′) = φ(n− 1, k − 1), t = k + 2, t− r = 2 and d1 = d2 = 2.

By the induction hypothesis, G′ ∼= Un−1
k−1 . Notice that Un−1

k−1 has a unique vertex of
a degree greater than 2. Hence, G ∼= Un

k .

Case 2. For every u ∈ V1, |N(u)\V0| = 1.

Choose a vertex u ∈ V1. Let du = t. Note that G ∈ Un,k, hence we get that t ≤ k+1.
We consider the following two possible subcases.

Subcase 2.1. t = k + 1.

In this subcase, it is not difficult to see that G ∼= U(n, k, p) for some 1 ≤ p ≤
n − k − 3. Let f(n, k) := R′(U(n, k, p)) − R′(Un

k ). Then by the definition of the
sum-connectivity index, we have

f(n, k) =
k√

k + 2
+

1√
k + 3

+
3√
5

+
n− k − 4

2
− φ(n, k)

=
√

k + 2−
√

k + 3 +
4√

k + 3
− 2√

k + 2
− 3√

k + 4
+

3√
5
− 1

2

=
(√

k + 2− 2√
k + 2

+
2√

k + 3

)

−
(√

k + 3− 2√
k + 3

+
2√

k + 4

)
+

3√
5
− 1

2
. (7)

Let h(x) =
√

x + 2− 2√
x+2

+ 2√
x+3

, then in view of equation (7), we have

f(n, k) = h(k)− h(k + 1) +
3√
5
− 1

2

> (
√

3− 2√
3

+ 1)− (
√

4− 1 +
2√
5
) + 0.8416 = 0.5246 > 0.

The last second inequality follows by Lemma 3.

Subcase 2.2. t 6= k + 1.
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In this subcase, |V1| ≥ 2. Then there exists some v ∈ V1 such that |N(v) ∩ V0| ≤ k
2 .

Without loss of generality, assume that |N(u) ∩ V0| ≤ k
2 . Then t = |N(u)| ≤ k

2 + 1.
Denote N(u) ∩ V0 = {v1, v2, . . . , vt−1}, N(u)\V0 = {x1} and d(x1) = d1 ≥ 2.
If t = 2, then let P = u0u1 · · ·us be a pendent path with u0 = v1, u1 = u, u2 =

x1, s ≥ 2 and d(us) ≥ 3. Let G′ = G− {u0, u1, . . . , us−1} and d(us) = d, then G′ ∈
Un−s,k−1 and d ≤ k + 1 by Lemma 1. Denote N(us)\{us−1} = {y1, y2, . . . , yd−1}.
Then d(yi) ≥ 2 for each i = 1, 2 . . . , d − 1 (otherwise, there exists some yi such
that d(yi) = 1. If N(us) ∩ V0 = {y1, y2, . . . , yd−1}, then G is isomorphic to a graph
obtained from a star Sk and the path P = u0u1 · · ·us by identifying us with the
central vertex of Sk, a contradiction to G ∈ Un,k. Then, |N(u) ∩ V0| ≤ d− 2, hence
|N(u)\V0| ≥ 2, once again a contradiction to our assumption in Case 2). Thus,

R′(G) = R′(G′) +
1√
3

+
s− 2

2
+

1√
d + 2

−
d−1∑

i=1

(
1√

d + d(yi)− 1
− 1√

d + d(yi)

)

≥ φ(n− s, k − 1) +
1√
3

+
s− 2

2
+

1√
d + 2

−
d−1∑

i=1

(
1√

d + d(yi)− 1
− 1√

d + d(yi)

)

= φ(n, k) +
1√

d + 2
− (d− 1)

(
1√

d + 1
− 1√

d + 2

)

+
k − 1√
k + 2

− k − 2√
k + 3

− 2√
k + 4

+
1√
3
− 1

2

= φ(n, k) +
d√

d + 2
− d− 1√

d + 1
+

k − 1√
k + 2

− k − 2√
k + 3

− 2√
k + 4

+
1√
3
− 1

2

≥ φ(n, k)+
k + 1√
k + 3

− k√
k + 2

+
k − 1√
k + 2

− k − 2√
k + 3

− 2√
k + 4

+
1√
3
− 1

2
(8)

≥ φ(n, k) +
3√

k + 3
− 1√

k + 2
− 2√

k + 4
+

1√
3
− 1

2

≥ φ(n, k) +
1√

k + 3
− 1√

k + 2
+

1√
3
− 1

2
(9)

≥ φ(n, k) +
1√
5
− 1

2
+

1√
3
− 1

2
≥ φ(n, k) + 0.0246 > φ(n, k).

Inequalities in (8) and (9) follow from Lemma 4.
Otherwise, t ≥ 3. Let G′′ = G− v1. Then G′′ ∈ Un−1,k−1. Thus,

R′(G) = R′(G′′) +
t− 1√
t + 1

− t− 2√
t

+
1√

d1 + t
− 1√

d1 + t− 1

≥ φ(n− 1, k − 1) +
t− 1√
t + 1

− t− 2√
t

+
1√

t + 2
− 1√

t + 1

≥ φ(n, k) +
k − 1√
k + 2

− k − 2√
k + 3

− 2√
k + 4

+
t− 2√
t + 1

+
1√

t + 2
− t− 2√

t
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≥ φ(n, k) +
k − 1√
k + 2

− k − 2√
k + 3

− 2√
k + 4

+
k
2 − 1√

k
2 + 2

+
1√

k
2 + 3

−
k
2 − 1√

k
2 + 1

(10)

= φ(n, k) +
k − 1√
k + 2

− k − 2√
k + 3

− 2√
k + 4

+
k − 2√
2k + 8

+
√

2√
k + 6

+
k − 2√
2k + 4

> φ(n, k) +
k − 1√
k + 3

− k − 2√
k + 3

− 2√
k + 4

+
k − 2√
2k + 8

+
√

2√
k + 6

+
k − 2√
2k + 4

= φ(n, k) +
1√

k + 3
− 2√

k + 4
+

k − 2√
2k + 8

+
√

2√
k + 6

+
k − 2√
2k + 4

> φ(n, k) +
1√

k + 4
− 2√

k + 4
+

k − 2√
2k + 8

+
√

2√
k + 6

+
k − 2√
2k + 4

= φ(n, k) +
k − 2−√2√

2
√

k + 4
+

√
2√

k + 6
+

k − 2√
2k + 4

> φ(n, k) +
k − 2−√2√

2
√

k + 6
+

2√
2
√

k + 6
+

k − 2√
2k + 4

= φ(n, k) +
k −√2√
2
√

k + 6
+

k − 2√
2k + 4

> φ(n, k),

where the inequality in (10) follows from Lemma 5 and the last inequality follows
for k ≥ 2.

By Cases 1 and 2, we complete the proof of Theorem 1.

4. Final remark

Note that the set of all n-vertex unicyclic graphs is
⋃n−3

k=0 Un,k. So by Theorem 1 we
can determine sharp upper and lower bounds on R′(G)-values for G ∈ ⋃n−3

k=0 Un,k.
In fact, let

φ(n, x) =
2√

x + 4
+

x√
x + 3

+
n− x− 3

2
,

where x ≥ 0. Then,

∂φ(n, x)
∂x

= − 1
(x + 4)

3
2

+
1

(x + 3)
1
2
− x

(x + 3)
3
2
− 1

2
≤ − 1

(x + 4)
3
2
− x

(x + 3)
3
2

< 0,

where the last second inequality holds for x ≥ 1. That is to say, φ(n, x) is a strict
decreasing function for x ≥ 1. Hence, we have

φ(n, n− 3) < φ(n, n− 4) < · · · < φ(n, 3) < φ(n, 2) < φ(n, 1),

i.e.,

R′(Un
n−3) < R′(Un

n−4) < · · · < R′(Un
3 ) < R′(Un

2 ) < R′(Un
1 ).
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On the other hand,

R′(Un
1 ) =

n− 2
2

+
2√
5
, R′(Un

0 ) =
n

2
,

which gives

R′(Un
0 )−R′(Un

1 ) = 1− 2√
5

> 0.

Hence, together with (11), we get

R′(Un
n−3) < R′(Un

n−4) < · · · < R′(Un
3 ) < R′(Un

2 ) < R′(Un
1 ) < R′(Un

0 ).

Hence, in view of Theorem 1, we obtain the following result, in which the upper
bound is proven in [5].

Theorem 2. Let G ∈ ⋃n−3
k=0 Un,k, then

(i) ([5]) R′(G) ≤ φ(n, 0), the equality holds if and only if G ∼= Cn.

(ii) R′(G) ≥ φ(n, n− 3), the equality holds if and only if G ∼= Un
n−3.

Finally, the maximum value of R′(G) among unicyclic graphs with a given num-
ber of pendent vertices is left for future research.
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[10] M.Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97(1975),
6609–6615.
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