Characteristic classes of vector bundles over $C P(j) \times H P(k)$ and involutions fixing $C P(2 m+1) \times H P(k)^{*}$

Yanying Wang ${ }^{1, \dagger}{ }^{\dagger}$ and Yanchang Chen ${ }^{1}$
${ }^{1}$ College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050 016, P. R. China

Received August 8, 2010; accepted December 18, 2010

Abstract

In this paper, we determine the total Stiefel-Whitney classes of vector bundles over the product of the complex projective space $C P(j)$ with the quaternionic projective space $H P(k)$. Moreover, we show that every involution fixing $C P(2 m+1) \times H P(k)$ bounds.

 AMS subject classifications: 57R85, 57S17, 55N22Key words: Stiefel-Whitney class, involution, fixed point set

1. Introduction

In 1962, Steenrod raised to Conner the following questions:
Given a smooth closed manifold F (not necessarily connected), does there exist a non-trivial smooth involution T on a smooth closed manifold M with F as its fixed point set? Can we determine all involutions (M, T) up to bordism for the manifold F ?

When F is the disjoint union of some spaces, there have been many results, see $[3,4,7,8,11,12]$. But there are few results for the case that F is the product of some spaces, see $[6,10,13]$. We shall particularly be concerned with the case in which $F=C P(2 m+1) \times H P(k)$, where by $C P(2 m+1)$ and $H P(k)$ we denote a $(2 m+1)$-dimensional complex projective space and a k-dimensional quaternionic projective space, respectively.

From [1], we know that the bordism class of an involution (M, T) with F as its fixed point set is determined by the bordism class of the normal bundle over F. To calculate characteristic numbers of the normal bundle over $F=C P(2 m+1) \times H P(k)$, we need to know the possible form of the total Stiefel-Whitney classes of vector bundles over it. We have the following theorem:

Theorem 1. The total Stiefel-Whitney class of a vector bundle ξ over $C P(j) \times$ $H P(k)$ has the form

$$
w(\xi)=(1+\alpha)^{a}(1+\beta)^{b}\left(1+\alpha^{2}+\beta\right)^{d}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon}
$$

[^0]where $\alpha \in H^{2}\left(C P(j) ; Z_{2}\right), \beta \in H^{4}\left(H P(k) ; Z_{2}\right)$ are nonzero classes, a, b, d are non-negative integers, and $\varepsilon=0$ or 1 . When $\varepsilon=1$, we must have
\[

\left\{$$
\begin{aligned}
i & =2^{t}(2 p+1), & & t \geq 1, \\
j & =2^{t}(2 p+1)+x, & & 0 \leq x<2^{t} \\
4 k & =2^{s}-2^{t+1}(2 p+1)+y, & & 0 \leq y<2^{t+1} .
\end{aligned}
$$\right.
\]

By using this result, we prove
Theorem 2. Every involution fixing $C P(2 m+1) \times H P(k)$ bounds .
The paper is organized as follows. In Section 2, we prove Theorem 1. In Section 3, we discuss the existence of involutions fixing $C P(2 m+1) \times H P(k)$ and prove Theorem 2.

2. Characteristic classes of vector bundles

Let

$$
H^{*}(C P(j) \times H P(k) ; Z)=Z[\alpha] / \alpha^{j+1} \bigotimes Z[\beta] / \beta^{k+1}
$$

where $\alpha \in H^{2}(C P(j) ; Z), \beta \in H^{4}(H P(k) ; Z)$ are generators. For convenience, we also denote generators of $H^{2}\left(C P(j) ; Z_{2}\right), H^{4}\left(H P(k) ; Z_{2}\right)$ by α, β.

Let $P_{1}: C P(j) \times H P(k) \longrightarrow C P(j), P_{2}: C P(j) \times H P(k) \longrightarrow H P(k)$ be the projection maps. We have a complex line bundle $P_{1}^{*}\left(L_{\alpha}\right)$ over $C P(j) \times H P(k)$, which is the pullback of the canonical complex line bundle L_{α} over $C P(j)$ with the total Chern class $c\left(P_{1}^{*}\left(L_{\alpha}\right)\right)=1+\alpha$, and a 2-dimensional complex bundle $P_{2}^{*}\left(L_{\beta}\right)$ over $C P(j) \times H P(k)$, which is the pullback of the canonical quaternionic line bundle L_{β} over $H P(k)$ with total Chern class $c\left(P_{2}^{*}\left(L_{\beta}\right)\right)=1+\beta$.
Lemma 1. The total Chern class of the bundle $P_{1}^{*}\left(L_{\alpha}\right) \otimes P_{2}^{*}\left(L_{\beta}\right)$ over $C P(j) \times$ $H P(k)$ is $c\left(P_{1}^{*}\left(L_{\alpha}\right) \otimes P_{2}^{*}\left(L_{\beta}\right)\right)=1+2 \alpha+\alpha^{2}+\beta$.
Proof. We define a map $i_{1}: C P(j) \longrightarrow C P(j) \times H P(k)$ by $i_{1}(x)=\left(x, p t_{1}\right), x \in$ $C P(j)$ and a map $i_{2}: H P(k) \longrightarrow C P(j) \times H P(k)$ by $i_{2}(x)=\left(p t_{2}, x\right), x \in H P(k)$, where $p t_{1} \in H P(k), p t_{2} \in C P(j)$ are fixed points. Thus

$$
\begin{aligned}
& P_{1} i_{1}: C P(j) \longrightarrow C P(j) \text { is the identity on } C P(j), \\
& P_{2} i_{2}: H P(k) \longrightarrow H P(k) \text { is the identity on } H P(k) .
\end{aligned}
$$

So we have

$$
\begin{equation*}
\left(P_{1} i_{1}\right)^{*}\left(L_{\alpha}\right)=i_{1}^{*} P_{1}^{*}\left(L_{\alpha}\right)=L_{\alpha} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(P_{2} i_{2}\right)^{*}\left(L_{\beta}\right)=i_{2}^{*} P_{2}^{*}\left(L_{\beta}\right)=L_{\beta} . \tag{2}
\end{equation*}
$$

From (1), we have

$$
\begin{align*}
i_{1}^{*}\left(c\left(P_{1}^{*}\left(L_{\alpha}\right) \bigotimes P_{2}^{*}\left(L_{\beta}\right)\right)\right) & =c\left(i_{1}^{*} P_{1}^{*}\left(L_{\alpha}\right) \bigotimes i_{1}^{*} P_{2}^{*}\left(L_{\beta}\right)\right)=c\left(L_{\alpha} \bigotimes c^{2}\right) \\
& =c\left(L_{\alpha} \bigotimes(C \bigoplus C)\right)=c\left(L_{\alpha} \bigoplus L_{\alpha}\right)=1+2 \alpha+\alpha^{2} \tag{3}
\end{align*}
$$

where C^{i} is an i-dimensional trivial complex bundle over $C P(j)$. Similarly, from (2) we have $i_{2}^{*}\left(c\left(P_{1}^{*}\left(L_{\alpha}\right) \otimes P_{2}^{*}\left(L_{\beta}\right)\right)\right)=c\left(L_{\beta}\right)=1+\beta$.

$$
\text { Let } c\left(P_{1}^{*}\left(L_{\alpha}\right) \otimes P_{2}^{*}\left(L_{\beta}\right)\right)=1+\varepsilon_{0} \alpha+\varepsilon_{1} \alpha^{2}+\varepsilon_{2} \beta \text {. Then }
$$

$$
i_{1}^{*}\left(c\left(P_{1}^{*}\left(L_{\alpha}\right) \bigotimes P_{2}^{*}\left(L_{\beta}\right)\right)\right)=i_{1}^{*}\left(1+\varepsilon_{0} \alpha+\varepsilon_{1} \alpha^{2}+\varepsilon_{2} \beta\right)=1+\varepsilon_{0} \alpha+\varepsilon_{1} \alpha^{2}
$$

From (3), $\varepsilon_{0}=2$ and $\varepsilon_{1}=1$. Similarly, we have $\varepsilon_{2}=1$.
Lemma 2. There is a 4-dimensional real vector bundle η over $C P(j) \times H P(k)$ such that the total Stiefel-Whitney class $w(\eta)=1+\alpha^{2}+\beta$.

Proof. Consider the 2-dimensional complex bundle $P_{1}^{*}\left(L_{\alpha}\right) \otimes P_{2}^{*}\left(L_{\beta}\right)$ as a real bundle. Let η be the real bundle. It follows from Lemma 2.1 that

$$
w(\eta)=c\left(P_{1}^{*}\left(L_{\alpha}\right) \bigotimes P_{2}^{*}\left(L_{\beta}\right)\right) \bmod 2=1+\alpha^{2}+\beta
$$

Lemma 3. Let the total Stiefel-Whitney class of a vector bundle ξ be $w(\xi)=1+$ $w_{2^{s}}+$ higher terms. Then $w_{2^{s}+l}=0$ and $S q^{l} w_{2^{s}}=0$ for $0<l<2^{s-1}$, where $S q^{l}$ is the Steenrod operation.
Proof. If $0<l<2^{s-1}$, then $w_{2^{s-1}+l}=0$. Using the Wu formula

$$
S q^{i} w_{j}=\sum_{t=0}^{i}\binom{j-i-1+t}{t} w_{i-t} w_{j+t} \quad \text { for } i<j
$$

we have that for $0<l<2^{s-1}$,

$$
\begin{aligned}
0=S q^{2^{s-1}} w_{2^{s-1}+l} & =\sum_{t=0}^{2^{s-1}}\binom{l-1+t}{t} w_{2^{s-1}-t} w_{2^{s-1}+l+t} \\
& =\binom{2^{s-1}+l-1}{2^{s-1}} w_{0} w_{2^{s}+l}=w_{2^{s}+l}
\end{aligned}
$$

Then $S q^{l} w_{2^{s}}=\binom{2^{s}-1}{l} w_{0} w_{2^{s}+l}=0$.
Proof of Theorem 1. Let $P_{1}^{*}\left(L_{\alpha}\right), P_{2}^{*}\left(L_{\beta}\right)$ as above. Consider $P_{1}^{*}\left(L_{\alpha}\right)$ and $P_{2}^{*}\left(L_{\beta}\right)$ as real bundles. We have $w\left(P_{1}^{*}\left(L_{\alpha}\right)\right)=1+\alpha$ and $w\left(P_{2}^{*}\left(L_{\beta}\right)\right)=1+\beta$. We write $a \xi$ for $\underbrace{\xi \oplus \cdots \oplus \xi}_{a}$ and $\zeta=\xi-\eta$ for $\zeta \oplus \eta=\xi$.

If $w(\xi)=1+a_{1} \alpha+$ higher terms, then we have $w\left(\xi-a_{1} P_{1}^{*}\left(L_{\alpha}\right)\right)=1+a_{2} \alpha^{2}+$ $b_{1} \beta+$ higher terms. Since $w\left(2 P_{1}^{*}\left(L_{\alpha}\right)\right)=1+\alpha^{2}, w\left(\xi-a_{1} P_{1}^{*}\left(L_{\alpha}\right)-2 a_{2} P_{1}^{*}\left(L_{\alpha}\right)-\right.$ $\left.b_{1} P_{2}^{*}\left(L_{\beta}\right)\right)=1+w_{8}+$ higher terms. We have

$$
w\left(4 P_{1}^{*}\left(L_{\alpha}\right)\right)=1+\alpha^{4}, w\left(2 P_{2}^{*}\left(L_{\beta}\right)\right)=1+\beta^{2}, w(\eta)=1+\alpha^{2}+\beta
$$

and

$$
w\left(2 P_{1}^{*}\left(L_{\alpha}\right)+P_{2}^{*}\left(L_{\beta}\right)-\eta\right)=\frac{\left(1+\alpha^{2}\right)(1+\beta)}{1+\alpha^{2}+\beta}=1+\alpha^{2} \beta+\text { higher terms. }
$$

By subtracting multiples of these bundles, we may obtain a sum θ of vector bundles such that $w(\xi-\theta)=1+w_{16}+$ higher terms. Proceeding inductively, we may suppose that there is a sum θ^{\prime} of vector bundles such that $w\left(\xi-\theta^{\prime}\right)=1+w_{2 s}+$ higher terms.

Since

$$
w\left(2^{s-1} P_{1}^{*}\left(L_{\alpha}\right)\right)=1+\alpha^{2^{s-1}}, \quad w\left(2^{s-2} P_{2}^{*}\left(L_{\beta}\right)\right)=1+\beta^{2^{s-2}}
$$

and

$$
w\left(2^{s-3}\left(2 P_{1}^{*}\left(L_{\alpha}\right)+P_{2}^{*}\left(L_{\beta}\right)-\eta\right)\right)=1+\alpha^{2^{s-2}} \beta^{2^{s-3}}+\text { higher terms }
$$

we may also suppose that $w_{2^{s}}\left(\xi-\theta^{\prime}\right)$ is a sum of monomials $\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}$ with $i \neq 0$, $2^{s-2}, 2^{s-1}$. Among all such monomials we may suppose that the values of i are all divisible by $2^{t}\left(2 \leq 2^{t}<2^{s-2}\right)$ with at least one odd multiple of 2^{t} occurring. If a monomial $\alpha^{h} \beta^{\frac{2^{s}-2 h}{4}}$ with $h=2^{t}(2 p+1)$ occurs, then we have

$$
\begin{aligned}
S q^{2^{t+1}}\left(\alpha^{h} \beta^{\frac{2^{s}-2 h}{4}}\right) & =\binom{h}{2^{t}} \alpha^{h+2^{t}} \beta^{\frac{2^{s}-2 h}{4}}+\binom{\frac{2^{s}-2 h}{4}}{2^{t-1}} \alpha^{h} \beta^{\frac{2^{s}-2 h+2^{t+1}}{4}} \\
& =\alpha^{h+2^{t}} \beta^{\frac{2^{s}-2 h}{4}}+\alpha^{h} \beta^{\frac{2^{s}-2 h+2^{t+1}}{4}}
\end{aligned}
$$

If h is an even multiple of 2^{t}, then $S q^{2^{t+1}}\left(\alpha^{h} \beta^{\frac{2^{s}-2 h}{4}}\right)=0$. Thus, we have

$$
0=S q^{2^{t+1}} w_{2^{s}}=\sum_{h} S q^{2^{t+1}}\left(\alpha^{h} \beta^{\frac{2^{s}-2 h}{4}}\right)=\sum_{h=2^{t}(o d d)}\left(\alpha^{h+2^{t}} \beta^{\frac{2^{s}-2 h}{4}}+\alpha^{h} \beta^{\frac{2^{s}-2 h+2^{t+1}}{4}}\right)
$$

However if h, h^{\prime} are odd multiples of 2^{t} and $h \neq h^{\prime}$, then

$$
\begin{gathered}
\alpha^{h+2^{t}} \beta^{\frac{2^{s}-2 h}{4}} \neq \alpha^{h^{\prime}+2^{t}} \beta^{\frac{2^{s}-2 h^{\prime}}{4}}, \quad \alpha^{h+2^{t}} \beta^{\frac{2^{s}-2 h}{4}} \neq \alpha^{h^{\prime}} \beta^{\frac{2^{s}-2 h^{\prime}+2^{t+1}}{4}} \\
\alpha^{h} \beta^{\frac{2^{s}-2 h+2^{t+1}}{4}} \neq \alpha^{h^{\prime}+2^{t}} \beta^{\frac{2^{s}-2 h^{\prime}}{4}}, \quad \alpha^{h} \beta^{2^{s}-2 h+2^{t+1}} 4
\end{gathered} \alpha^{h^{\prime}} \beta^{\frac{2^{s}-2 h^{\prime}+2^{t+1}}{4}},
$$

i.e. cancellation does not occur among $S q^{2^{t+1}}\left(\alpha^{h} \beta^{\frac{2^{s}-2 h}{4}}\right)$ and $S q^{2^{t+1}}\left(\alpha^{h^{\prime}} \beta^{\frac{2^{s}-2 h^{\prime}}{4}}\right)$. So, if $w_{2^{s}}$ is nonzero, there must be a monomial $\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}$ with $i=2^{t}(2 p+1)$ for which $\alpha^{i+2^{t}} \beta^{\frac{2^{s}-2 i}{4}}$ and $\alpha^{i} \beta^{\frac{2^{s}-2 i+2^{t+1}}{4}}$ are zero. For $\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}$ to be nonzero, we have $i \leq j$ and $\frac{2^{s}-2 i}{4} \leq k$. We must have $j<i+2^{t}$ and $k<\frac{2^{s}-2 i+2^{t+1}}{4}$ so that $\alpha^{i+2^{t}} \beta^{\frac{2^{s}-2 i}{4}}$ and $\alpha^{i} \beta^{\frac{2^{s}-2 i+2^{t+1}}{4}}$ are zero. Since every other monomial in $w_{2^{s}}$ is of the form $\alpha^{h} \beta^{\frac{2^{s}-2 h}{4}}$ with h divisible by 2^{t} and $h \neq i$, then either $h>i$ or $\frac{2^{s}-2 h}{4}>\frac{2^{s}-2 i}{4}$, and so the monomials are zero. Thus $w_{2^{s}}=\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}$ and

$$
\left\{\begin{array}{rlrl}
i & =2^{t}(2 p+1), & & t \geq 1 \\
j & =2^{t}(2 p+1)+x, & & 0 \leq x<2^{t} \\
4 k & =2^{s}-2^{t+1}(2 p+1)+y, & 0 \leq y<2^{t+1}
\end{array}\right.
$$

From Lemma 3, we have $w_{2^{s}+l}=0$ for $0<l<2^{s-1}$. For $l \geq 2^{s-1}$, suppose that $w_{2^{s}+l}$ contains a monomial $\alpha^{u} \beta^{v}$ with $2 u+4 v=2^{s}+l \geq 2^{s}+2^{s-1}$. If $u \geq i+2^{t}$, then $u>j$. If $u<i+2^{t}$, then

$$
v \geq \frac{2^{s}+2^{s-1}-2 u}{4}>\frac{2^{s}+2^{s-1}-2 i-2^{t+1}}{4} \geq \frac{2^{s}-2 i+2^{t+1}}{4}>k .
$$

For both cases we have $\alpha^{u} \beta^{v}=0$. So $w_{2^{s}+l}=0$ for $l>0$.
The proof is completed.
Corollary 1. If ν is a non-bounding vector bundle over $C P(2 m+1) \times H P(k)$ with the total Stiefel-Whitney class $w(\nu)=(1+\alpha)^{a}(1+\beta)^{b}\left(1+\alpha^{2}+\beta\right)^{d}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon}$, then a is odd.

Proof. ν has a nonzero characteristic number because it is non-bounding. A nonzero characteristic number must contain the monomial $\alpha^{2 m+1} \beta^{k}$. Since the total StiefelWhitney class of $C P(2 m+1) \times H P(k)$ is of the form $w=(1+\alpha)^{2 m+2}(1+\beta)^{k+1}$ which contains only even powers of α, the class $w(\nu)$ must involve an odd power of α. By Theorem 1, we know that i is even. Thus the odd power of α can only be given by $(1+\alpha)^{a}$ and a is odd.

3. Existence of involutions and their classification

Since $F=C P(2 m+1) \times H P(k)$ bounds, there exists a manifold $V^{4 m+2+4 k+1}$ such that $C P(2 m+1) \times H P(k)=\partial V$. Let $\xi^{r} \rightarrow V$ be the r-dimensional trivial bundle over V. If ν^{r} is the boundary of $\xi^{r} \rightarrow V$, then the disc bundle $D \xi^{r}$ has the boundary $D \nu^{r} \bigcup S \xi^{r}$. Multiplying the fibers of ξ^{r} by -1 induces an involution on $D \xi^{r}$. The restriction on $S \xi^{r}$ of the involution is free and on $D \nu^{r}$ is to multiply the fibers by -1 , so it fixes the zero section, which is $C P(2 m+1) \times H P(k)$. The normal bundle over $C P(2 m+1) \times H P(k)$ is ν^{r}. Thus there is a bounding involution $\left(M^{4 m+2+4 k+r}, T\right)$ fixing $C P(2 m+1) \times H P(k)$ for every $r \geq 0$. However, we are interested in whether there is a non-bounding involution fixing $C P(2 m+1) \times H P(k)$.

Let us recall some results about the bordism of involutions. Suppose that (M, T) is a closed manifold M with involution T and the fixed point set of T is $F=$ $C P(2 m+1) \times H P(k)$. Let ν denote the normal bundle of F in M. From [1] we know that the bordism class of (M, T) is determined by the bordism class of the bundle (F, ν). Further, the real projective space bundle $R P(\nu)$ bounds in the bordism of $R P^{\infty}$, where the map into $R P^{\infty}$ classifies the double cover of $R P(\nu)$ by the sphere bundle $S(\nu)$.

The mod 2 cohomology of $C P(2 m+1) \times H P(k)$ is

$$
H^{*}\left(C P(2 m+1) \times H P(k) ; Z_{2}\right)=Z_{2}[\alpha, \beta] /\left(\alpha^{2 m+2}=\beta^{k+1}=0\right)
$$

where α is the 2-dimensional class coming from $C P(2 m+1)$ and β is the 4-dimensional class coming from $H P(k)$. The total Stiefel-Whitney class of $C P(2 m+1) \times H P(k)$ is

$$
w=(1+\alpha)^{2 m+2}(1+\beta)^{k+1}
$$

Let

$$
u=1+u_{1}+u_{2}+\cdots+u_{r} \in H^{*}\left(C P(2 m+1) \times H P(k) ; Z_{2}\right)
$$

denote the total Stiefel-Whitney class of ν^{r}. Then the cohomology of $R P\left(\nu^{r}\right)$ is

$$
Z_{2}[\alpha, \beta, c] /\left(\alpha^{2 m+2}=\beta^{k+1}=0 ; c^{r}+u_{1} c^{r-1}+u_{2} c^{r-2}+\cdots+u_{r}=0\right)
$$

and the total Stiefel-Whitney class of $R P\left(\nu^{r}\right)$ is

$$
\begin{aligned}
w\left(R P\left(\nu^{r}\right)\right) & =w\left\{(1+c)^{r}+u_{1}(1+c)^{r-1}+\cdots+u_{r}\right\} \\
& =(1+\alpha)^{2 m+2}(1+\beta)^{k+1}\left\{(1+c)^{r}+u_{1}(1+c)^{r-1}+\cdots+u_{r}\right\}
\end{aligned}
$$

where $c \in H^{1}\left(R P\left(\nu^{r}\right) ; Z_{2}\right)$ is the Stiefel-Whitney class of the double cover of $R P\left(\nu^{r}\right)$ by $S\left(\nu^{r}\right)$ (see [1, p. 75]).

The class of $R P\left(\nu^{r}\right)$ in the bordism of $R P^{\infty}$ is determined by the characteristic numbers

$$
w_{i_{1}}(R P(\nu)) \cdots w_{i_{s}}(R P(\nu)) c^{t}[R P(\nu)]
$$

where $i_{1}+\cdots+i_{s}+t=\operatorname{dim} R P\left(\nu^{r}\right)=4 m+2+4 k+r-1$. In order to find the value of such numbers, we have a formula of Conner [2, (3.1)]

$$
\begin{aligned}
\alpha^{i} \beta^{j} c^{t}[R P(\nu)] & =\alpha^{i} \beta^{j} \bar{u}_{4 m+2+4 k-2 i-4 j}[C P(2 m+1) \times H P(k)] \\
& =\mathrm{coefficient} \mathrm{of} \alpha^{2 m+1} \beta^{k} \text { in } \alpha^{i} \beta^{j} \bar{u}_{4 m+2+4 k-2 i-4 j}
\end{aligned}
$$

where $2 i+4 j+t=4 m+2+4 k+r-1$ and $\bar{u}=1 / u$ is the dual Stiefel-Whitney class of ν^{r}.

For convenience, we introduce the following characteristic classes which were initially introduced in [9].

$$
\begin{aligned}
w[j] & =\frac{w\left(R P\left(\nu^{r}\right)\right)}{(1+c)^{r-j}} \\
& =w\left\{(1+c)^{j}+u_{1}(1+c)^{j-1}+\cdots+u_{j}+u_{j+1}(1+c)^{-1}+\cdots\right\} \\
& =1+w[j]_{1}+w[j]_{2}+\cdots+w[j]_{4 m+2+4 k+r-1}
\end{aligned}
$$

for which $w[j]_{i}$ is a polynomial in the classes $w_{s}(R P(\nu))$ and c. These classes satisfy (see [9])
$w[i]_{2 i}=w_{i} c^{i}+$ terms with smaller powers of c,
$w[i]_{2 i+1}=\left(w_{i+1}+u_{i+1}\right) c^{i}+$ terms with smaller powers of c, $w[i]_{2 i+2}=u_{i+1} c^{i+1}+$ terms with smaller powers of c.

In particular,

$$
\begin{aligned}
& w[0]_{1}=u_{1}+w_{1} \\
& w[0]_{2}=u_{1} c+\left(w_{2}+u_{1} w_{1}+u_{2}\right) \\
& w[0]_{4}=u_{1} c^{3}+\left(u_{2}+w_{1} u_{1}\right) c^{2}+\left(u_{3}+w_{2} u_{1}\right) c+w_{4}+w_{3} u_{1}+w_{2} u_{2}+w_{1} u_{3}+u_{4}
\end{aligned}
$$

Suppose that $\left(M^{4 m+2+4 k+r}, T\right)$ is an involution fixing $C P(2 m+1) \times H P(k)$. When $r \geq 4 m+2+4 k$, from [5] we know that the involution bounds. When $r=0$ or
$r=1$, it is not difficult to prove that every involution bounds. Then we assume that $1<r<4 m+2+4 k$.

The proof of Theorem 2 is divided into two cases: (I) $k=2 n$, (II) $k=2 n+1$.
(I) $k=2 n$

Proposition 1. Every involution fixing $C P(2 m+1) \times H P(2 n)$ bounds.
Proof. If there is a non-bounding involution fixing $C P(2 m+1) \times H P(2 n)$, then the normal bundle ν^{r} is non-bounding. By Corollary 1, we know that a is odd. Then $u_{1}=0, u_{2}=\alpha, w_{2}=0$ and $w[0]_{2}=u_{1} c+\left(w_{2}+u_{1} w_{1}+u_{2}\right)=\alpha$. Let $2 m+1=2^{p}(2 q+1)-1(p \geq 1, q \geq 0)$. Then

$$
\begin{aligned}
w\left(R P\left(\nu^{r}\right)\right) & =(1+\alpha)^{2 m+2}(1+\beta)^{2 n+1}\left\{(1+c)^{r}+u_{1}(1+c)^{r-1}+\cdots+u_{r}\right\} \\
& =\left(1+\alpha^{2^{p}}\right)^{2 q+1}(1+\beta)^{2 n+1}\left\{(1+c)^{r}+u_{1}(1+c)^{r-1}+\cdots+u_{r}\right\}
\end{aligned}
$$

where $\alpha^{2^{p}(2 q+1)}=0$ and $\beta^{2 n+1}=0$. Thus $\left(1+\alpha^{2^{p}}\right)^{2 q+1}=1+\alpha^{2^{p}}+\cdots+\alpha^{2^{p} \cdot 2 q}$ and $(1+\beta)^{2 n+1}=1+\beta+\cdots+\beta^{2 n}$.

If r is odd, then

$$
w_{2^{p+1} \cdot 2 q+8 n+r-1}\left(R P\left(\nu^{r}\right)\right)=\alpha^{2^{p} \cdot 2 q} \beta^{2 n}\left(r c^{r-1}+(r-1) u_{1} c^{r-2}+\cdots+u_{r-1}\right)
$$

is the top-dimensional class in $w\left(R P\left(\nu^{r}\right)\right)$, and

$$
\begin{aligned}
w[0]_{2}^{2^{p}-1} & w_{2^{p+1} \cdot 2 q+8 n+r-1}\left(R P\left(\nu^{r}\right)\right)\left[R P\left(\nu^{r}\right)\right] \\
& =\alpha^{2 m+1} \beta^{2 n}\left(r c^{r-1}+(r-1) u_{1} c^{r-2}+\cdots+u_{r-1}\right)\left[R P\left(\nu^{r}\right)\right] \\
& =r \alpha^{2 m+1} \beta^{2 n} c^{r-1}\left[R P\left(\nu^{r}\right)\right] \\
& =r \alpha^{2 m+1} \beta^{2 n}[C P(2 m+1) \times H P(2 n)]=r
\end{aligned}
$$

which is a nonzero characteristic number. Since we know that $R P\left(\nu^{r}\right)$ bounds, this is a contradiction.

If $r=4 h+2$, then $\binom{r}{2} \equiv 1(\bmod 2),\binom{r-2}{2} \equiv 0(\bmod 2)$ and

$$
\begin{aligned}
w[0]_{2}^{2^{p}-1} & w_{2^{p+1} \cdot 2 q+8 n+r-2}\left(R P\left(\nu^{r}\right)\right) c\left[R P\left(\nu^{r}\right)\right] \\
& =\alpha^{2 m+1} \beta^{2 n}\left(c^{r-1}+\cdots+u_{r-2} c\right)\left[R P\left(\nu^{r}\right)\right] \\
& =\alpha^{2 m+1} \beta^{2 n} c^{r-1}\left[R P\left(\nu^{r}\right)\right] \\
& =\alpha^{2 m+1} \beta^{2 n}[C P(2 m+1) \times H P(2 n)]=1 \neq 0
\end{aligned}
$$

we get a contradiction.
If $r=4 h$, then $\binom{r}{2} \equiv 0(\bmod 2),\binom{r-2}{2} \equiv 1(\bmod 2)$ and

$$
\begin{aligned}
w[0]_{2}^{2^{p}-2} & w_{2^{p+1} \cdot 2 q+8 n+r-2}\left(R P\left(\nu^{r}\right)\right) c^{3}\left[R P\left(\nu^{r}\right)\right] \\
& =\alpha^{2 m} \beta^{2 n}\left(\alpha c^{r-1}+\cdots+u_{r-2} c^{3}\right)\left[R P\left(\nu^{r}\right)\right] \\
& =\alpha^{2 m+1} \beta^{2 n} c^{r-1}\left[R P\left(\nu^{r}\right)\right] \\
& =\alpha^{2 m+1} \beta^{2 n}[C P(2 m+1) \times H P(2 n)] \neq 0
\end{aligned}
$$

we also get a contradiction.
So every involution fixing $C P(2 m+1) \times H P(2 n)$ bounds.
(II) $k=2 n+1$

Suppose that $2 m+1=2^{p}(2 q+1)-1$ and $2 n+1=2^{p^{\prime}}\left(2 q^{\prime}+1\right)-1$, where $p \geq 1, q \geq$ $0, p^{\prime} \geq 1$ and $q^{\prime} \geq 0$. To determine the bordism classification of all involutions fixing $C P(2 m+1) \times H P(2 n+1)$, we explore the conditions under which the bundle with class $u=(1+\alpha)^{a}(1+\beta)^{b}\left(1+\alpha^{2}+\beta\right)^{d}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon}$ bounds.
Lemma 4. Suppose that ν^{r} is the normal bundle of the fixed point set of a nonbounding involution fixing $C P(2 m+1) \times H P(2 n+1)$ with $u=(1+\alpha)^{a}(1+\beta)^{b}(1+$ $\left.\alpha^{2}+\beta\right)^{d}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon}=u^{\prime}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon}$, where $u^{\prime}=(1+\alpha)^{a}(1+\beta)^{b}\left(1+\alpha^{2}+\beta\right)^{d}$. If $\varepsilon=1$ and $\frac{2^{s}-2 i}{4}$ is odd, then $u_{4 m+8 n+4}^{\prime}=\alpha^{2 m} \beta^{2 n+1}$ and $u_{4 m+8 n+4}=0$.
Proof. Let $\frac{2^{s}-2 i}{4}=2 l-1(l>0)$. Then $i=2^{s-1}-4 l+2=2\left(2^{s-2}-2 l+1\right)$. By Theorem $1,2 m+1=i+1$ and $8 n+4=2^{s}-2 i$. Thus $i=2 m$ and $\frac{2^{s}-2 i}{4}=2 n+1$. We assert $u_{4 m+8 n+4}^{\prime} \neq 0$. If $u_{4 m+8 n+4}^{\prime}=0$, then $u_{4 m+8 n+4}=u_{4 m+8 n+4}^{\prime}+\alpha^{2 m} \beta^{2 n+1}=$ $\alpha^{2 m} \beta^{2 n+1} \neq 0$. So $r \geq 4 m+8 n+4$. Since $r<4 m+2+8 n+4$, we have $r=4 m+8 n+4$ or $r=4 m+1+8 n+4$.
(1) For $r=4 m+8 n+4$, we have $w=(1+\alpha)^{2 m+2}(1+\beta)^{2 n+2}, w_{1}=w_{r+1}=$ $w_{2}=w_{r+2}=0$ and

$$
\begin{aligned}
w[r-1]_{2 r}= & u_{r} c^{r}+u_{r} w_{1} c^{r-1}+w_{r+1} c^{r-1}+u_{r} w_{2} c^{r-2}+w_{r+2} c^{r-2} \\
& + \text { terms with smaller powers of } c \\
= & u_{r} c^{r}+\text { terms with smaller powers of } c \\
= & u_{r}\left(u_{1} c^{r-1}+u_{2} c^{r-2}+\ldots+u_{r}\right) \\
& + \text { terms with dimension smaller than } 2 r \\
= & u_{r} u_{2} c^{r-2}+\text { terms with smaller power of } c \\
= & \alpha^{2 m+1} \beta^{2 n+1} c^{r-2}+\text { terms with smaller power of } c .
\end{aligned}
$$

Then $w[r-1]_{2 r} c\left[R P\left(\nu^{r}\right)\right]=\alpha^{2 m+1} \beta^{2 n+1} c^{r-1}\left[R P\left(\nu^{r}\right)\right] \neq 0$, which is a contradiction.
(2) For $r=4 m+1+8 n+4$, we have

$$
\begin{aligned}
w[r-2]_{2(r-1)} & =u_{r-1} c^{r-1}+\text { terms with smaller power of } c \\
& =\alpha^{2 m} \beta^{2 n+1} c^{r-1}+\text { terms with smaller power of } c .
\end{aligned}
$$

So $w[0]_{2} w[r-2]_{2(r-1)}\left[R P\left(\nu^{r}\right)\right]=\alpha^{2 m+1} \beta^{2 n+1} c^{r-1}\left[R P\left(\nu^{r}\right)\right] \neq 0$, which is a contradiction. Thus $u_{4 m+8 n+4}^{\prime} \neq 0$, and it contains a monomial $\alpha^{i^{\prime}} \beta^{j^{\prime}}$ with $i^{\prime} \leq$ $2 m+1, j^{\prime} \leq 2 n+1$ and $2 i^{\prime}+4 j^{\prime}=4 m+8 n+4$. Such a monomial must be $\alpha^{2 m} \beta^{2 n+1}$. So $u_{4 m+8 n+4}^{\prime}=\alpha^{2 m} \beta^{2 n+1}$ and $u_{4 m+8 n+4}=0$.

Lemma 4 shows that terms of the form $\alpha^{\text {odd }}, \alpha^{\text {odd }} \beta^{\text {odd }}, \alpha^{\text {odd }} \beta^{\text {even }}, \alpha^{\text {even }} \beta^{\text {odd }}$, $\beta^{\text {odd }}$ in u can only be given by u^{\prime}.

Lemma 5. If ν^{r} is the normal bundle of the fixed point set of a non-bounding involution fixing $C P(2 m+1) \times H P(2 n+1)$ with $u=(1+\alpha)^{a}(1+\beta)^{b}\left(1+\alpha^{2}+\right.$ $\beta)^{d}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon}$, then b and d are odd.

Proof. If b and d are even, by Lemma $4, u$ and w contain only even power of β, where w denotes the total Stiefel-Whitney class of $C P(2 m+1) \times H P(2 n+1)$. Thus ν^{r} bounds, which is a contradiction.

By Corrolary 1, we know that a is odd. If b is even and d is odd, then

$$
\begin{aligned}
u^{\prime} & =(1+\alpha)^{a}(1+\beta)^{b}\left(1+\alpha^{2}+\beta\right)^{d} \\
& =(1+\alpha)\left(1+\alpha^{2}+\beta\right)(1+\alpha)^{a-1}(1+\beta)^{b}\left(1+\alpha^{2}+\beta\right)^{d-1} \\
& =\left(1+\alpha+\alpha^{2}+\alpha^{3}+\beta+\alpha \beta\right)\left(\sum \alpha^{\text {even }} \beta^{\text {even }}\right) .
\end{aligned}
$$

If b is odd and d is even, then

$$
\begin{aligned}
u^{\prime} & =(1+\alpha)^{a}(1+\beta)^{b}\left(1+\alpha^{2}+\beta\right)^{d} \\
& =(1+\alpha)(1+\beta)(1+\alpha)^{a-1}(1+\beta)^{b-1}\left(1+\alpha^{2}+\beta\right)^{d} \\
& =(1+\alpha+\beta+\alpha \beta)\left(\sum \alpha^{\text {even }} \beta^{\text {even }}\right) .
\end{aligned}
$$

For both cases, we have $w[0]_{2}=u_{1} c+\left(w_{2}+u_{1} w_{1}+u_{2}\right)=\alpha$ and

$$
\begin{aligned}
w[0]_{4} & =u_{1} c^{3}+\left(u_{2}+w_{1} u_{1}\right) c^{2}+\left(u_{3}+w_{2} u_{1}\right) c+w_{4}+w_{3} u_{1}+w_{2} u_{2}+w_{1} u_{3}+u_{4} \\
& =\alpha c^{2}+\varepsilon_{1} \alpha^{2}+\beta
\end{aligned}
$$

where $\varepsilon_{1}=0$ or 1 . Then

$$
w[0]_{2}^{2 m+1} w[0]_{4}^{2 n+1} c^{r-1}\left[R P\left(\nu^{r}\right)\right]=\alpha^{2 m+1} \beta^{2 n+1} c^{r-1}\left[R P\left(\nu^{r}\right)\right] \neq 0
$$

which is a contradiction. So b and d are odd.
Lemma 6. Suppose that ν^{r} is a vector bundle over $C P(2 m+1) \times H P(2 n+1)$ and the total Stiefel-Whitney class of ν^{r} has the form $u=(1+\alpha)^{a}(1+\beta)^{b}\left(1+\alpha^{2}+\right.$ $\beta)^{d}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon}$, for which a, b and d are odd. Then for $2 m+1 \geq 5, \nu^{r}$ bounds if and only if
(1) $2 m+1<2^{p^{\prime}+1}-2,2 n+1=2^{p^{\prime}}\left(2 q^{\prime}+1\right)-1$, where $p^{\prime} \geq 1$ and $q^{\prime} \geq 0$,
(2) $2 m+1<2^{t+1}-2$, where $b-d=2^{t}(2 f+1)$,
(3) $\varepsilon=0$ or $\varepsilon=1$ and $2 m+1 \neq 2^{j+1}-1$, where 2^{j} is the largest power of 2 in the common terms of the 2 -adic expansions of $2 m+1$ and $8 n+4$.

Proof.

$$
\begin{aligned}
u & =(1+\alpha)^{a}(1+\beta)^{b}\left(1+\alpha^{2}+\beta\right)^{d}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon} \\
& =\left(1+\alpha+\alpha^{2}+\alpha^{3}+\alpha^{2} \beta+\beta^{2}+\alpha^{3} \beta+\alpha \beta^{2}\right) \hat{u}
\end{aligned}
$$

where $\hat{u}=(1+\alpha)^{a-1}(1+\beta)^{b-1}\left(1+\alpha^{2}+\beta\right)^{d-1}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon}$. Since $2 m+1 \geq 5$, we have $i \neq 2, u_{1}=0, u_{2}=\alpha, u_{3}=0, u_{4}=\varepsilon_{1} \alpha^{2}, u_{5}=0, u_{6}=\varepsilon_{1} \alpha^{3}, u_{7}=0$ and $u_{8}=\alpha^{2} \beta+\epsilon_{2} \alpha^{4}+\epsilon_{3} \beta^{2}$, where $\epsilon_{k}=0$ or $1(1 \leq k \leq 2)$ and $\epsilon_{3} \equiv\binom{b}{2}+\binom{d}{2}+b d \equiv$ $\binom{b+d}{2}(\bmod 2)$.

Since $w=(1+\alpha)^{2 m+2}(1+\beta)^{2 n+2}=(1+\alpha)^{2 m+2}\left(1+\beta^{2^{p^{\prime}}}\right)^{2 q^{\prime}+1}$, we have

$$
\begin{aligned}
& w_{2 i^{\prime}+1}=0, w_{2 i^{\prime}}=\binom{2 m+2}{i^{\prime}} \alpha^{i^{\prime}} \text { for } i^{\prime}<2^{p^{\prime}+1} \\
& w_{2^{p^{\prime}+2}}=\beta^{2^{p^{\prime}}}+\binom{2 m+2}{2^{p^{\prime}+1}} \alpha^{2^{p^{\prime}+1}} .
\end{aligned}
$$

Let $\quad \tilde{w}_{2^{p^{\prime}+2}}=w_{2^{p^{\prime}+2}}+\binom{2 m+2}{2^{p^{\prime}+1}} u_{2}^{u^{p^{p^{\prime}+1}}}=\beta^{2^{p^{\prime}}}$.
If $2 m+1>2^{p^{\prime}+1}-2$, we have

$$
\begin{aligned}
\tilde{w}_{2^{p^{\prime}+2}}^{2 q^{\prime}}\left(u_{8}\right. & \left.+\epsilon_{2} u_{2}^{4}\right)^{2^{p^{\prime}}-1} u_{2}^{2 m+1-2\left(2^{p^{\prime}}-1\right)}[C P(2 m+1) \times H P(2 n+1)] \\
& =\beta^{2^{p^{\prime}} \cdot 2 q^{\prime}}\left(\alpha^{2} \beta+\epsilon \beta^{2}\right)^{2^{p^{\prime}}-1} \alpha^{2 m+1-2\left(2^{p^{\prime}}-1\right)}[C P(2 m+1) \times H P(2 n+1)] \\
& =\alpha^{2 m+1} \beta^{2 n+1}[C P(2 m+1) \times H P(2 n+1)]
\end{aligned}
$$

which is nonzero. Thus the bundle ν^{r} does not bound.
So we suppose $2 m+1<2^{p^{\prime}+1}-2$. The following argument is divided into two cases: (1) $u_{8}=\alpha^{2} \beta+\epsilon_{2} \alpha^{4}$, (2) $u_{8}=\alpha^{2} \beta+\epsilon_{2} \alpha^{4}+\beta^{2}$.
(1) $u_{8}=\alpha^{2} \beta+\epsilon_{2} \alpha^{4}$

In this case, $\epsilon_{3} \equiv\binom{b+d}{2} \equiv 0(\bmod 2)$, then $b+d$ is divisible by 4 . We write $b+d=2^{k}$. (odd) with $2^{k} \geq 4$. Then

$$
\begin{aligned}
u^{\prime \prime}= & \frac{u}{\left(1+u_{2}\right)^{a}} \\
= & (1+\beta)^{b}\left(1+\alpha^{2}+\beta\right)^{d}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon} \\
= & {\left[(1+\beta)^{2^{k}-1}\left(1+\alpha^{2}+\beta\right)\right]^{d}(1+\beta)^{b-\left(2^{k}-1\right) d}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon} } \\
= & {\left[1+\beta^{2^{k}}+\alpha^{2}(1+\beta)^{2^{k}-1}\right]^{d}(1+\beta)^{b+d-2^{k} d}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon} } \\
= & {\left[1+\alpha^{2}+\alpha^{2} \beta+\cdots+\alpha^{2} \beta^{2^{k}-2}+\left(\alpha^{2} \beta^{2^{k}-1}+\beta^{2^{k}}\right)\right]^{d}(1+\beta)^{b+d-2^{k} d} } \\
& \times\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon}
\end{aligned}
$$

with $b+d-2^{k} d \equiv 2^{k} .($ odd $)-2^{k} .(\operatorname{odd}) \equiv 0\left(\bmod 2^{k+1}\right)$.
(i) If $2^{k}>2^{p^{\prime}}$, then the characteristic ring of ν^{r} (i.e. the subring of $H^{*}(C P(2 m+$ 1) $\left.\times H P(2 n+1) ; Z_{2}\right)$ generated by the classes u_{i} and $\left.w_{i}\right)$ contains $\alpha, \alpha^{2} \beta, \cdots$, $\alpha^{2} \beta^{2^{p^{\prime}}-1}$ and $\beta^{2^{p^{\prime}}}$. So we have a nonzero characteristic number

$$
\left(\beta^{2^{p^{\prime}}}\right)^{2 q^{\prime}}\left(\alpha^{2} \beta^{2^{p^{\prime}}-1}\right) \alpha^{2 m+1-2}[C P(2 m+1) \times H P(2 n+1)] .
$$

(ii) If $2^{k} \leq 2^{p^{\prime}}$, then $\alpha, \alpha^{2} \beta, \cdots, \alpha^{2} \beta^{2^{k}-2}$ and $\alpha^{2} \beta^{2^{k}-1}+\beta^{2^{k}}$ are characteristic classes. Let $2 n+1=2^{k}-1+2^{k} \cdot l$. We have a nonzero characteristic number for $2 m+1 \geq 5$

$$
\left(\alpha^{2} \beta^{2^{k}-1}+\beta^{2^{k}}\right)^{l} \alpha^{2} \beta^{2^{k}-2} \alpha^{2} \beta \alpha^{2 m+1-4}[C P(2 m+1) \times H P(2 n+1)] .
$$

These nonzero characteristic numbers show that the bundle is always non-bounding for $u_{8}=\alpha^{2} \beta+\epsilon_{2} \alpha^{4}$.
(2) $u_{8}=\alpha^{2} \beta+\epsilon_{2} \alpha^{4}+\beta^{2}$

In this case, $\epsilon_{3} \equiv\binom{b+d}{2} \equiv 1(\bmod 2)$, so $b+d \equiv 2(\bmod 4)$ and $b-d \equiv b+d-2 d \equiv$ $2-2 \equiv 0(\bmod 4)$. We write $b-d=2^{t}(2 f+1)$ with $2^{t} \geq 4$. Then

$$
\begin{aligned}
u^{\prime \prime} & =\frac{u}{\left(1+u_{2}\right)^{a}}=\left(1+\alpha^{2}+\alpha^{2} \beta+\beta^{2}\right)^{d}(1+\beta)^{b-d}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon} \\
& =\left(1+\alpha^{2}+\alpha^{2} \beta+\beta^{2}\right)^{d}(1+\beta)^{2^{t}(2 f+1)}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon}
\end{aligned}
$$

and

$$
u^{\prime \prime \prime}=\frac{u^{\prime \prime}}{\left(1+u_{2}^{2}+u_{8}+\epsilon_{2} u_{2}^{4}\right)^{d}}=(1+\beta)^{2^{t}(2 f+1)}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon} .
$$

If $\varepsilon=0$ and $2^{t}<2^{p^{\prime}}$, the characteristic ring of the bundle is generated by the classes $\alpha, \alpha^{2} \beta+\beta^{2}$ and $\beta^{2^{t}}$. If $\varepsilon=0$ and $2^{t} \geq 2^{p^{\prime}}$, the characteristic ring of the bundle is generated by the classes $\alpha, \alpha^{2} \beta+\beta^{2}$ and $\beta^{2^{p^{\prime}}}$.

If $\varepsilon=1$, then write $2^{j}<2 m+1<2^{j+1}$, where 2^{j} is the largest common term of $2 m+1$ and $8 n+4\left(8 n+4=2^{p^{\prime}+2} 2 q^{\prime}+2^{p^{\prime}+2}-4=2^{p^{\prime}+2} 2 q^{\prime}+2^{p^{\prime}+1}+\cdots+2^{j+1}+2^{j}+\cdots+\right.$ $\left.4, j \leq p^{\prime}\right)$. By Theorem 1, $2 m+1=2^{j}(2 g+1)+x<2^{j+1}$. It forces $g=0, i=2^{j}$ and $8 n+4=2^{s}-2^{j+1}+y=2^{s-1}+\cdots+2^{j+1}+y=2^{p^{\prime}+2} 2 q^{\prime}+2^{p^{\prime}+1}+\cdots+2^{j+1}+2^{j}+\cdots+4$.

Thus $y=2^{j}+\cdots+4,8 n+4=2^{s-1}+\cdots+2^{j+1}+2^{j}+\cdots+4=2^{s}-4$ and $2 n+1=2^{s-2}-1=2^{p^{\prime}}-1$. If $2^{t}<2^{p^{\prime}}$, then the characteristic ring of ν is generated by the classes $\alpha, \alpha^{2} \beta+\beta^{2}, \beta^{2^{t}}$ and $\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}$. If $2^{t} \geq 2^{p^{\prime}}$, then $\beta^{2^{p^{\prime}}}=\beta^{2^{t}}=0$. The characteristic ring is generated by the classes $\alpha, \alpha^{2} \beta+\beta^{2}$ and $\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}$.

For $\varepsilon=0$ or 1 , write $2 n+1=2^{t}-1+2^{t} l$. If $2^{t+1}-2<2 m+1<2^{p^{\prime}+1}-2$, we have

$$
\left(\alpha^{2} \beta+\beta^{2}\right)^{2^{t}-1}\left(\beta^{2^{t}}\right)^{l} \alpha^{2 m+1-\left(2^{t+1}-2\right)}[C P(2 m+1) \times H P(2 n+1)] \neq 0
$$

which shows that the bundle is non-bounding.
Now we suppose $2 m+1<2^{t+1}-2$.
If the class $\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}$ is present (i.e. $\varepsilon=1$), then $\beta^{2^{p^{\prime}}}=0, \alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}=\alpha^{2^{j}} \beta^{\frac{2^{s}-2^{j+1}}{4}}$ $=\alpha^{2^{j}} \beta^{2^{p^{\prime}}-2^{j-1}}$ and $\left(\alpha^{2^{j}} \beta^{2^{p^{\prime}}-2^{j-1}}\right)^{2}=0$. Since $2^{t}+2^{p^{\prime}}-2^{j-1} \geq 2^{p^{\prime}}$, we have $\beta^{2^{t}}$. $\alpha^{2^{j}} \beta^{2^{p^{\prime}}-2^{j-1}}=0$. The only possible characteristic number involving $\alpha^{2^{j}} \beta^{2^{p^{\prime}}-2^{j-1}}$ which could be nonzero would be of the form

$$
\alpha^{x^{\prime}}\left(\beta\left(\alpha^{2}+\beta\right)\right)^{y^{\prime}}\left(\alpha^{2^{j}} \beta^{2^{p^{\prime}}-2^{j-1}}\right)[C P(2 m+1) \times H P(2 n+1)],
$$

and the value of this class is the coefficient of $\alpha^{2 m+1-2^{j}-x^{\prime}} \beta^{2^{j-1}-1}$ in $\left(\beta\left(\alpha^{2}+\beta\right)\right)^{y^{\prime}}$, where $2 x^{\prime}+8 y^{\prime}=4 m+2+8 n+4-2^{j+1}-\left(2^{p^{\prime}+2}-2^{j+1}\right)=4 m-2$ and $y^{\prime} \leq 2^{j-1}-1$. The coefficient is

$$
\binom{y^{\prime}}{\frac{2 m+1-2^{j}-x^{\prime}}{2}} \equiv\binom{y^{\prime}}{2 y^{\prime}-\left(2^{j-1}-1\right)} \equiv\binom{y^{\prime}}{2^{j-1}-1-y^{\prime}} \bmod 2
$$

It is nonzero if and only if $y^{\prime}=2^{j-1}-1$, and in this case $2 m+1=2^{j+1}-1$.
If $\varepsilon=0$, or $\varepsilon=1$ and $2 m+1 \neq 2^{j+1}-1$, then the characteristic numbers which could be nonzero would involve only polynomials in $\alpha, \alpha^{2} \beta+\beta^{2}$ and $\beta^{2^{k^{\prime}}}$, where $2^{k^{\prime}}=\min \left(2^{t}, 2^{p^{\prime}}\right)$. We will show that every characteristic number involving $\alpha, \alpha^{2} \beta+\beta^{2}$ and $\beta^{2^{k^{\prime}}}$ is zero.

Suppose that there exist some \tilde{x}, \tilde{y} and \tilde{z} such that

$$
\alpha^{\tilde{x}}\left(\beta\left(\alpha^{2}+\beta\right)\right)^{\tilde{y}} \beta^{2^{k^{\prime}} \cdot \tilde{z}}[C P(2 m+1) \times H P(2 n+1)]=\binom{\tilde{y}}{\frac{2 m+1-\tilde{x}}{2}} \equiv 1(\bmod 2),
$$

where

$$
\left\{\begin{array}{l}
2 \tilde{x}+8 \tilde{y}+2^{k^{\prime}+2} \cdot \tilde{z}=4 m+2+8 n+4 \\
2 \tilde{y}-\frac{2 m+1-\tilde{x}}{2}+2^{k^{\prime}} \cdot \tilde{z}=2 n+1
\end{array}\right.
$$

If $\tilde{x}=2 m+1$, we have $2 \tilde{y}+2^{k^{\prime}} \cdot \tilde{z}=2 n+1$, which is impossible since $k^{\prime} \geq 1$. So $\tilde{x}<2 m+1$ and \tilde{x} is odd.

Writing $2 n+1=2^{k^{\prime}}-1+2^{k^{\prime}} l$, we have $\beta^{2^{k^{\prime}}(l+1)}=0$. Thus $\tilde{z} \leq l$. Recall that $2 m+1<2^{k^{\prime}+1}-2$, then $\left(\alpha^{2} \beta+\beta^{2}\right)^{2^{k^{\prime}}}=\beta^{2^{k^{\prime}+1}}$. Suppose $\tilde{y}<2^{k^{\prime}}$. We have $4 \tilde{y}<2^{k^{\prime}+2}$. From

$$
\begin{aligned}
4 \tilde{y} & =4 n+2+2 m+1-2^{k^{\prime}+1} \tilde{z}-\tilde{x} \\
& =2^{k^{\prime}+1}-2+2^{k^{\prime}+1} l+2 m+1-2^{k^{\prime}+1} \tilde{z}-\tilde{x} \\
& =2^{k^{\prime}+1}(l-\tilde{z})+2^{k^{\prime}+1}-2+2 m+1-\tilde{x} \\
& \geq 2^{k^{\prime}+1}(l-\tilde{z})+2^{k^{\prime}+1}
\end{aligned}
$$

we know that $\tilde{z}=l$ and $4 \tilde{y}=2^{k^{\prime}+1}-2+2 m+1-\tilde{x}$. Thus $\tilde{y}=2^{k^{\prime}-1}+\frac{2 m+1-\tilde{x}-2}{4}$.

$$
\binom{\tilde{y}}{\frac{2 m+1-\tilde{x}}{2}} \equiv\binom{\tilde{y}}{2 \tilde{y}-\left(2^{k^{\prime}}-1\right)} \equiv\binom{\tilde{y}}{2^{k^{\prime}}-1-\tilde{y}} \equiv 1(\bmod 2)
$$

implies $\tilde{y}=2^{k^{\prime}}-1$. So $2 m+1=2^{k^{\prime}+1}-2+\tilde{x} \geq 2^{k^{\prime}+1}-2$, and this is a contradiction. Thus every characteristic number involving $\alpha, \alpha^{2} \beta+\beta^{2}$ and $\beta^{2^{k^{\prime}}}$ is zero and ν^{r} bounds.

The proof is completed.
Proposition 2. For $2 m+1=2^{p}-1$ and $2 n+1=2^{p^{\prime}}-1$, every involution fixing $C P(2 m+1) \times H P(2 n+1)$ bounds.
Proof. If $2 m+1=2^{p}-1$ and $2 n+1=2^{p^{\prime}}-1$, then $w=\left(1+\alpha^{2^{p}}\right)\left(1+\beta^{2^{p^{\prime}}}\right)=1$. So the bordism class of the normal bundle ν^{r} is totally determined by the class u.

By R_{*} we denote the characteristic ring of the map of $R P\left(\nu^{r}\right)$ into $R P^{\infty}$, i.e. the subring of $H^{*}\left(R P\left(\nu^{r}\right) ; Z_{2}\right)$ generated by c and the classes $w_{i}\left(R P\left(\nu^{r}\right)\right)$, where

$$
w\left(R P\left(\nu^{r}\right)\right)=(1+c)^{r}+u_{1}(1+c)^{r-1}+\cdots+u_{r} .
$$

Since $c \in R_{*}$, we can solve inductively to obtain $u_{i} \in R_{*}$ for $1 \leq i \leq r$. So R_{*} contains the characteristic ring of ν^{r} (i.e. the classes $u_{1}, u_{2}, \cdots, u_{r}$). For every partition ω of $4 m+2+8 n+4$, we have $u_{\omega}[C P(2 m+1) \times H P(2 n+1)]=$ $u_{\omega} c^{r-1}\left[R P\left(\nu^{r}\right)\right]=0$. So ν^{r} bounds.

Lemma 7 (See [5]). Let (M^{n}, T) be a smooth involution on a closed n-dimensional manifold with the fixed point data $(F, \nu)=\bigsqcup_{r}\left(F^{n-r}, \nu^{r}\right)$. If $f\left(x_{1}, \cdots, x_{n}\right)$ is a symmetric polynomial over Z_{2} in n variables of degree at most n, then

$$
f\left(x_{1}, \cdots, x_{n}\right)\left[M^{n}\right]=\sum_{r} \frac{f\left(1+y_{1}, \cdots, 1+y_{r}, z_{1}, \cdots, z_{n-r}\right)}{\prod_{1}^{r}\left(1+y_{i}\right)}\left[F^{n-r}\right]
$$

where the expressions are evaluated by replacing the elementary symmetric functions $\sigma_{i}(x), \sigma_{i}(y)$, and $\sigma_{i}(z)$ by the Stiefel-Whitney classes $w_{i}(M), w_{i}\left(\nu^{r}\right)$, and $w_{i}(F)$, respectively, and taking the value of the resulting cohomology class on the fundamental homology class of M or F.
Lemma 8 (See [5, p. 317]). Let $\sigma_{j}\left(x_{1}, \cdots, x_{r}, x_{r+1}, \cdots, x_{n}\right)$ be the j-th elementary symmetric function in n variables. Then

$$
\begin{aligned}
\sigma_{j}(1 & \left.+y_{1}, \cdots, 1+y_{r}, z_{1}, \cdots, z_{n-r}\right) \\
& =\sum_{p+q \leq j}\binom{r-p}{j-p-q} \sigma_{p}\left(y_{1}, \cdots, y_{r}\right) \sigma_{q}\left(z_{1}, \cdots, z_{n-r}\right)
\end{aligned}
$$

Proposition 3. For $2 m+1 \geq 5$, every involution fixing $C P(2 m+1) \times H P(2 n+1)$ bounds.

Proof. If there is a non-bounding involution fixing $C P(2 m+1) \times H P(2 n+1)$, then the total Stiefel-Whitney class of the normal bundle ν^{r} has the form

$$
\begin{aligned}
u & =(1+\alpha)^{a}(1+\beta)^{b}\left(1+\alpha^{2}+\beta\right)^{d}\left(1+\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon} \\
& =\left(1+\alpha+\alpha^{2}+\alpha^{3}+\alpha^{2} \beta+\beta^{2}+\alpha^{3} \beta+\alpha \beta^{2}\right) \hat{u}
\end{aligned}
$$

where a, b and d are all odd and $\hat{u}=(1+\alpha)^{a-1}(1+\beta)^{b-1}\left(1+\alpha^{2}+\beta\right)^{d-1}(1+$ $\left.\alpha^{i} \beta^{\frac{2^{s}-2 i}{4}}\right)^{\varepsilon}$. Since $2 m+1 \geq 5$, we have $2^{s} \geq 16$. So $u_{1}=0, u_{2}=\alpha, u_{3}=0, u_{4}=$ $\varepsilon_{1} \alpha^{2}, u_{5}=0, u_{6}=\varepsilon_{1} \alpha^{3}, u_{7}=0$ and $u_{8}=\alpha^{2} \beta+\epsilon_{2} \alpha^{4}+\epsilon_{3} \beta^{2}$, where $\epsilon_{k}=0$ or $1(1 \leq k \leq 3)$.

The following argument is divided into two cases: (1) $u_{8}=\alpha^{2} \beta+\epsilon_{2} \alpha^{4}$, (2) $u_{8}=\alpha^{2} \beta+\epsilon_{2} \alpha^{4}+\beta^{2}$.
(1) $u_{8}=\alpha^{2} \beta+\epsilon_{2} \alpha^{4}$

Just as in Lemma 6 , write $b+d=2^{k}$. (odd) with $2^{k} \geq 4$.
(i) If $2^{k}>2^{p^{\prime}}$, the characteristic ring of ν^{r} contains the classes $\alpha, \alpha^{2}, \alpha^{2} \beta, \cdots$, $\alpha^{2} \beta^{2^{p^{\prime}}-2}, \alpha^{2} \beta^{2^{p^{\prime}}-1}$ and $\beta^{2^{p^{\prime}}}$.

For $2^{p^{\prime}}=2$, we have $w_{1}=w_{2}=w_{3}=w_{5}=w_{7}=0, w_{4}=\binom{2 m+2}{2} \alpha^{2}$, $w_{6}=\binom{2 m+2}{3} \alpha^{3}$ and $w_{8}=\binom{2 m+2}{4} \alpha^{4}+\beta^{2}$. From Lemma 8 , we know

$$
\begin{aligned}
\sigma_{2}(1+y, z) & =\binom{r}{2}+\binom{r-1}{1} \sigma_{1}(y)+\binom{r}{1} \sigma_{1}(z)+\sigma_{2}(y)+\sigma_{1}(y) \sigma_{1}(z)+\sigma_{2}(z) \\
& =\binom{r}{2}+\alpha
\end{aligned}
$$

Let $\sigma_{2}^{\prime}(x)=\sigma_{2}(x)+\binom{r}{2}$. Then $\sigma_{2}^{\prime}(1+y, z)=\sigma_{2}(1+y, z)+\binom{r}{2}=\alpha$.

$$
\begin{aligned}
\sigma_{8}(1+y, z)= & \sum_{p+q \leq 8}\binom{r-p}{8-p-q} \sigma_{p}(y) \\
\sigma_{q}(z)= & \binom{r}{8}+\binom{r-1}{7} \sigma_{1}(y)+\binom{r}{7} \sigma_{1}(z)+\binom{r-2}{6} \sigma_{2}(y)+\binom{r-1}{6} \sigma_{1}(y) \sigma_{1}(z) \\
& +\binom{r}{6} \sigma_{2}(z)+\binom{r-3}{5} \sigma_{3}(y)+\binom{r-2}{5} \sigma_{2}(y) \sigma_{1}(z)+\binom{r-1}{5} \sigma_{1}(y) \sigma_{2}(z) \\
& +\binom{r}{5} \sigma_{3}(z)+\binom{r-4}{4} \sigma_{4}(y)+\binom{r-3}{4} \sigma_{3}(y) \sigma_{1}(z)+\binom{r-2}{4} \sigma_{2}(y) \sigma_{2}(z) \\
& +\binom{r-1}{4} \sigma_{1}(y) \sigma_{3}(z)+\binom{r}{4} \sigma_{4}(z)+\binom{r-5}{3} \sigma_{5}(y)+\binom{r-4}{3} \sigma_{4}(y) \sigma_{1}(z) \\
& +\binom{r-3}{3} \sigma_{3}(y) \sigma_{2}(z)+\binom{r-2}{3} \sigma_{2}(y) \sigma_{3}(z)+\binom{r-1}{3} \sigma_{1}(y) \sigma_{4}(z) \\
& +\binom{r}{3} \sigma_{5}(z)+\binom{r-6}{2} \sigma_{6}(y)+\binom{r-5}{2} \sigma_{5}(y) \sigma_{1}(z)+\binom{r-4}{2} \sigma_{4}(y) \sigma_{2}(z) \\
& +\binom{r-3}{2} \sigma_{3}(y) \sigma_{3}(z)+\binom{r-2}{2} \sigma_{2}(y) \sigma_{4}(z)+\binom{r-1}{2} \sigma_{1}(y) \sigma_{5}(z) \\
& +\binom{r}{2} \sigma_{6}(z)+\binom{r-7}{1} \sigma_{7}(y)+\binom{r-6}{1} \sigma_{6}(y) \sigma_{1}(z)+\binom{r-5}{1} \sigma_{5}(y) \sigma_{2}(z) \\
& +\binom{r-4}{1} \sigma_{4}(y) \sigma_{3}(z)+\binom{r-3}{1} \sigma_{3}(y) \sigma_{4}(z)+\binom{r-2}{1} \sigma_{2}(y) \sigma_{5}(z) \\
& +\binom{r-1}{1} \sigma_{1}(y) \sigma_{6}(z)+\binom{r}{1} \sigma_{7}(z)+\sigma_{8}(y)+\sigma_{7}(y) \sigma_{1}(z)+\sigma_{6}(y) \sigma_{2}(z) \\
& +\sigma_{5}(y) \sigma_{3}(z)+\sigma_{4}(y) \sigma_{4}(z)+\sigma_{3}(y) \sigma_{5}(z)+\sigma_{2}(y) \sigma_{6}(z)+\sigma_{1}(y) \sigma_{7}(z)+\sigma_{8}(z) \\
= & \binom{r}{8}+\binom{r-2}{6} \alpha+\varepsilon_{1}\binom{r-4}{4} \alpha^{2}+\binom{r}{4}\binom{2 m+2}{2} \alpha^{2}+\varepsilon_{1}\binom{r-6}{2} \alpha^{3} \\
& +\binom{r-2}{2}\binom{2 m+2}{2} \alpha^{3}+\binom{r}{2}\binom{2 m+2}{3} \alpha^{3}+\alpha^{2} \beta+\varepsilon_{2} \alpha^{4} \\
& +\varepsilon_{1}\binom{2 m+2}{2} \alpha^{4}+\binom{2 m+2}{3} \alpha^{4}+\binom{2 m+2}{4} \alpha^{4}+\beta^{2} .
\end{aligned}
$$

Let

$$
\begin{aligned}
\sigma_{8}^{\prime}(x)= & \sigma_{8}(x)+\binom{r}{8}+\binom{r-2}{6} \sigma_{2}^{\prime}(x)+\varepsilon_{1}\binom{r-4}{4} \sigma_{2}^{\prime}(x)^{2}+\binom{r}{4}\binom{2 m+2}{2} \sigma_{2}^{\prime}(x)^{2} \\
& +\varepsilon_{1}\binom{r-6}{2} \sigma_{2}^{\prime}(x)^{3}+\binom{r-2}{2}\binom{2 m+2}{2} \sigma_{2}^{\prime}(x)^{3}+\binom{r}{2}\binom{2 m+2}{3} \sigma_{2}^{\prime}(x)^{3} \\
& +\varepsilon_{2} \sigma_{2}^{\prime}(x)^{4}+\varepsilon_{1}\binom{2 m+2}{2} \sigma_{2}^{\prime}(x)^{4}+\binom{2 m+2}{3} \sigma_{2}^{\prime}(x)^{4}+\binom{2 m+2}{4} \sigma_{2}^{\prime}(x)^{4} .
\end{aligned}
$$

Then $\sigma_{8}^{\prime}(1+y, z)=\alpha^{2} \beta+\beta^{2}$. Taking $f(x)=\left(\sigma_{8}^{\prime}(x)\right)^{2 q^{\prime}+1}\left(\sigma_{2}^{\prime}(x)\right)^{2 m+1-2}$ with $\operatorname{deg} f=$ $8\left(2 q^{\prime}+1\right)+2(2 m+1-2)=4 m+2+8 n+4<\operatorname{dim} M=4 m+2+8 n+4+r$, by

Lemma 7 we have

$$
0=f(x)[M]=\frac{\left(\alpha^{2} \beta+\beta^{2}\right)^{2 q^{\prime}+1} \alpha^{2 m+1-2}}{\prod_{i=1}^{r}\left(1+y_{i}\right)}[C P(2 m+1) \times H P(2 n+1)]=1
$$

which is a contradicition.
For $2^{p^{\prime}} \geq 4$, we have

$$
\begin{aligned}
w_{2 i^{\prime}} & =\binom{2 m+2}{i^{\prime}} \alpha^{i^{\prime}}, w_{2 i^{\prime}+1}=0\left(0 \leq i^{\prime}<2^{p^{\prime}+1}\right), w_{2^{p^{\prime}+2}}=\binom{2 m+2}{2^{p^{\prime}+1}} \alpha^{2^{p^{\prime}+1}}+\beta^{2^{p^{\prime}}}, \\
u_{4 i^{\prime}} & =\alpha^{2} \beta^{i^{\prime}-1}+\varepsilon_{i^{\prime}} \alpha^{2 i^{\prime}}, u_{4 i^{\prime}+1}=0, u_{4 i^{\prime}+2}=\gamma_{i}^{\prime} \alpha^{3} \beta^{i^{\prime}-1}+\delta_{i}^{\prime} \alpha^{2 i^{\prime}+1}, \\
u_{4 i^{\prime}+3} & =0\left(2 \leq i^{\prime} \leq 2^{p^{\prime}}\right) .
\end{aligned}
$$

Using the above method, we get $\sigma_{2}^{\prime}(x)$ and $\sigma_{8}^{\prime}(x)$ such that $\sigma_{2}^{\prime}(1+y, z)=\alpha$ and $\sigma_{8}^{\prime}(1+y, z)=\alpha^{2} \beta$. In the same way, adding a polynomial in $\sigma_{2}^{\prime}(x)$ and $\sigma_{8}^{\prime}(x)$ to $\sigma_{12}(x)$ to get $\sigma_{12}^{\prime}(x)$ such that $\sigma_{12}^{\prime}(1+y, z)=\alpha^{2} \beta^{2}$, adding a polynomial in $\sigma_{2}^{\prime}(x), \sigma_{8}^{\prime}(x)$ and $\sigma_{12}^{\prime}(x)$ to $\sigma_{16}(x)$ to get $\sigma_{16}^{\prime}(x)$ such that $\sigma_{16}^{\prime}(1+y, z)=\alpha^{2} \beta^{3}, \cdots$, adding a polynomial in $\sigma_{2}^{\prime}(x), \sigma_{8}^{\prime}(x), \cdots, \sigma_{2^{p^{\prime}+2}-4}^{\prime}(x)$ to $\sigma_{2^{p^{\prime}+2}}(x)$ to get $\sigma_{2^{p^{\prime}+2}}^{\prime}(x)$ such that $\sigma_{2^{p^{\prime}+2}}^{\prime}(1+y, z)=\alpha^{2} \beta^{2^{p^{\prime}}-1}+\beta^{2^{p^{\prime}}}$ and taking

$$
f(x)=\left(\sigma_{2^{p^{\prime}+2}}^{\prime}(x)\right)^{2 q^{\prime}+1}\left(\sigma_{2}^{\prime}(x)\right)^{2 m+1-2}
$$

from Lemma 7 we get a contradiction.
(ii) If $4 \leq 2^{k} \leq 2^{p^{\prime}}$, writing $2 n+1=2^{k}-1+2^{k} l$, from Lemma 6 we know that the characteristic ring of ν^{r} contains the classes $\alpha, \alpha^{2}, \alpha^{2} \beta, \cdots, \alpha^{2} \beta^{2^{k}-2}$ and $\alpha^{2} \beta^{2^{k}-1}+\beta^{2^{k}}$. So $u_{4 i^{\prime}}=\alpha^{2} \beta^{i^{\prime}-1}+\epsilon_{i}^{\prime} \alpha^{2 i^{\prime}}, u_{4 i^{\prime}+1}=0, u_{4 i^{\prime}+2}=\gamma_{i}^{\prime} \alpha^{3} \beta^{i^{\prime}-1}+\delta_{i}^{\prime} \alpha^{2 i^{\prime}+1}$, $u_{4 i^{\prime}+3}=0\left(2 \leq i^{\prime} \leq 2^{k}-1\right)$ and $u_{2^{k+2}}=\alpha^{2} \beta^{2^{k}-1}+\beta^{2^{k}}+\epsilon_{2^{k}} \alpha^{2^{k+1}}$.

Using the above method, we get a series of symmetric function $\sigma_{2}^{\prime}(x), \sigma_{8}^{\prime}(x)$, $\ldots, \quad \sigma_{2^{k+2}-4}^{\prime}(x)$ and $\sigma_{2^{k+2}}^{\prime}(x)$ such that $\sigma_{2}^{\prime}(1+y, z)=\alpha, \sigma_{8}^{\prime}(1+y, z)=\alpha^{2} \beta, \ldots$, $\sigma_{2^{k+2}-4}^{\prime}(1+y, z)=\alpha^{2} \beta^{2^{k}-2}$ and $\sigma_{2^{k+2}}^{\prime}(1+y, z)=\alpha^{2} \beta^{2^{k}-1}+\beta^{2^{k}}$. Taking

$$
f(x)=\left(\sigma_{2^{k+2}}^{\prime}(x)\right)^{l} \sigma_{2^{k+2}-4}^{\prime}(x) \sigma_{8}^{\prime}(x)\left(\sigma_{2}^{\prime}(x)\right)^{2 m+1-4}
$$

from Lemma 7 we get a contradiction. So $u_{8}=\alpha^{2} \beta+\epsilon_{2} \alpha^{4}$ does not occur.
(2) $u_{8}=\alpha^{2} \beta+\epsilon_{2} \alpha^{4}+\beta^{2}$

From Lemma 6, we need to consider the following cases:
(a) $\varepsilon=1$ and $2 m+1=2^{j+1}-1$,
(b) $2^{p^{\prime}}>2^{t} \geq 4$ and $2 m+1>2^{t+1}-2$, where $b-d=2^{t}(2 f+1)$ with $2^{t} \geq 4$,
(c) $2 \leq 2^{p^{\prime}} \leq 2^{t}$ and $2 m+1>2^{p^{\prime}+1}-2$.

In the case (a), $\varepsilon=1$ implies $2 n+1=2^{p^{\prime}}-1$. By Proposition 2 we know that every involution fixing $C P(2 m+1) \times H P(2 n+1)$ bounds.

In the case (b), $w_{2 i^{\prime}}=\binom{2 m+2}{i^{\prime}} \alpha^{i^{\prime}}$ and $w_{2 i^{\prime}+1}=0\left(0 \leq i^{\prime}<2^{t+1}\right)$. $u_{2 i^{\prime}}=\lambda_{i^{\prime}}\left(\alpha^{2} \beta+\beta^{2}\right)^{j^{\prime}} \alpha^{i^{\prime}-4 j^{\prime}}+\epsilon_{i^{\prime}} \alpha^{i^{\prime}}$, where $\lambda_{i^{\prime}}$ and $\epsilon_{i^{\prime}}$ are 0 or $1\left(4<i^{\prime}<2^{t+1}\right)$. $u_{2^{t+2}}=\beta^{2^{t}}+\lambda_{2^{t+1}}\left(\alpha^{2} \beta+\beta^{2}\right)^{j^{\prime}} \alpha^{2^{t+1}-4 j^{\prime}}+\epsilon_{2^{t+1}} \alpha^{2^{t+1}}$. Let $\sigma_{2}^{\prime}(x)$ and $\sigma_{8}^{\prime}(x)$ as in (1)(i). Then $\sigma_{2}^{\prime}(1+y, z)=\alpha$ and $\sigma_{8}^{\prime}(1+y, z)=\alpha^{2} \beta+\beta^{2}$. We can add a polynomial in $\sigma_{2}^{\prime}(x)$ and $\sigma_{8}^{\prime}(x)$ to $\sigma_{2^{t+2}}(x)$ to get $\sigma_{2^{t+2}}^{\prime}(x)$ such that $\sigma_{2^{t+2}}^{\prime}(1+y, z)=\beta^{2^{t}}$. Writing $2 n+1=2^{t}-1+2^{t} l$ and taking

$$
f(x)=\left(\sigma_{2^{t+2}}^{\prime}(x)\right)^{l}\left(\sigma_{8}^{\prime}(x)\right)^{2^{t}-1}\left(\sigma_{2}^{\prime}(x)\right)^{2 m+1-\left(2^{t+1}-2\right)}
$$

from Lemma 7 we get a contradiction.
In the case (c), we have $w_{2 i^{\prime}}=\binom{2 m+2}{i^{\prime}} \alpha^{i^{\prime}}, w_{2 i^{\prime}+1}=0\left(0<i^{\prime}<2^{p^{\prime}+1}\right)$ and $w_{2^{p^{\prime}+2}}=\beta^{2^{p^{\prime}}}+\binom{2 m+2}{2^{p^{\prime}+1}} \alpha^{2^{p^{\prime}+1}}$. For $2^{p^{\prime}}=2$ and r odd,

$$
\begin{aligned}
w\left(R P\left(\nu^{r}\right)\right)= & \left(1+\alpha^{2^{p}}\right)^{2 q+1}\left(1+\beta^{2}\right)^{2 q^{\prime}+1}\left\{(1+c)^{r}+u_{1}(1+c)^{r-1}+\ldots+u_{r}\right\} \\
= & \alpha^{2^{p} \cdot 2 q} \beta^{4 q^{\prime}}\left(r c^{r-1}+(r-1) u_{1} c^{r-2}\right. \\
& \left.+\ldots+u_{r-1}\right)+ \text { terms with a smaller dimension. }
\end{aligned}
$$

Then

$$
w_{2^{p+1} \cdot 2 q+16 q^{\prime}+r-1}\left(R P\left(\nu^{r}\right)\right)=\alpha^{2^{p} \cdot 2 q} \beta^{4 q^{\prime}}\left(r c^{r-1}+(r-1) u_{1} c^{r-2}+\ldots+u_{r-1}\right)
$$

is the top-dimensional class in $w\left(R P\left(\nu^{r}\right)\right)$. Since $w[0]_{2}=u_{1} c+\left(w_{2}+u_{1} w_{1}+u_{2}\right)=\alpha$ and

$$
\begin{aligned}
w[0]_{8}= & u_{1} c^{7}+u_{2} c^{6}+\left(u_{3}+w_{2} u_{1}\right) c^{5}+\left(u_{4}+w_{2} u_{2}\right) c^{4}+\left(u_{5}+w_{4} u_{1}\right) c^{3} \\
& +\left(u_{6}+w_{4} u_{2}\right) c^{2}+\left(u_{7}+w_{2} u_{5}+w_{4} u_{3}+w_{6} u_{1}\right) c+u_{8}+w_{2} u_{6} \\
& +w_{4} u_{4}+w_{6} u_{2}+w_{8} \\
= & \alpha c^{6}+\varepsilon_{1} \alpha^{2} c^{4}+\alpha^{2} \beta+\varepsilon_{2} \alpha^{4}+\varepsilon_{1}\binom{2 m+2}{2} \alpha^{4}+\binom{2 m+2}{3} \alpha^{4}+\binom{2 m+2}{4} \alpha^{4} \\
& +\left(\varepsilon_{1}+\binom{2 m+2}{2}\right) \alpha^{3} c^{2}
\end{aligned}
$$

we have

$$
\begin{aligned}
w & {[0]_{2}^{2^{p}-3} w_{2^{p+1 \cdot 2 q+16 q^{\prime}+r-1}}\left(R P\left(\nu^{r}\right)\right) w[0]_{8}\left[R P\left(\nu^{r}\right)\right] } \\
& =\alpha^{2 m-1} \beta^{4 q^{\prime}}\left(r c^{r-1}+(r-1) u_{1} c^{r-2}+\ldots+u_{r-1}\right) w[0]_{8}\left[R P\left(\nu^{r}\right)\right] \\
& =r \alpha^{2 m+1} \beta^{2 n+1} c^{r-1}\left[R P\left(\nu^{r}\right)\right]=r,
\end{aligned}
$$

which is a nonzero characteristic number. We know that $R P\left(\nu^{r}\right)$ bounds, so this is a contradiction.

For $2^{p^{\prime}}=2$ and $r=4 h+2$, we have $\binom{r}{2} \equiv 1(\bmod 2),\binom{r-2}{2} \equiv 0(\bmod 2)$ and

$$
\begin{aligned}
& w[0]_{2}^{2^{p}-3} w_{2^{p+1.2 q+16 q^{\prime}+r-2}}\left(R P\left(\nu^{r}\right)\right) w[0]_{8} c\left[R P\left(\nu^{r}\right)\right] \\
& \quad=\alpha^{2 m+1} \beta^{2 n+1}\left(c^{r-1}+\cdots+u_{r-2} c\right)\left[R P\left(\nu^{r}\right)\right] \\
& \quad=\alpha^{2 m+1} \beta^{2 n+1} c^{r-1}\left[R P\left(\nu^{r}\right)\right] \\
& \quad=1 \neq 0
\end{aligned}
$$

which is a contradiction.
For $2^{p^{\prime}}=2$ and $r=4 h$, we have $\binom{r}{2} \equiv 0(\bmod 2),\binom{r-2}{2} \equiv 1(\bmod 2)$ and

$$
\begin{aligned}
& w[0]_{2}^{2^{p}-4} w_{2^{p+1} \cdot 2 q+16 q^{\prime}+r-2}\left(R P\left(\nu^{r}\right)\right) w[0]_{8} c^{3}\left[R P\left(\nu^{r}\right)\right] \\
& \quad=\alpha^{2 m} \beta^{2 n+1}\left(\alpha c^{r-1}+\cdots+u_{r-2} c^{3}\right)\left[R P\left(\nu^{r}\right)\right] \\
& \quad=\alpha^{2 m+1} \beta^{2 n+1} c^{r-1}\left[R P\left(\nu^{r}\right)\right] \\
& \quad=1 \neq 0
\end{aligned}
$$

which is also a contradiction.
For $2^{p^{\prime}} \geq 4$, we have $u_{1}=u_{3}=u_{5}=u_{7}=0, u_{2}=\alpha, u_{4}=\varepsilon_{1} \alpha^{2}, u_{6}=$ $\varepsilon_{1} \alpha^{3}, u_{8}=\bar{\alpha}^{2} \beta+\epsilon_{2} \alpha^{4}+\beta^{2}$ and $u_{2 i^{\prime}}=\delta_{i^{\prime}}\left(\alpha^{2} \beta+\beta^{2}\right)^{j^{\prime}} \alpha^{i^{\prime}-4 j^{\prime}}+\lambda_{i^{\prime}} \alpha^{i^{\prime}} \quad\left(4<i^{\prime} \leq 2^{p^{\prime}+1}\right)$, where $\delta_{i^{\prime}}$ and $\lambda_{i^{\prime}}$ are 0 or 1 .

Using the method in (1), we get the symmetric functions $\sigma_{2}^{\prime}(x), \sigma_{8}^{\prime}(x)$ and $\sigma_{2^{p^{\prime}+2}}^{\prime}(x)$ such that $\sigma_{2}^{\prime}(1+y, z)=\alpha, \sigma_{8}^{\prime}(1+y, z)=\alpha^{2} \beta+\beta^{2}$ and $\sigma_{2^{p^{\prime}+2}}^{\prime}(1+y, z)=$ $\beta^{2^{p^{\prime}}}$. Taking

$$
f(x)=\left(\sigma_{2^{p^{\prime}+2}}^{\prime}(x)\right)^{2 q^{\prime}}\left(\sigma_{8}^{\prime}(x)\right)^{2^{p^{\prime}}-1}\left(\sigma_{2}^{\prime}(x)\right)^{2 m+1-\left(2^{p^{\prime}+1}-2\right)}
$$

from Lemma 7, we get a contradiction.
This completes the proof.
Proposition 4. Every involution fixing $C P(3) \times H P(2 n+1)$ bounds.
Proof. If $\varepsilon=1$, then $2 n+1=2^{p^{\prime}}-1$. By Proposition 2, every involution bounds. Thus we need only to consider the case $\varepsilon=0$, i.e. $u=(1+\alpha)^{a}\left(1+\alpha^{2}+\beta\right)(1+\beta)^{b^{\prime}}$.
(1) If $\binom{b^{\prime}-1}{2} \equiv 1(\bmod 2)$, then $u_{8}=\alpha^{2} \beta, b^{\prime}-1 \equiv 2(\bmod 4)$ and $b^{\prime}+1 \equiv 0$ $(\bmod 4)$. Let $b^{\prime}+1=2^{k}(2 f+1)(k \geq 2)$.

$$
\begin{aligned}
u & \left.=(1+\alpha)^{a}\left[\left(1+\alpha^{2}+\beta\right)(1+\beta)^{2^{k}-1}\right)\right](1+\beta)^{b^{\prime}-2^{k}+1} \\
& =(1+\alpha)^{a}\left[1+\beta^{2^{k}}+\alpha^{2}(1+\beta)^{2^{k}-1}\right]\left(1+\beta^{2^{k+1}}\right)^{f} \\
& =(1+\alpha)^{a}\left(1+\alpha^{2}+\alpha^{2} \beta+\cdots+\alpha^{2} \beta^{2^{k}-1}+\beta^{2^{k}}\right)\left(1+\beta^{2^{k+1}}\right)^{f}
\end{aligned}
$$

If $2^{k}>2^{p^{\prime}}$, the characteristic ring of ν^{r} is generated by $\alpha, \alpha^{2} \beta, \alpha^{2} \beta^{2}, \cdots, \alpha^{2} \beta^{2^{p^{\prime}}-1}$ and $\beta^{2^{p^{\prime}}}$. Just as (1)-(i) in the proof of Proposition 3, taking

$$
f(x)=\left(\sigma_{2^{p^{\prime}+2}}^{\prime}(x)\right)^{2 q^{\prime}+1} \sigma_{2}^{\prime}(x)^{2 m+1-2}
$$

from Lemma 7 we get a contradiction. If $2^{k} \leq 2^{p^{\prime}}$, the characteristic ring of ν^{r} is generated by $\alpha, \alpha^{2} \beta, \alpha^{2} \beta^{2}, \cdots, \alpha^{2} \beta^{2^{k}-2}, \alpha^{2} \beta^{2^{k}-1}+\beta^{2^{k}}$ and $\beta^{2^{p^{\prime}}}$. None of these monomials can give a monomial $\alpha^{3} \beta^{2 n+1}$, so ν^{r} bounds.
(2) If $\binom{b^{\prime}-1}{2} \equiv 0(\bmod 2)$, we write $b^{\prime}-1=2^{t}(2 f+1)$. The characteristic ring of ν^{r} is generated by $\alpha, \alpha^{2} \beta+\beta^{2}$ and $\beta^{2^{k}}$, where $k=\min \left(t, p^{\prime}\right)$.

For $2^{p^{\prime}}=2$ and r odd, we have $\binom{2 n+2}{2 n} \equiv 1(\bmod 2)$,

$$
\begin{aligned}
w\left(R P\left(\nu^{r}\right)\right)= & \left(1+\alpha^{4}\right)(1+\beta)^{2 n+2}\left\{(1+c)^{r}+u_{1}(1+c)^{r-1}+\ldots+u_{r}\right\} \\
= & (1+\beta)^{2 n+2}\left\{r c^{r-1}+(r-1) u_{1} c^{r-2}+\ldots+u_{r-1}\right. \\
& + \text { terms with a dimension smaller than } r-1\} \\
= & \beta^{2 n}\left(r c^{r-1}+(r-1) u_{1} c^{r-2}+\ldots+u_{r-1}\right) \\
& + \text { terms with a dimension smaller than } 8 n+r-1, \\
w_{8 n+r-1}\left(R P\left(\nu^{r}\right)\right)= & \beta^{2 n}\left(r c^{r-1}+(r-1) u_{1} c^{r-2}+\ldots+u_{r-1}\right), \\
w[0]_{2}= & u_{1} c+\left(w_{2}+u_{1} w_{1}+u_{2}\right)=\alpha, \\
w[0]_{8}= & u_{1} c^{7}+u_{2} c^{6}+\left(u_{3}+w_{2} u_{1}\right) c^{5}+\left(u_{4}+w_{2} u_{2}\right) c^{4}+\left(u_{5}+w_{4} u_{1}\right) c^{3} \\
& +\left(u_{6}+w_{4} u_{2}\right) c^{2}+\left(u_{7}+w_{2} u_{5}+w_{4} u_{3}+w_{6} u_{1}\right) c \\
& +u_{8}+w_{2} u_{6}+w_{4} u_{4}+w_{6} u_{2}+w_{8} \\
= & \alpha c^{6}+\varepsilon_{1} \alpha^{2} c^{4}+\alpha^{2} \beta+\varepsilon_{1}\binom{2 m+2}{2} \alpha^{4}+\binom{2 m+2}{3} \alpha^{4} \\
& +\binom{2 m+2}{4} \alpha^{4}+\left(\varepsilon_{1}+\binom{2 m+2}{2}\right) \alpha^{3} c^{2} .
\end{aligned}
$$

Let

$$
\begin{aligned}
\left(w[0]_{8}\right)^{\prime}= & w[0]_{8}+w[0]_{2} c^{6}+\epsilon_{1} w[0]_{2}^{2} c^{4}+\left(\varepsilon_{1}+\binom{2 m+2}{2}\right) w[0]_{2}^{3} c^{2} \\
& +\varepsilon_{1}\binom{2 m+2}{2} w[0]_{2}^{4}+\binom{2 m+2}{3} w[0]_{2}^{4}+\binom{2 m+2}{4} w[0]_{2}^{4} \\
= & \alpha^{2} \beta
\end{aligned}
$$

Then $w[0]_{2}\left(w[0]_{8}\right)^{\prime} w_{8 n+r-1}\left(R P\left(\nu^{r}\right)\right)\left[R P\left(\nu^{r}\right)\right] \neq 0$, which is a contradiction.
For $2^{p^{\prime}}=2$ and $r=4 h+2$, we have $\binom{r}{2} \equiv 1(\bmod 2),\binom{r-2}{2} \equiv 0(\bmod 2)$,

$$
\begin{aligned}
w\left(R P\left(\nu^{r}\right)\right)= & \beta^{2 n}\left[\binom{r}{2} c^{r-2}+\binom{r-1}{2} u_{1} c^{r-3}+\binom{r-2}{2} u_{2} c^{r-4}+\cdots+u_{r-2}\right] \\
& + \text { terms with a dimension smaller than } 8 n+r-2, \\
w_{8 n+r-2}\left(R P\left(\nu^{r}\right)\right)= & \beta^{2 n}\left[\binom{r}{2} c^{r-2}+\binom{r-1}{2} u_{1} c^{r-3}+\binom{r-2}{2} u_{2} c^{r-4}+\cdots+u_{r-2}\right], \\
w[0]_{2}= & u_{1} c+\left(w_{2}+u_{1} w_{1}+u_{2}\right)=\alpha .
\end{aligned}
$$

Just as above, we also get $\left(w[0]_{8}\right)^{\prime}$ such that $\left(w[0]_{8}\right)^{\prime}=\alpha^{2} \beta$. Then

$$
\begin{aligned}
& w[0]_{2}\left(w[0]_{8}\right)^{\prime} w_{8 n+r-2}\left(R P\left(\nu^{r}\right)\right) c\left[R P\left(\nu^{r}\right)\right] \\
& \quad=\alpha^{3} \beta^{2 n+1}\left(c^{r-1}+\cdots+u_{r-2} c\right)\left[R P\left(\nu^{r}\right)\right] \\
& \quad=\alpha^{3} \beta^{2 n+1} c^{r-1}\left[R P\left(\nu^{r}\right)\right] \neq 0,
\end{aligned}
$$

which is a contradiction.
For $2^{p^{\prime}}=2$ and $r=4 h$, we have $\binom{r}{2} \equiv 0(\bmod 2)$ and $\binom{r-2}{2} \equiv 1(\bmod 2)$. Then

$$
\begin{aligned}
& \left(w[0]_{8}\right)^{\prime} w_{8 n+r-2}\left(R P\left(\nu^{r}\right)\right) c^{3}\left[R P\left(\nu^{r}\right)\right] \\
& \quad=\alpha^{2} \beta^{2 n+1}\left(\alpha c^{r-4}+\cdots+u_{r-2}\right) c^{3}\left[R P\left(\nu^{r}\right)\right] \\
& \quad=\alpha^{3} \beta^{2 n+1} c^{r-1}\left[R P\left(\nu^{r}\right)\right] \neq 0
\end{aligned}
$$

which is also a contradiction.
So for $2^{p^{\prime}}=2$, there is no non-bounding involution fixing $C P(3) \times H P(2 n+1)$. For $2^{p^{\prime}}>2$, suppose that there exist some \tilde{x}, \tilde{y} and \tilde{z} such that

$$
\alpha^{x^{\prime}}\left(\alpha^{2} \beta+\beta^{2}\right)^{y^{\prime}} \beta^{2^{k} \cdot z^{\prime}}[C P(3) \times H P(2 n+1)] \neq 0
$$

where $2 x^{\prime}+8 y^{\prime}+2^{k+2} \cdot z^{\prime}=6+8 n+4$, i.e. $x^{\prime}+4 y^{\prime}+2^{k+1} \cdot z^{\prime}=3+4 n+2$. Then x^{\prime} is odd. Since $x^{\prime} \leq 3, x^{\prime}=1$ or 3 . If $x^{\prime}=3$, then $2 y^{\prime}+2^{k} \cdot z^{\prime}=2 n+1$, which is impossible. If $x^{\prime}=1$, then $\binom{y^{\prime}}{1} \equiv 1(\bmod 2)$, i.e. y^{\prime} is odd. Thus $1+2\left(y^{\prime}-1\right)+2^{k} \cdot z^{\prime}=$ $2 n+1=2^{p^{\prime}}\left(2 q^{\prime}+1\right)-1$, which is also impossible. So ν^{r} bounds.

The proof is completed.
Proposition 5. Every involution fixing $C P(1) \times H P(2 n+1)$ bounds.
Proof. In this case, $\alpha^{2}=0$. From Theorem 1 and Lemma 5, we know that every involution fixing $C P(1) \times H P(2 n+1)$ has the total Stiefel-Whitney class $u=(1+$ $\alpha)(1+\beta)^{b+d}$, where b and d are odd. So we cannot obtain any odd power of β from u and w and every involution fixing $C P(1) \times H P(2 n+1)$ bounds.

Combining Propositions 1, 3, 4 and 5 together, we have Theorem 2.

Acknowledgement

The authors are indebted to the National Natural Science Foundation of China (No. 10971050) for financial support during this work.

References

[1] P. E. Conner, Differentiable Periodic Maps, Springer-Verlag, New York, 1979.
[2] P. E. Conner, The bordism class of a bundle space, Michigan Math. J. 14(1967), 289-303.
[3] D. Hou, B. Torrence, Involutions fixing the disjoint union of odd-dimensional projective spaces, Canad. Math. Bull. 37(1994), 66-74.
[4] S. M. Kelton, Involutions fixing $R P^{j} \cup F^{n}$, Topology Appl. 142(2004), 197-203.
[5] C. Kosniowski, R. E. Stong, Involutions and characteristic numbers, Topology 17(1978), 309-330.
[6] J. Li, Y. Wang, Characteristic classes of vector bundles over $R P(h) \times H P(k)$, Topology Appl. 154(2007), 1778-1793.
[7] Z. Lü, Involutions fixing RP ${ }^{\text {odd }} \cup P(h, i) I$, Trans. Amer. Math. Soc. 354(2002), 45394570.
[8] Z. Lü, Involutions fixing $R P^{\text {odd }} \cup P(h, i)$ II, Trans. Amer. Math. Soc. 356(2003), 1291-1314.
[9] P. L. Q. Pergher, R.E.Stong, Involutions fixing \{point\} $\cup F^{n}$, Transform. Groups 6(2001), 78-85.
[10] P. L. Q. Pergher, Involutions fixing an arbitrary product of spheres and a point, Manuscripta Math. 89(1996), 471-474.
[11] D. C. Royster, Involutions fixing the disjoint union of two projective spaces, Indiana Univ. Math. J. 29(1980), 267-276.
[12] R. E. Stong, Involutions fixing projective spaces, Michigan Math. J. 13(1966), 445447.
[13] R. E. Stong, Involutions fixing product of circles, Proc. Amer. Math. Soc. 119(1993), 1005-1008.

[^0]: *This work was supported by the National Natural Science Foundation of China (No. 10971050). ${ }^{\dagger}$ Corresponding author. Email addresses: wyanying2003@yahoo.com.cn (Y. Wang), cyc810707@163.com (Y. Chen)

