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Abstract. In the present paper, which is a natural continuation of the work done in [13],
we determine the α-, β- and γ-duals of the sequence spaces `λ

p and `λ
∞ of non-absolute type,

where 1 ≤ p < ∞. Further, we characterize some related matrix classes and deduce the
characterizations of some other classes by means of a given basic lemma.
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1. Introduction

By w, we shall denote the space of all real or complex valued sequences, and any
vector subspace of w is called a sequence space. For simplicity in notation, if x ∈ w,
then we may write x = (xk) instead of x = (xk)∞k=0.

A sequence space is called an FK-space if it is a complete metrizable locally
convex space (F -space) with the property that convergence implies coordinatewise
convergence (K-space). A normable FK-space is called a BK-space (see [8, p.338]
and [18, p.55]).

We shall write `∞, c and c0 for the sequence spaces of all bounded, convergent and
null sequences, respectively; which are BK-spaces with the same sup-norm defined
by

‖x‖`∞ = sup
k
|xk|.

Here, and in the sequel, the supremum supk is taken over all k ∈ N, where
N = {0, 1, 2, . . .}. Also, by `p (1 ≤ p < ∞), we denote the space of all sequences
associated with p-absolutely convergent series; which is a BK-space with the usual
`p-norm given by

‖x‖`p
=

(∑

k

|xk|p
)1/p

for 1 ≤ p < ∞,

where, here and in what follows, the summation without limits runs from 0 to
∞. Further, we shall write bs and cs for the spaces of all sequences associated with
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bounded and convergent series, respectively; which are BK-spaces with their natural
norm [8, Example 7.3.2].

Let X and Y be sequence spaces and A = (ank) be an infinite matrix of real or
complex numbers ank, where n, k ∈ N. Then, we say that A defines a matrix mapping
from X into Y if for every sequence x = (xk) ∈ X, the sequence Ax = (An(x))∞n=0,
the A-transform of x, exists and is in Y ; where

An(x) =
∑

k

ankxk (1)

for all n ∈ N. By (X : Y ) we denote the class of all infinite matrices that map X
into Y . Thus A ∈ (X : Y ) if and only if the series on the right-hand side of (1)
converges for each n ∈ N and every x ∈ X, and Ax ∈ Y for all x ∈ X.

The theory of FK-spaces is the most powerful tool in the characterizations of
matrix mappings between sequence spaces, and the most important result was that
matrix mappings between FK-spaces are continuous [18, Theorem 4.2.8]. We refer
the reader to [16] for the characterizations of matrix mappings between the classical
sequence spaces.

For an arbitrary sequence space X, the matrix domain of an infinite matrix A
in X is defined by

XA =
{
x ∈ w : Ax ∈ X

}
, (2)

which is a sequence space.
An infinite matrix A = (ank) is called a triangle if ank = 0 for k > n and ann 6= 0

for all n ∈ N. The study of matrix domains of triangles has a special importance due
to the various properties which they have. For example, if A is a triangle and X is
a BK-space, then XA is also a BK-space with the norm given by ‖x‖XA

= ‖Ax‖X

for all x ∈ XA (see [8, Theorem 8.1.4]).
The approach constructing a new sequence space by means of the matrix domain

of a particular triangle has recently been employed by several authors in many
research papers. For instance, they introduced the sequence spaces (`p)Er = er

p

and (`∞)Er = er
∞ in [3], (`p)Ar = ar

p and (`∞)Ar = ar
∞ in [6], (`p)∆ = bvp and

(`∞)∆ = bv∞ in [7], (c0)Rt = rt
0, cRt = rt

c and (`∞)Rt = rt
∞ in [11], (`p)C1 = Xp

and (`∞)C1 = X∞ in [14], and (`∞)Nq and cNq in [17]; where Er, Rt, C1 and
Nq denote the matrices of Euler, Riesz, Cesàro and Nörlund means, respectively,
the matrix Ar is defined in [6], ∆ denotes the band matrix defining the difference
operator and 1 ≤ p < ∞. In [13], following [3, 6, 7, 11, 14] and [17], the sequence
spaces `λ

p and `λ
∞ of non-absolute type have been introduced, some related results

and inclusion relations have been given and the Schauder basis for the space `λ
p has

been constructed, where 1 ≤ p < ∞. In the present paper, we determine the α-, β-
and γ-duals of the spaces `λ

p and `λ
∞. Further, we characterize some related matrix

classes and derive the characterizations of some other classes by means of a given
basic lemma.

2. The sequence spaces `λ
p and `λ

∞

Throughout this paper, let λ = (λk)∞k=0 be a strictly increasing sequence of positive
reals tending to infinity, that is 0 < λ0 < λ1 < · · · and λk → ∞ as k → ∞. Then,



On some new sequence spaces of non-absolute type 385

by using the convention that any term with a negative subscript is equal to zero, we
define the infinite matrix Λ = (λnk), for all n, k ∈ N, by

λnk =





λk − λk−1

λn
if 0 ≤ k ≤ n,

0 if k > n.

Recently, the sequence spaces `λ
p and `λ

∞ of non-absolute type have been intro-
duced in [13] as the spaces of all sequences whose Λ-transforms are in the spaces `p

and `∞, respectively; where 1 ≤ p < ∞, that is

`λ
p =

{
x = (xk) ∈ w :

∑
n

∣∣∣∣∣
1
λn

n∑

k=0

(λk − λk−1)xk

∣∣∣∣∣

p

< ∞
}

and

`λ
∞ =

{
x = (xk) ∈ w : sup

n

∣∣∣∣∣
1
λn

n∑

k=0

(λk − λk−1)xk

∣∣∣∣∣ < ∞
}

.

With the notation of (2), we can redefine the space `λ
p (1 ≤ p ≤ ∞) as the matrix

domain of the triangle Λ in the space `p, that is `λ
p = (`p)Λ for 1 ≤ p ≤ ∞. Then,

it is obvious that `λ
p (1 ≤ p ≤ ∞) is a BK-space with the norm ‖x‖`λ

p
= ‖Λ(x)‖`p ,

where Λ(x) denotes the Λ-transform of x ∈ `λ
p .

Also, it has been shown that the linear operator defined from `λ
p to `p by x 7→ Λ(x)

is bijective and norm preserving, which yields the fact that the spaces `λ
p and `p are

norm isomorphic for 1 ≤ p ≤ ∞.
Further, we may note that the spaces `λ

p and `λ
∞ are reduced, in the special case

λk = k + 1, to the Cesàro sequence spaces Xp and X∞, which are defined in [14]
as the spaces of all sequences whose C1-transforms are in the spaces `p and `∞,
respectively; where 1 ≤ p < ∞.

Moreover, let us recall that the sequence spaces ces[p, q] and ces[∞, q] are defined
in [10] (see also [9, Example 7.4]) as follows:

ces[p, q] =

{
x = (xk) ∈ w :

∑
n

(
1

Qn

n∑

k=0

qk|xk|
)p

< ∞
}

and

ces[∞, q] =

{
x = (xk) ∈ w : sup

n

(
1

Qn

n∑

k=0

qk|xk|
)

< ∞
}

,

where 0 < p < ∞ and q = (qk)∞k=0 is a sequence of positive reals with Qn =
∑n

k=0 qk

for all n ∈ N. Then, by taking qk = λk − λk−1 for all k ∈ N, it can easily be seen
that the inclusions ces[p, q] ⊂ `λ

p and ces[∞, q] ⊂ `λ
∞ strictly hold, where 1 ≤ p < ∞.

Furthermore, the sequence spaces c(a, p, q) and c(a, p,∞) have been introduced
in [9] as follows:

c(a, p, q) =



x = (xk) ∈ w :

∑
n


an

(
n∑

k=0

|xk|p
)1/p




q

< ∞



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and

c(a, p,∞) =



x = (xk) ∈ w : sup

n


an

(
n∑

k=0

|xk|p
)1/p


 < ∞



 ,

where a = (an)∞n=0 is a sequence of non-negative reals and 0 < p, q < ∞.
On the other hand, let 1 < p < ∞ and n ∈ N. Then, it follows by applying the

Hölder’s inequality that
∣∣∣∣∣

1
λn

n∑

k=0

(λk − λk−1)xk

∣∣∣∣∣ ≤
n∑

k=0

(λk − λk−1

λn

)
|xk|

≤
[

n∑

k=0

(λk − λk−1

λn

)
|xk|p

]1/p [
n∑

k=0

(λk − λk−1

λn

)](p−1)/p

=

[
1
λn

n∑

k=0

(λk − λk−1)|xk|p
]1/p

which is also true for p = 1. Therefore, by taking‡ an = [ max0≤k≤n(λk−λk−1)/λn]1/p

for all n ∈ N, we obtain that
∣∣∣∣∣

1
λn

n∑

k=0

(λk − λk−1)xk

∣∣∣∣∣ ≤ an

(
n∑

k=0

|xk|p
)1/p

for 1 ≤ p < ∞

which implies both inclusions c(a, p, q) ⊂ `λ
q and c(a, p,∞) ⊂ `λ

∞, where 1 ≤ p, q <
∞.

Finally, for any sequence x = (xk) ∈ w, we define the associated sequence y =
(yk), which will frequently be used, as the Λ-transform of x, that is

yk =
k∑

j=0

(λj − λj−1

λk

)
xj (3)

and hence

xk =
k∑

j=k−1

(−1)k−j λj

λk − λk−1
yj (4)

for all k ∈ N.

Remark 1. We shall assume, throughout the remaining part of this paper, that the
sequences x and y are connected by relation (3), that is y = Λ(x) and hence x ∈ `λ

p if
and only if y ∈ `p, where 1 ≤ p ≤ ∞. Also, we shall assume that q is the conjugate
number of p for 1 ≤ p ≤ ∞, that is q = ∞ for p = 1, q = p/(p− 1) for 1 < p < ∞,
and q = 1 for p = ∞. Further, we shall write F for the collection of all nonempty
and finite subsets of N.

‡In the special case ∆λ = (λk − λk−1)∞k=0 ∈ `∞, we may replace the term max0≤k≤n(λk − λk−1)
by supk(λk − λk−1).
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3. α-, β- and γ-duals of the spaces `λ
p and `λ

∞

For arbitrary sequence spaces X and Y , the set M(X,Y ) defined by

M(X, Y ) =
{

a = (ak) ∈ w : ax = (akxk) ∈ Y for all x = (xk) ∈ X
}

(5)

is called the multiplier space of X and Y .
One can easily observe for a sequence space Z with Y ⊂ Z ⊂ X that the

inclusions M(X, Y ) ⊂ M(X,Z) and M(X,Y ) ⊂ M(Z, Y ) hold, respectively.
With the notation of (5), α-, β- and γ-duals of a sequence space X, which are

respectively denoted by Xα, Xβ and Xγ , are defined by

Xα = M(X, `1), Xβ = M(X, cs) and Xγ = M(X, bs).

It is obvious that Xα ⊂ Xβ ⊂ Xγ . Also, it can easily be seen that the inclusions
Xα ⊂ Y α, Xβ ⊂ Y β and Xγ ⊂ Y γ hold whenever Y ⊂ X. We refer the reader to
[8, pp.341–369] and [18, pp.105–111] for further study concerning α-, β- and γ-duals
of some sequence spaces.

Now, we may begin with quoting the following lemmas (see [16, pp.2–9]) which
are needed for proving Theorems 1–3, below.

Lemma 1. A ∈ (`p : `1) if and only if

(i) For 1 < p ≤ ∞,

sup
F∈F

∑

k

∣∣∣
∑

n∈F

ank

∣∣∣
q

< ∞. (6)

(ii) For p = 1,
sup

k

∑
n

|ank| < ∞. (7)

Lemma 2. A ∈ (`p : c) if and only if

(i) For 1 < p < ∞,

lim
n

ank exists for every k ∈ N, (8)

sup
n

∑

k

|ank|q < ∞. (9)

(ii) For p = 1, (8) holds and

sup
n, k

|ank| < ∞. (10)

(iii) For p = ∞, (8) holds and

sup
n

∑

k

|ank| < ∞, (11)

lim
n

∑

k

∣∣ank − lim
n

ank

∣∣ = 0. (12)
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Lemma 3. A ∈ (`p : `∞) if and only if

(i) For 1 < p ≤ ∞, (9) holds.

(ii) For p = 1, (10) holds.

Now, we prove the following results determining the α-, β- and γ-duals of the
spaces `λ

p for 1 ≤ p ≤ ∞. In proving Theorems 1 and 2, we apply the technique
used in [7] and [1] for the spaces of single and double sequences, respectively. This
technique has also been used in [2]–[6].

Theorem 1. Define the sets dλ
q and dλ

∞ as follows:

dλ
q =

{
a = (ak) ∈ w :

∑

k

∣∣∣ λk

λk − λk−1
ak

∣∣∣
q

< ∞
}

and
dλ
∞ =

{
a = (ak) ∈ w : sup

k

∣∣∣ λk

λk − λk−1
ak

∣∣∣ < ∞
}

.

Then (`λ
1 )α = dλ

∞ and (`λ
p)α = dλ

q , where 1 < p ≤ ∞.

Proof. Let a = (ak) ∈ w and 1 < p ≤ ∞. Then, by using (3) and (4), we
immediately derive for every n ∈ N that

anxn =
n∑

k=n−1

(−1)n−k λk

λn − λn−1
anyk = Bn(y), (13)

where the matrix B = (bλ
nk) is defined for all n, k ∈ N by

bλ
nk =





(−1)n−k λk

λn − λn−1
an if n− 1 ≤ k ≤ n,

0 if k < n− 1 or k > n.

Thus, we observe by (13) that ax = (anxn) ∈ `1 whenever x = (xk) ∈ `λ
p if and

only if By ∈ `1 whenever y = (yk) ∈ `p. This means that a = (ak) ∈ (`λ
p)α if and

only if B ∈ (`p : `1). We therefore obtain by Lemma 1 with B instead of A that
a ∈ (`λ

p)α if and only if

sup
F∈F

∑

k

∣∣∣
∑

n∈F

bλ
nk

∣∣∣
q

< ∞. (14)

On the other hand, we have for any F ∈ F that

∑

n∈F

bλ
nk =





0 if k 6∈ F and k + 1 6∈ F,

λk

λk − λk−1
ak if k ∈ F and k + 1 6∈ F,

λk

λk+1 − λk
ak+1 if k 6∈ F and k + 1 ∈ F,

( ak

λk − λk−1
− ak+1

λk+1 − λk

)
λk if k ∈ F and k + 1 ∈ F.
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Hence, we deduce that (14) holds if and only if

∑

k

∣∣∣ λk

λk − λk−1
ak

∣∣∣
q

< ∞

which leads us to the consequence that (`λ
p)α = dλ

q , where 1 < p ≤ ∞.
Similarly, we obtain from (13) that a = (ak) ∈ (`λ

1 )α if and only if B ∈ (`1 : `1)
which can equivalently be written as

sup
k

∑
n

∣∣bλ
nk

∣∣ < ∞ (15)

by (7) of Lemma 1. Further, we have for every k ∈ N that

∑
n

∣∣bλ
nk

∣∣ =
k+1∑

n=k

∣∣∣ λk

λn − λn−1
an

∣∣∣.

Thus, we conclude that (15) holds if and only if

sup
k

∣∣∣ λk

λk − λk−1
ak

∣∣∣ < ∞

which shows that (`λ
1 )α = dλ

∞ and this completes the proof.

Remark 2. We may note that if lim inf λk+1/λk > 1, then there is a constant b > 1
such that 1 ≤ λk/(λk − λk−1) ≤ b for all k ∈ N. This yields that dλ

q = `q and
dλ
∞ = `∞, i.e., (`λ

p)α = `q for 1 ≤ p ≤ ∞ which is compatible with the fact that
`λ
p = `p in this particular case (see [13, Corollary 4.19]).

Theorem 2. Define the sets eλ
q and eλ

0 by

eλ
q =

{
a = (ak) ∈ w :

∑

k

∣∣∣∆̄
( ak

λk − λk−1

)
λk

∣∣∣
q

< ∞
}

and
eλ
0 =

{
a = (ak) ∈ w : lim

k

λk

λk − λk−1
ak = 0

}
,

where
∆̄

( ak

λk − λk−1

)
=

ak

λk − λk−1
− ak+1

λk+1 − λk
for all k ∈ N.

Then (`λ
1 )β = dλ

∞, (`λ
p)β = dλ

∞ ∩ eλ
q and (`λ

∞)β = eλ
0 ∩ eλ

1 , where 1 < p < ∞.

Proof. Let us consider the equation

n∑

k=0

akxk =
n∑

k=0

[ k∑

j=k−1

(−1)k−j λj

λk − λk−1
yj

]
ak

=
n−1∑

k=0

∆̄
( ak

λk − λk−1

)
λkyk +

λn

λn − λn−1
anyn = Tn(y), (16)
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where n ∈ N and T = (tλnk) is the matrix defined for n, k ∈ N by

tλnk =





∆̄
( ak

λk − λk−1

)
λk if k < n,

λn

λn − λn−1
an if k = n,

0 if k > n.

Then, it is clear that the columns of the matrix T are in the space c, since

lim
n

tλnk = ∆̄
( ak

λk − λk−1

)
λk (17)

for all k ∈ N. Thus, we deduce from (16) with Lemma 2 that ax = (akxk) ∈ cs
whenever x = (xk) ∈ `λ

p if and only if Ty ∈ c whenever y = (yk) ∈ `p. This yields
that a = (ak) ∈ (`λ

p)β if and only if T ∈ (`p : c), where 1 ≤ p ≤ ∞.
Let us firstly begin with the case 1 < p < ∞. Then, we derive from (9) that

∑

k

∣∣∣∆̄
( ak

λk − λk−1

)
λk

∣∣∣
q

< ∞

and
sup

n

∣∣∣ λn

λn − λn−1
an

∣∣∣ < ∞. (18)

This leads us to the consequence that (`λ
p)β = dλ

∞ ∩ eλ
q .

Similarly, for p = 1, we deduce from (10) that (18) holds and

sup
k

∣∣∣∆̄
( ak

λk − λk−1

)
λk

∣∣∣ < ∞. (19)

But it is obvious that condition (19) is redundant, since it is obtained from (18).
Hence, we conclude that (`λ

1 )β = dλ
∞.

Finally, if p = ∞, then we deduce from (11) that (18) holds and
∑

k

∣∣∣∆̄
( ak

λk − λk−1

)
λk

∣∣∣ < ∞. (20)

On the other hand, for every n ∈ N, we have by (17) that

∑

k

∣∣tλnk − lim
n

tλnk

∣∣ =
∞∑

k=n

∣∣∣tλnk − ∆̄
( ak

λk − λk−1

)
λk

∣∣∣

=
∣∣∣ λn

λn−λn−1
an−∆̄

( an

λn−λn−1

)
λn

∣∣∣+
∞∑

k=n+1

∣∣∣∆̄
( ak

λk − λk−1

)
λk

∣∣∣.

This yields, by passing to the limits as n →∞ and using (20), that

lim
n

∑

k

∣∣tλnk − lim
n

tλnk

∣∣ = lim
n

∣∣∣ λn

λn − λn−1
an

∣∣∣.
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Therefore, we obtain by (12) that

lim
n

λn

λn − λn−1
an = 0.

Thus, the weaker condition (18) is redundant. Consequently, we deduce that (`λ
∞)β =

eλ
0 ∩ eλ

1 . This concludes the proof.

Finally, we end this section with the following theorem which determines the
γ-dual of the space `λ

p , where 1 ≤ p ≤ ∞.

Theorem 3. Let 1 < p ≤ ∞. Then (`λ
1 )γ = dλ

∞ and (`λ
p)γ = dλ

∞ ∩ eλ
q .

Proof. This can be proved similarly to the proof of Theorem 2 with Lemma 3
instead of Lemma 2.

4. Certain matrix mappings on the spaces `λ
p and `λ

∞

In the present section, we essentially characterize the matrix classes (`λ
p : `∞),

(`λ
p : c), (`λ

p : c0), (`λ
p : `1), (`λ

1 : `p) and (`λ
∞ : `p), where 1 ≤ p ≤ ∞. Fur-

ther, we deduce the characterizations of some other classes by means of a given
basic lemma.

For any infinite matrix A = (ank), we shall write for brevity that

ãnk = ∆̄
( ank

λk − λk−1

)
λk =

( ank

λk − λk−1
− an,k+1

λk+1 − λk

)
λk (n, k ∈ N).

The following lemmas (see [16, pp.4–9]) will be needed in the proofs of our main
results on matrix transformations.

Lemma 4. A ∈ (`p : c0) if and only if

(i) For p = 1,

limn ank = 0 for all k ∈ N, (21)
supn, k |ank| < ∞.

(ii) For 1 < p < ∞, (21) holds and

sup
n

∑

k

|ank|q < ∞.

(iii) For p = ∞,

lim
n

∑

k

|ank| = 0.
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Lemma 5. Let 1 ≤ p < ∞. Then A ∈ (`1 : `p) if and only if

sup
k

∑
n

|ank|p < ∞.

Lemma 6. Let 1 < p < ∞. Then A ∈ (`∞ : `p) if and only if

sup
K∈F

∑
n

∣∣∣
∑

k∈K

ank

∣∣∣
p

< ∞.

Now, we prove the following results characterizing the matrix mappings on the
spaces `λ

p for 1 ≤ p ≤ ∞. Because the cases p = 1 and p = ∞ can be proved by
analogy, we shall omit the proof of these cases and only consider the case 1 < p < ∞
in the proofs of Theorems 4–7 below. Also, these results will be proved by applying
the same technique used in [6, 7, 12].

Theorem 4.

(i) A ∈ (`λ
1 : `∞) if and only if

( λk

λk − λk−1
ank

)∞
k=0

∈ `∞ for every n ∈ N, (22)

sup
n, k

|ãnk| < ∞. (23)

(ii) Let 1 < p < ∞. Then A ∈ (`λ
p : `∞) if and only if (22) holds and

sup
n

∑

k

|ãnk|q < ∞. (24)

(iii) A ∈ (`λ
∞ : `∞) if and only if

lim
k

λk

λk − λk−1
ank = 0 for all n ∈ N, (25)

sup
n

∑

k

|ãnk| < ∞. (26)

Proof. Suppose that conditions (22) and (24) hold and take any x = (xk) ∈ `λ
p ,

where 1 < p < ∞. Then, we have by Theorem 2 that (ank)∞k=0 ∈ (`λ
p)β for all n ∈ N

and this implies the existence of the A-transform of x, i.e., Ax exists. Further, it is
clear that the associated sequence y = (yk) is in the space `p and hence y ∈ c0.

Let us now consider the following equality derived by using relations (3) and (4)
from the mth partial sum of the series

∑
k ankxk:

m∑

k=0

ankxk =
m−1∑

k=0

ãnkyk +
λm

λm − λm−1
anmym (n,m ∈ N), (27)
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where the summation running from 0 to m− 1 is equal to zero when m = 0. Then,
by using (22) and (24), from (27) as m →∞ we obtain that

∑

k

ankxk =
∑

k

ãnkyk for all n ∈ N. (28)

Further, since the matrix Ã = (ãnk) is in the class (`p : `∞) by (24) and Lemma
3; we have Ãy ∈ `∞. Therefore, we deduce from (1) and (28) that Ax ∈ `∞ and
hence A ∈ (`λ

p : `∞).
Conversely, suppose that A ∈ (`λ

p : `∞), where 1 < p < ∞. Then (ank)∞k=0 ∈
(`λ

p)β for all n ∈ N and this, with Theorem 2, implies both (22) and
∑

k

|ãnk|q < ∞ for each n ∈ N

which together imply that relation (28) holds for all sequences x ∈ `λ
p and y ∈ `p

which are connected by relation (3).
Let us now consider the continuous linear functionals fn (n ∈ N) defined on `λ

p

by the sequences An = (ank)∞k=0 as follows:

fn(x) =
∑

k

ankxk.

Then, since `λ
p and `p are norm isomorphic; it should follow with (28) that

‖fn‖ = ‖Ãn‖`q =
( ∑

k

|ãnk|q
)1/q

for all n ∈ N, where Ãn = (ãnk)∞k=0 ∈ `q for every n ∈ N as we have shown above.
This just shows that the functionals defined by the rows of A on `λ

p are pointwise
bounded. Thus, we deduce by the Banach-Steinhaus Theorem that these functionals
are uniformly bounded. Hence, there exists a constant M > 0 such that ‖fn‖ ≤ M
for all n ∈ N which yields the necessity of (24). This completes the proof of part
(ii).

Similarly, parts (i) and (iii) can be proved by means of Theorem 2 and Lemma
3, and so we leave the details to the reader.

Theorem 5.

(i) A ∈ (`λ
1 : c) if and only if (22) and (23) hold and

lim
n

ãnk = αk for every k ∈ N. (29)

(ii) Let 1 < p < ∞. Then A ∈ (`λ
p : c) if and only if (22), (24) and (29) hold.

(iii) A ∈ (`λ
∞ : c) if and only if (25), (26) and (29) hold and

lim
n

∑

k

|ãnk − αk| = 0.
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Proof. Suppose that A satisfies conditions (22), (24) and (29), and take any x ∈ `λ
p ,

where 1 < p < ∞. Then Ax exists. Also, by using (29), we have for every k ∈ N
that |ãnk|q → |αk|q as n →∞. Thus, we deduce from (24) that the inequality

k∑

j=0

|αj |q ≤ sup
n

∑

j

|ãnj |q = M < ∞

holds for every k ∈ N which yields that (αk) ∈ `q. Further, since x ∈ `λ
p ; we

have y ∈ `p. Consequently, we obtain by applying the Hölder’s inequality that
(αkyk) ∈ `1.

Now, for any given ε > 0, choose a fixed k0 ∈ N such that

[ ∞∑

k=k0+1

|yk|p
]1/p

<
ε

4M1/q
.

Then, it follows by (29) that there is some n0 ∈ N such that

∣∣∣
k0∑

k=0

(ãnk − αk)yk

∣∣∣ <
ε

2

for every n ≥ n0. Therefore, by using (28), we derive that
∣∣∣
∑

k

ankxk −
∑

k

αkyk

∣∣∣ =
∣∣∣
∑

k

(ãnk − αk)yk

∣∣∣

≤
∣∣∣

k0∑

k=0

(ãnk − αk)yk

∣∣∣ +
∣∣∣

∞∑

k=k0+1

(ãnk − αk)yk

∣∣∣

<
ε

2
+

[ ∞∑

k=k0+1

(|ãnk|+ |αk|)q
]1/q[ ∞∑

k=k0+1

|yk|p
]1/p

<
ε

2
+

ε

4M1/q

[( ∞∑

k=k0+1

|ãnk|q
)1/q

+
( ∞∑

k=k0+1

|αk|q
)1/q]

<
ε

2
+

ε

4M1/q
2M1/q = ε

for all sufficiently large n ≥ n0. This leads us to the consequence that An(x) →∑
k αkyk as n →∞, which means that Ax ∈ c and hence A ∈ (`λ

p : c).
Conversely, suppose that A ∈ (`λ

p : c), where 1 < p < ∞. Then A ∈ (`λ
p :

`∞). This leads us with Theorem 4 to the necessity of conditions (22) and (24)
which together imply that (28) holds for all sequences x ∈ `λ

p and y ∈ `p which are
connected by the relation y = Λ(x).

Now, let y ∈ `p be given and let x be the sequence defined by (4). Then y = Λ(x)
and hence x ∈ `λ

p . Further, since Ax ∈ c by the hypothesis; we obtain by (28) that
Ãy ∈ c which shows that Ã ∈ (`p : c), where Ã = (ãnk). Hence, the necessity of (29)
is immediate by (8) of Lemma 2. This concludes the proof of part (ii).

Since parts (i) and (iii) can be proved similarly, we omit their proofs.



On some new sequence spaces of non-absolute type 395

Theorem 6.

(i) A ∈ (`λ
1 : c0) if and only if (22) and (23) hold and

lim
n

ãnk = 0 for all k ∈ N. (30)

(ii) Let 1 < p < ∞. Then A ∈ (`λ
p : c0) if and only if (22), (24) and (30) hold.

(iii) A ∈ (`λ
∞ : c0) if and only if (25) holds and

lim
n

∑

k

|ãnk| = 0. (31)

Proof. This theorem can be proved by the same technique used in the proof of
Theorem 5 with Lemma 4 instead of Lemma 2, and by using the fact that (31)
implies both (26) and (30). Thus, we leave the proof to the reader.

Theorem 7.

(i) A ∈ (`λ
1 : `1) if and only if (22) holds and

sup
k

∑
n

|ãnk| < ∞.

(ii) Let 1 < p < ∞. Then A ∈ (`λ
p : `1) if and only if (22) holds and

sup
F∈F

∑

k

∣∣∣
∑

n∈F

ãnk

∣∣∣
q

< ∞. (32)

(iii) A ∈ (`λ
∞ : `1) if and only if (25) holds and

sup
F∈F

∑

k

∣∣∣
∑

n∈F

ãnk

∣∣∣ < ∞.

Proof. Suppose that conditions (22) and (32) hold and take any x ∈ `λ
p , where

1 < p < ∞. Then y ∈ `p. Also, it is obvious by (32) that (24) holds. Therefore,
we have by Theorem 2 that (ank)∞k=0 ∈ (`λ

p)β for all n ∈ N and hence Ax exists.
Further, it follows by combining (32) and Lemma 1 that the matrix Ã = (ãnk) is in
the class (`p : `1) and hence Ãy ∈ `1. Moreover, we deduce by (22) and (24) that
the relation (28) holds which yields that Ax ∈ `1 and hence A ∈ (`λ

p : `1).
Conversely, suppose that A ∈ (`λ

p : `1), where 1 < p < ∞. Then A ∈ (`λ
p : `∞).

Thus, Theorem 4 implies both (24) and the necessity of (22), which together imply
that (28) holds for all x ∈ `λ

p and y ∈ `p such that y = Λ(x). Therefore, the necessity
of (32) can be deduced similarly as the necessity of (29) in the proof of Theorem 5
with Lemma 1 instead of Lemma 2. This completes the proof of part (ii).

Similarly, one can prove the other two parts by means of Theorems 2, 4 and
Lemma 1.
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Theorem 8. Let 1 ≤ p < ∞. Then A ∈ (`λ
1 : `p) if and only if (22) holds and

sup
k

∑
n

|ãnk|p < ∞. (33)

Proof. Suppose that A satisfies conditions (22) and (33), and take any x ∈ `λ
1 .

Then y ∈ `1. Further, we have by Theorem 2 that (ank)∞k=0 ∈ (`λ
1 )β for all n ∈ N

and hence Ax exists. Moreover, by (33) we obtain that

sup
k
|ãnk| ≤ sup

k

( ∑
n

|ãnk|p
)1/p

< ∞ for each n ∈ N.

Therefore, the series
∑

k ãnkyk converges absolutely for each fixed n ∈ N. Thus,
if we pass to the limits in (27) as m → ∞, then it follows by (22) that (28) holds.
Hence, by applying the Minkowski’s inequality and using (28) and (33), we derive
that

( ∑
n

|An(x)|p
)1/p

=
( ∑

n

∣∣∣
∑

k

ãnkyk

∣∣∣
p)1/p

≤
∑

k

[
|yk|

( ∑
n

|ãnk|p
)1/p]

< ∞

which yields that Ax ∈ `p and so A ∈ (`λ
1 : `p).

Conversely, suppose that A ∈ (`λ
1 : `p), where 1 ≤ p < ∞. Then A ∈ (`λ

1 : `∞).
Thus, Theorem 4 implies both (23) and the necessity of (22). Therefore, it follows
by combining (22) and (23) that relation (28) holds for all sequences x ∈ `λ

1 and
y ∈ `1 such that y = Λ(x). This leads us with the hypothesis to the consequence
that Ã = (ãnk) ∈ (`1 : `p). Hence, the necessity of (33) is immediate by Lemma 5
and this concludes the proof.

Theorem 9. Let 1 < p < ∞. Then A ∈ (`λ
∞ : `p) if and only if (25) holds and

∑
k |ãnk| converges for every n ∈ N,

supK∈F
∑

n

∣∣∣ ∑
k∈K ãnk

∣∣∣
p

< ∞.

Proof. It can be proved similarly to the proof of Theorem 8 with Lemma 6 instead
of Lemma 5. Thus, we omit the proof.

Now, we may present the following basic lemma [7, Lemma 5.3] (see also [12,
p.713]) which is useful for deriving the characterizations of some other matrix classes
via Theorems 4–9.

Lemma 7. Let X and Y be sequence spaces, A an infinite matrix and B a triangle.
Then A ∈ (X : YB) if and only if C = BA ∈ (X : Y ).

As an immediate consequence of Lemma 7, we conclude our work by the following
corollary in which λ′ = (λ′k) is a strictly increasing sequence of positive reals tending
to infinity, Λ′ = (Λ′nk) is the triangle defined in Section 2 with λ′ instead of λ, and
cλ′
0 , cλ′ , `λ′

p and `λ′
∞ are the matrix domains of Λ′ in the spaces c0, c, `p and `∞,

respectively; where 1 ≤ p < ∞.
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Corollary 1. Let A = (ank) be an infinite matrix and define the matrix C = (cnk)
by

cnk =
1
λ′n

n∑

j=0

(λ′j − λ′j−1)ajk

for all n, k ∈ N. Then, the necessary and sufficient conditions such that A belongs
to any of the classes (`λ

p : `λ′
∞), (`λ

p : cλ′), (`λ
p : cλ′

0 ), (`λ
p : `λ′

1 ), (`λ
1 : `λ′

p ) or (`λ
∞ : `λ′

p )
are obtained from the respective ones in Theorems 4–9 by replacing the entries of
the matrix A by those of C, where 1 ≤ p ≤ ∞.

Remark 3. It is obvious that Lemma 7 has several consequences, some of them
give the characterization of matrix mappings from the space `λ

p (1 ≤ p ≤ ∞) into a
suitable space of those studied in [2, 3, 4, 5, 6, 7, 11, 12, 14, 15] and [17], and this
can be achieved similarly to Corollary 1.
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