Characteristic classes of vector bundles over $CP(j) \times HP(k)$ and involutions fixing $CP(2m+1) \times HP(k)^*$

YANYING WANG^{1,†}AND YANCHANG CHEN¹

¹ College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050016, P. R. China

Received August 8, 2010; accepted December 18, 2010

Abstract. In this paper, we determine the total Stiefel-Whitney classes of vector bundles over the product of the complex projective space CP(j) with the quaternionic projective space HP(k). Moreover, we show that every involution fixing $CP(2m+1) \times HP(k)$ bounds. **AMS subject classifications:** 57R85, 57S17, 55N22

Key words: Stiefel-Whitney class, involution, fixed point set

1. Introduction

In 1962, Steenrod raised to Conner the following questions:

Given a smooth closed manifold F (not necessarily connected), does there exist a non-trivial smooth involution T on a smooth closed manifold M with F as its fixed point set? Can we determine all involutions (M, T) up to bordism for the manifold F?

When F is the disjoint union of some spaces, there have been many results, see [3, 4, 7, 8, 11, 12]. But there are few results for the case that F is the product of some spaces, see [6, 10, 13]. We shall particularly be concerned with the case in which $F = CP(2m + 1) \times HP(k)$, where by CP(2m + 1) and HP(k) we denote a (2m + 1)-dimensional complex projective space and a k-dimensional quaternionic projective space, respectively.

From [1], we know that the bordism class of an involution (M, T) with F as its fixed point set is determined by the bordism class of the normal bundle over F. To calculate characteristic numbers of the normal bundle over $F = CP(2m+1) \times HP(k)$, we need to know the possible form of the total Stiefel-Whitney classes of vector bundles over it. We have the following theorem:

Theorem 1. The total Stiefel-Whitney class of a vector bundle ξ over $CP(j) \times HP(k)$ has the form

$$w(\xi) = (1+\alpha)^{a}(1+\beta)^{b}(1+\alpha^{2}+\beta)^{d}(1+\alpha^{i}\beta^{\frac{2^{s}-2i}{4}})^{\varepsilon},$$

http://www.mathos.hr/mc

©2011 Department of Mathematics, University of Osijek

^{*}This work was supported by the National Natural Science Foundation of China (No. 10971050). †Corresponding author. *Email addresses:* wyanying2003@yahoo.com.cn (Y. Wang), cyc810707@163.com (Y. Chen)

where $\alpha \in H^2(CP(j); Z_2)$, $\beta \in H^4(HP(k); Z_2)$ are nonzero classes, a, b, d are non-negative integers, and $\varepsilon = 0$ or 1. When $\varepsilon = 1$, we must have

$$\begin{cases} i = 2^t (2p+1), & t \ge 1, \\ j = 2^t (2p+1) + x, & 0 \le x < 2^t, \\ 4k = 2^s - 2^{t+1} (2p+1) + y, & 0 \le y < 2^{t+1} \end{cases}$$

By using this result, we prove

Theorem 2. Every involution fixing $CP(2m+1) \times HP(k)$ bounds.

The paper is organized as follows. In Section 2, we prove Theorem 1. In Section 3, we discuss the existence of involutions fixing $CP(2m + 1) \times HP(k)$ and prove Theorem 2.

2. Characteristic classes of vector bundles

Let

$$H^*(CP(j) \times HP(k); Z) = Z[\alpha]/\alpha^{j+1} \bigotimes Z[\beta]/\beta^{k+1},$$

where $\alpha \in H^2(CP(j); Z)$, $\beta \in H^4(HP(k); Z)$ are generators. For convenience, we also denote generators of $H^2(CP(j); Z_2)$, $H^4(HP(k); Z_2)$ by α , β .

Let $P_1 : CP(j) \times HP(k) \longrightarrow CP(j), P_2 : CP(j) \times HP(k) \longrightarrow HP(k)$ be the projection maps. We have a complex line bundle $P_1^*(L_\alpha)$ over $CP(j) \times HP(k)$, which is the pullback of the canonical complex line bundle L_α over CP(j) with the total Chern class $c(P_1^*(L_\alpha)) = 1 + \alpha$, and a 2-dimensional complex bundle $P_2^*(L_\beta)$ over $CP(j) \times HP(k)$, which is the pullback of the canonical quaternionic line bundle L_β over HP(k) with total Chern class $c(P_2^*(L_\beta)) = 1 + \beta$.

Lemma 1. The total Chern class of the bundle $P_1^*(L_\alpha) \otimes P_2^*(L_\beta)$ over $CP(j) \times HP(k)$ is $c(P_1^*(L_\alpha) \otimes P_2^*(L_\beta)) = 1 + 2\alpha + \alpha^2 + \beta$.

Proof. We define a map $i_1 : CP(j) \longrightarrow CP(j) \times HP(k)$ by $i_1(x) = (x, pt_1), x \in CP(j)$ and a map $i_2 : HP(k) \longrightarrow CP(j) \times HP(k)$ by $i_2(x) = (pt_2, x), x \in HP(k)$, where $pt_1 \in HP(k), pt_2 \in CP(j)$ are fixed points. Thus

 $P_1i_1 : CP(j) \longrightarrow CP(j)$ is the identity on CP(j), $P_2i_2 : HP(k) \longrightarrow HP(k)$ is the identity on HP(k).

So we have

$$(P_1 i_1)^* (L_\alpha) = i_1^* P_1^* (L_\alpha) = L_\alpha \tag{1}$$

and

$$(P_2 i_2)^* (L_\beta) = i_2^* P_2^* (L_\beta) = L_\beta.$$
⁽²⁾

From (1), we have

$$i_{1}^{*}(c(P_{1}^{*}(L_{\alpha})\bigotimes P_{2}^{*}(L_{\beta}))) = c(i_{1}^{*}P_{1}^{*}(L_{\alpha})\bigotimes i_{1}^{*}P_{2}^{*}(L_{\beta})) = c(L_{\alpha}\bigotimes C^{2}) = c(L_{\alpha}\bigotimes (C\bigoplus C)) = c(L_{\alpha}\bigoplus L_{\alpha}) = 1 + 2\alpha + \alpha^{2}, (3)$$

401

where C^i is an *i*-dimensional trivial complex bundle over CP(j). Similarly, from (2) we have $i_2^*(c(P_1^*(L_\alpha) \bigotimes P_2^*(L_\beta))) = c(L_\beta) = 1 + \beta$.

Let
$$c(P_1^*(L_\alpha) \bigotimes P_2^*(L_\beta)) = 1 + \varepsilon_0 \alpha + \varepsilon_1 \alpha^2 + \varepsilon_2 \beta$$
. Then

$$i_1^*(c(P_1^*(L_\alpha)\bigotimes P_2^*(L_\beta))) = i_1^*(1+\varepsilon_0\alpha+\varepsilon_1\alpha^2+\varepsilon_2\beta) = 1+\varepsilon_0\alpha+\varepsilon_1\alpha^2.$$

From (3), $\varepsilon_0 = 2$ and $\varepsilon_1 = 1$. Similarly, we have $\varepsilon_2 = 1$.

Lemma 2. There is a 4-dimensional real vector bundle η over $CP(j) \times HP(k)$ such that the total Stiefel-Whitney class $w(\eta) = 1 + \alpha^2 + \beta$.

Proof. Consider the 2-dimensional complex bundle $P_1^*(L_\alpha) \otimes P_2^*(L_\beta)$ as a real bundle. Let η be the real bundle. It follows from Lemma 2.1 that

$$w(\eta) = c(P_1^*(L_\alpha) \bigotimes P_2^*(L_\beta)) \mod 2 = 1 + \alpha^2 + \beta.$$

Lemma 3. Let the total Stiefel-Whitney class of a vector bundle ξ be $w(\xi) = 1 + w_{2^s} + higher terms$. Then $w_{2^s+l} = 0$ and $Sq^l w_{2^s} = 0$ for $0 < l < 2^{s-1}$, where Sq^l is the Steenrod operation.

Proof. If $0 < l < 2^{s-1}$, then $w_{2^{s-1}+l} = 0$. Using the Wu formula

$$Sq^{i}w_{j} = \sum_{t=0}^{i} \begin{pmatrix} j-i-1+t \\ t \end{pmatrix} w_{i-t}w_{j+t} \quad \text{for } i < j,$$

we have that for $0 < l < 2^{s-1}$,

$$0 = Sq^{2^{s-1}}w_{2^{s-1}+l} = \sum_{t=0}^{2^{s-1}} {\binom{l-1+t}{t}} w_{2^{s-1}-t}w_{2^{s-1}+l+t}$$
$$= {\binom{2^{s-1}+l-1}{2^{s-1}}} w_0w_{2^s+l} = w_{2^s+l}.$$

Then $Sq^{l}w_{2^{s}} = \binom{2^{s}-1}{l}w_{0}w_{2^{s}+l} = 0.$

Proof of Theorem 1. Let $P_1^*(L_{\alpha})$, $P_2^*(L_{\beta})$ as above. Consider $P_1^*(L_{\alpha})$ and $P_2^*(L_{\beta})$ as real bundles. We have $w(P_1^*(L_{\alpha})) = 1 + \alpha$ and $w(P_2^*(L_{\beta})) = 1 + \beta$. We write $a\xi$ for $\underbrace{\xi \oplus \cdots \oplus \xi}_{a}$ and $\zeta = \xi - \eta$ for $\zeta \oplus \eta = \xi$.

If $w(\xi) = 1 + a_1\alpha +$ higher terms, then we have $w(\xi - a_1P_1^*(L_\alpha)) = 1 + a_2\alpha^2 + b_1\beta +$ higher terms. Since $w(2P_1^*(L_\alpha)) = 1 + \alpha^2$, $w(\xi - a_1P_1^*(L_\alpha) - 2a_2P_1^*(L_\alpha) - b_1P_2^*(L_\beta)) = 1 + w_8 +$ higher terms. We have

$$w(4P_1^*(L_{\alpha})) = 1 + \alpha^4, w(2P_2^*(L_{\beta})) = 1 + \beta^2, w(\eta) = 1 + \alpha^2 + \beta$$

and

$$w(2P_1^*(L_{\alpha}) + P_2^*(L_{\beta}) - \eta) = \frac{(1+\alpha^2)(1+\beta)}{1+\alpha^2+\beta} = 1 + \alpha^2\beta + \text{ higher terms}$$

By subtracting multiples of these bundles, we may obtain a sum θ of vector bundles such that $w(\xi - \theta) = 1 + w_{16}$ + higher terms. Proceeding inductively, we may suppose that there is a sum θ' of vector bundles such that $w(\xi - \theta') = 1 + w_{2^s}$ + higher terms. Since

$$w(2^{s-1}P_1^*(L_{\alpha})) = 1 + \alpha^{2^{s-1}}, \ w(2^{s-2}P_2^*(L_{\beta})) = 1 + \beta^{2^{s-2}}$$

and

$$w(2^{s-3}(2P_1^*(L_{\alpha}) + P_2^*(L_{\beta}) - \eta)) = 1 + \alpha^{2^{s-2}}\beta^{2^{s-3}} + \text{higher terms}$$

we may also suppose that $w_{2^s}(\xi - \theta')$ is a sum of monomials $\alpha^i \beta^{\frac{2^s-2i}{4}}$ with $i \neq 0$, $2^{s-2}, 2^{s-1}$. Among all such monomials we may suppose that the values of i are all divisible by $2^t(2 \leq 2^t < 2^{s-2})$ with at least one odd multiple of 2^t occurring. If a monomial $\alpha^h \beta^{\frac{2^s-2h}{4}}$ with $h = 2^t(2p+1)$ occurs, then we have

$$Sq^{2^{t+1}}(\alpha^h\beta^{\frac{2^s-2h}{4}}) = \binom{h}{2^t}\alpha^{h+2^t}\beta^{\frac{2^s-2h}{4}} + \binom{\frac{2^s-2h}{4}}{2^{t-1}}\alpha^h\beta^{\frac{2^s-2h+2^{t+1}}{4}}$$
$$= \alpha^{h+2^t}\beta^{\frac{2^s-2h}{4}} + \alpha^h\beta^{\frac{2^s-2h+2^{t+1}}{4}}$$

If h is an even multiple of 2^t , then $Sq^{2^{t+1}}(\alpha^h\beta^{\frac{2^s-2h}{4}})=0$. Thus, we have

$$0 = Sq^{2^{t+1}}w_{2^s} = \sum_h Sq^{2^{t+1}}(\alpha^h\beta^{\frac{2^s-2h}{4}}) = \sum_{h=2^t(odd)} (\alpha^{h+2^t}\beta^{\frac{2^s-2h}{4}} + \alpha^h\beta^{\frac{2^s-2h+2^{t+1}}{4}}).$$

However if h, h' are odd multiples of 2^t and $h \neq h'$, then

$$\alpha^{h+2^{t}}\beta^{\frac{2^{s}-2h}{4}} \neq \alpha^{h'+2^{t}}\beta^{\frac{2^{s}-2h'}{4}}, \quad \alpha^{h+2^{t}}\beta^{\frac{2^{s}-2h}{4}} \neq \alpha^{h'}\beta^{\frac{2^{s}-2h'+2^{t+1}}{4}}$$

$$\alpha^{h}\beta^{\frac{2^{s}-2h+2^{t+1}}{4}} \neq \alpha^{h'+2^{t}}\beta^{\frac{2^{s}-2h'}{4}}, \quad \alpha^{h}\beta^{\frac{2^{s}-2h+2^{t+1}}{4}} \neq \alpha^{h'}\beta^{\frac{2^{s}-2h'+2^{t+1}}{4}}$$

i.e. cancellation does not occur among $Sq^{2^{t+1}}(\alpha^h\beta^{\frac{2^s-2h}{4}})$ and $Sq^{2^{t+1}}(\alpha^{h'}\beta^{\frac{2^s-2h'}{4}})$. So, if w_{2^s} is nonzero, there must be a monomial $\alpha^i\beta^{\frac{2^s-2i}{4}}$ with $i = 2^t(2p+1)$ for which $\alpha^{i+2^t}\beta^{\frac{2^s-2i}{4}}$ and $\alpha^i\beta^{\frac{2^s-2i+2^{t+1}}{4}}$ are zero. For $\alpha^i\beta^{\frac{2^s-2i}{4}}$ to be nonzero, we have $i \leq j$ and $\frac{2^s-2i}{4} \leq k$. We must have $j < i+2^t$ and $k < \frac{2^s-2i+2^{t+1}}{4}$ so that $\alpha^{i+2^t}\beta^{\frac{2^s-2i}{4}}$ and $\alpha^i\beta^{\frac{2^s-2i+2^{t+1}}{4}}$ are zero. Since every other monomial in w_{2^s} is of the form $\alpha^h\beta^{\frac{2^s-2h}{4}}$ with h divisible by 2^t and $h \neq i$, then either h > i or $\frac{2^s-2i}{4} > \frac{2^s-2i}{4}$, and so the monomials are zero. Thus $w_{2^s} = \alpha^i\beta^{\frac{2^s-2i}{4}}$ and

$$\begin{cases} i = 2^t (2p+1), & t \ge 1, \\ j = 2^t (2p+1) + x, & 0 \le x < 2^t, \\ 4k = 2^s - 2^{t+1} (2p+1) + y, & 0 \le y < 2^{t+1} \end{cases}$$

From Lemma 3, we have $w_{2^s+l} = 0$ for $0 < l < 2^{s-1}$. For $l \ge 2^{s-1}$, suppose that w_{2^s+l} contains a monomial $\alpha^u \beta^v$ with $2u + 4v = 2^s + l \ge 2^s + 2^{s-1}$. If $u \ge i + 2^t$, then u > j. If $u < i + 2^t$, then

$$v \ge \frac{2^s + 2^{s-1} - 2u}{4} > \frac{2^s + 2^{s-1} - 2i - 2^{t+1}}{4} \ge \frac{2^s - 2i + 2^{t+1}}{4} > k.$$

For both cases we have $\alpha^u \beta^v = 0$. So $w_{2^s+l} = 0$ for l > 0.

The proof is completed.

Corollary 1. If ν is a non-bounding vector bundle over $CP(2m+1) \times HP(k)$ with the total Stiefel-Whitney class $w(\nu) = (1+\alpha)^a (1+\beta)^b (1+\alpha^2+\beta)^d (1+\alpha^i\beta^{\frac{2^s-2i}{4}})^{\varepsilon}$, then a is odd.

Proof. ν has a nonzero characteristic number because it is non-bounding. A nonzero characteristic number must contain the monomial $\alpha^{2m+1}\beta^k$. Since the total Stiefel-Whitney class of $CP(2m+1) \times HP(k)$ is of the form $w = (1+\alpha)^{2m+2}(1+\beta)^{k+1}$ which contains only even powers of α , the class $w(\nu)$ must involve an odd power of α . By Theorem 1, we know that i is even. Thus the odd power of α can only be given by $(1+\alpha)^a$ and a is odd.

3. Existence of involutions and their classification

Since $F = CP(2m + 1) \times HP(k)$ bounds, there exists a manifold $V^{4m+2+4k+1}$ such that $CP(2m + 1) \times HP(k) = \partial V$. Let $\xi^r \to V$ be the *r*-dimensional trivial bundle over *V*. If ν^r is the boundary of $\xi^r \to V$, then the disc bundle $D\xi^r$ has the boundary $D\nu^r \bigcup S\xi^r$. Multiplying the fibers of ξ^r by -1 induces an involution on $D\xi^r$. The restriction on $S\xi^r$ of the involution is free and on $D\nu^r$ is to multiply the fibers by -1, so it fixes the zero section, which is $CP(2m + 1) \times HP(k)$. The normal bundle over $CP(2m + 1) \times HP(k)$ is ν^r . Thus there is a bounding involution $(M^{4m+2+4k+r}, T)$ fixing $CP(2m + 1) \times HP(k)$ for every $r \ge 0$. However, we are interested in whether there is a non-bounding involution fixing $CP(2m + 1) \times HP(k)$.

Let us recall some results about the bordism of involutions. Suppose that (M, T) is a closed manifold M with involution T and the fixed point set of T is $F = CP(2m + 1) \times HP(k)$. Let ν denote the normal bundle of F in M. From [1] we know that the bordism class of (M, T) is determined by the bordism class of the bundle (F, ν) . Further, the real projective space bundle $RP(\nu)$ bounds in the bordism of RP^{∞} , where the map into RP^{∞} classifies the double cover of $RP(\nu)$ by the sphere bundle $S(\nu)$.

The mod 2 cohomology of $CP(2m+1) \times HP(k)$ is

$$H^*(CP(2m+1) \times HP(k); Z_2) = Z_2[\alpha, \beta] / (\alpha^{2m+2} = \beta^{k+1} = 0),$$

where α is the 2-dimensional class coming from CP(2m+1) and β is the 4-dimensional class coming from HP(k). The total Stiefel-Whitney class of $CP(2m+1) \times HP(k)$ is

$$w = (1+\alpha)^{2m+2}(1+\beta)^{k+1}.$$

Let

$$u = 1 + u_1 + u_2 + \dots + u_r \in H^*(CP(2m+1) \times HP(k); Z_2)$$

denote the total Stiefel-Whitney class of ν^r . Then the cohomology of $RP(\nu^r)$ is

$$Z_2[\alpha, \beta, c]/(\alpha^{2m+2} = \beta^{k+1} = 0; c^r + u_1 c^{r-1} + u_2 c^{r-2} + \dots + u_r = 0)$$

and the total Stiefel-Whitney class of $RP(\nu^r)$ is

$$w(RP(\nu^{r})) = w\{(1+c)^{r} + u_{1}(1+c)^{r-1} + \dots + u_{r}\}\$$

= $(1+\alpha)^{2m+2}(1+\beta)^{k+1}\{(1+c)^{r} + u_{1}(1+c)^{r-1} + \dots + u_{r}\},\$

where $c \in H^1(RP(\nu^r); Z_2)$ is the Stiefel-Whitney class of the double cover of $RP(\nu^r)$ by $S(\nu^r)$ (see [1, p. 75]).

The class of $RP(\nu^r)$ in the bordism of RP^∞ is determined by the characteristic numbers

$$w_{i_1}(RP(\nu))\cdots w_{i_s}(RP(\nu))c^t[RP(\nu)]$$

where $i_1 + \cdots + i_s + t = \dim RP(\nu^r) = 4m + 2 + 4k + r - 1$. In order to find the value of such numbers, we have a formula of Conner [2, (3.1)]

$$\alpha^{i}\beta^{j}c^{t}[RP(\nu)] = \alpha^{i}\beta^{j}\overline{u}_{4m+2+4k-2i-4j}[CP(2m+1) \times HP(k)]$$

= coefficient of $\alpha^{2m+1}\beta^{k}$ in $\alpha^{i}\beta^{j}\overline{u}_{4m+2+4k-2i-4j}$,

where 2i + 4j + t = 4m + 2 + 4k + r - 1 and $\overline{u} = 1/u$ is the dual Stiefel-Whitney class of ν^r .

For convenience, we introduce the following characteristic classes which were initially introduced in [9].

$$w[j] = \frac{w(RP(\nu^{r}))}{(1+c)^{r-j}}$$

= $w\{(1+c)^{j} + u_{1}(1+c)^{j-1} + \dots + u_{j} + u_{j+1}(1+c)^{-1} + \dots\}$
= $1 + w[j]_{1} + w[j]_{2} + \dots + w[j]_{4m+2+4k+r-1},$

for which $w[j]_i$ is a polynomial in the classes $w_s(RP(\nu))$ and c. These classes satisfy (see [9])

$$w[i]_{2i} = w_i c^i + \text{ terms with smaller powers of } c,$$

$$w[i]_{2i+1} = (w_{i+1} + u_{i+1})c^i + \text{ terms with smaller powers of } c,$$

$$w[i]_{2i+2} = u_{i+1}c^{i+1} + \text{ terms with smaller powers of } c.$$

In particular,

$$\begin{split} & w[0]_1 = u_1 + w_1, \\ & w[0]_2 = u_1 c + (w_2 + u_1 w_1 + u_2), \\ & w[0]_4 = u_1 c^3 + (u_2 + w_1 u_1) c^2 + (u_3 + w_2 u_1) c + w_4 + w_3 u_1 + w_2 u_2 + w_1 u_3 + u_4. \end{split}$$

Suppose that $(M^{4m+2+4k+r}, T)$ is an involution fixing $CP(2m+1) \times HP(k)$. When $r \ge 4m+2+4k$, from [5] we know that the involution bounds. When r=0 or

r=1, it is not difficult to prove that every involution bounds. Then we assume that 1 < r < 4m + 2 + 4k.

The proof of Theorem 2 is divided into two cases: (I) k = 2n, (II) k = 2n + 1.

(I)
$$k = 2n$$

Proposition 1. Every involution fixing $CP(2m+1) \times HP(2n)$ bounds.

Proof. If there is a non-bounding involution fixing $CP(2m + 1) \times HP(2n)$, then the normal bundle ν^r is non-bounding. By Corollary 1, we know that a is odd. Then $u_1 = 0$, $u_2 = \alpha$, $w_2 = 0$ and $w[0]_2 = u_1c + (w_2 + u_1w_1 + u_2) = \alpha$. Let $2m + 1 = 2^p(2q + 1) - 1$ $(p \ge 1, q \ge 0)$. Then

$$w(RP(\nu^{r})) = (1+\alpha)^{2m+2}(1+\beta)^{2n+1}\{(1+c)^{r} + u_{1}(1+c)^{r-1} + \dots + u_{r}\}$$

= $(1+\alpha^{2^{p}})^{2q+1}(1+\beta)^{2n+1}\{(1+c)^{r} + u_{1}(1+c)^{r-1} + \dots + u_{r}\},$

where $\alpha^{2^{p}(2q+1)} = 0$ and $\beta^{2n+1} = 0$. Thus $(1 + \alpha^{2^{p}})^{2q+1} = 1 + \alpha^{2^{p}} + \dots + \alpha^{2^{p} \cdot 2q}$ and $(1 + \beta)^{2n+1} = 1 + \beta + \dots + \beta^{2n}$.

If r is odd, then

$$w_{2^{p+1}\cdot 2q+8n+r-1}(RP(\nu^{r})) = \alpha^{2^{p}\cdot 2q}\beta^{2n}(rc^{r-1} + (r-1)u_1c^{r-2} + \dots + u_{r-1})$$

is the top-dimensional class in $w(RP(\nu^r))$, and

$$w[0]_{2}^{2^{p-1}}w_{2^{p+1}\cdot 2q+8n+r-1}(RP(\nu^{r}))[RP(\nu^{r})] = \alpha^{2m+1}\beta^{2n}(rc^{r-1} + (r-1)u_{1}c^{r-2} + \dots + u_{r-1})[RP(\nu^{r})] = r\alpha^{2m+1}\beta^{2n}c^{r-1}[RP(\nu^{r})] = r\alpha^{2m+1}\beta^{2n}[CP(2m+1) \times HP(2n)] = r,$$

which is a nonzero characteristic number. Since we know that $RP(\nu^r)$ bounds, this is a contradiction.

If r = 4h + 2, then $\binom{r}{2} \equiv 1 \pmod{2}$, $\binom{r-2}{2} \equiv 0 \pmod{2}$ and

$$w[0]_{2}^{2^{p-1}}w_{2^{p+1}\cdot 2q+8n+r-2}(RP(\nu^{r}))c[RP(\nu^{r})]$$

= $\alpha^{2m+1}\beta^{2n}(c^{r-1}+\cdots+u_{r-2}c)[RP(\nu^{r})]$
= $\alpha^{2m+1}\beta^{2n}c^{r-1}[RP(\nu^{r})]$
= $\alpha^{2m+1}\beta^{2n}[CP(2m+1)\times HP(2n)] = 1 \neq 0,$

we get a contradiction.

If
$$r = 4h$$
, then $\binom{r}{2} \equiv 0 \pmod{2}$, $\binom{r-2}{2} \equiv 1 \pmod{2}$ and

$$w[0]_2^{2^p-2} w_{2^{p+1}\cdot 2q+8n+r-2} (RP(\nu^r)) c^3 [RP(\nu^r)]$$

$$= \alpha^{2m} \beta^{2n} (\alpha c^{r-1} + \dots + u_{r-2} c^3) [RP(\nu^r)]$$

$$= \alpha^{2m+1} \beta^{2n} c^{r-1} [RP(\nu^r)]$$

$$= \alpha^{2m+1} \beta^{2n} [CP(2m+1) \times HP(2n)] \neq 0,$$

we also get a contradiction.

So every involution fixing $CP(2m+1) \times HP(2n)$ bounds.

(II) k = 2n + 1

Suppose that $2m + 1 = 2^p(2q+1) - 1$ and $2n + 1 = 2^{p'}(2q'+1) - 1$, where $p \ge 1$, $q \ge 0$, $p' \ge 1$ and $q' \ge 0$. To determine the bordism classification of all involutions fixing $CP(2m+1) \times HP(2n+1)$, we explore the conditions under which the bundle with class $u = (1 + \alpha)^a (1 + \beta)^b (1 + \alpha^2 + \beta)^d (1 + \alpha^i \beta^{\frac{2^s - 2i}{4}})^{\varepsilon}$ bounds.

Lemma 4. Suppose that ν^r is the normal bundle of the fixed point set of a nonbounding involution fixing $CP(2m+1) \times HP(2n+1)$ with $u = (1+\alpha)^a (1+\beta)^b (1+\alpha^2+\beta)^d (1+\alpha^i\beta^{\frac{2^s-2i}{4}})^{\varepsilon} = u'(1+\alpha^i\beta^{\frac{2^s-2i}{4}})^{\varepsilon}$, where $u' = (1+\alpha)^a (1+\beta)^b (1+\alpha^2+\beta)^d$. If $\varepsilon = 1$ and $\frac{2^s-2i}{4}$ is odd, then $u'_{4m+8n+4} = \alpha^{2m}\beta^{2n+1}$ and $u_{4m+8n+4} = 0$.

Proof. Let $\frac{2^s-2i}{4} = 2l-1$ (l > 0). Then $i = 2^{s-1} - 4l + 2 = 2(2^{s-2} - 2l + 1)$. By Theorem 1, 2m+1 = i+1 and $8n+4 = 2^s - 2i$. Thus i = 2m and $\frac{2^s-2i}{4} = 2n+1$. We assert $u'_{4m+8n+4} \neq 0$. If $u'_{4m+8n+4} = 0$, then $u_{4m+8n+4} = u'_{4m+8n+4} + \alpha^{2m}\beta^{2n+1} = \alpha^{2m}\beta^{2n+1} \neq 0$. So $r \ge 4m+8n+4$. Since r < 4m+2+8n+4, we have r = 4m+8n+4 or r = 4m+1+8n+4.

(1) For r = 4m + 8n + 4, we have $w = (1 + \alpha)^{2m+2}(1 + \beta)^{2n+2}$, $w_1 = w_{r+1} = w_2 = w_{r+2} = 0$ and

$$\begin{split} w[r-1]_{2r} &= u_r c^r + u_r w_1 c^{r-1} + w_{r+1} c^{r-1} + u_r w_2 c^{r-2} + w_{r+2} c^{r-2} \\ &+ \text{ terms with smaller powers of } c \\ &= u_r c^r + \text{ terms with smaller powers of } c \\ &= u_r (u_1 c^{r-1} + u_2 c^{r-2} + \ldots + u_r) \\ &+ \text{ terms with dimension smaller than } 2r \\ &= u_r u_2 c^{r-2} + \text{ terms with smaller power of } c \\ &= \alpha^{2m+1} \beta^{2n+1} c^{r-2} + \text{ terms with smaller power of } c. \end{split}$$

Then $w[r-1]_{2r}c[RP(\nu^r)] = \alpha^{2m+1}\beta^{2n+1}c^{r-1}[RP(\nu^r)] \neq 0$, which is a contradiction.

(2) For r = 4m + 1 + 8n + 4, we have

$$w[r-2]_{2(r-1)} = u_{r-1}c^{r-1} + \text{ terms with smaller power of } c$$
$$= \alpha^{2m}\beta^{2n+1}c^{r-1} + \text{ terms with smaller power of } c$$

So $w[0]_2w[r-2]_{2(r-1)}[RP(\nu^r)] = \alpha^{2m+1}\beta^{2n+1}c^{r-1}[RP(\nu^r)] \neq 0$, which is a contradiction. Thus $u'_{4m+8n+4} \neq 0$, and it contains a monomial $\alpha^{i'}\beta^{j'}$ with $i' \leq 2m+1$, $j' \leq 2n+1$ and 2i'+4j' = 4m+8n+4. Such a monomial must be $\alpha^{2m}\beta^{2n+1}$. So $u'_{4m+8n+4} = \alpha^{2m}\beta^{2n+1}$ and $u_{4m+8n+4} = 0$.

Lemma 4 shows that terms of the form α^{odd} , $\alpha^{odd}\beta^{odd}$, $\alpha^{odd}\beta^{even}$, $\alpha^{even}\beta^{odd}$, β^{odd} in u can only be given by u'.

Lemma 5. If ν^r is the normal bundle of the fixed point set of a non-bounding involution fixing $CP(2m+1) \times HP(2n+1)$ with $u = (1+\alpha)^a (1+\beta)^b (1+\alpha^2+\beta)^d (1+\alpha^i\beta^{\frac{2^s-2i}{4}})^{\varepsilon}$, then b and d are odd.

Proof. If b and d are even, by Lemma 4, u and w contain only even power of β , where w denotes the total Stiefel-Whitney class of $CP(2m+1) \times HP(2n+1)$. Thus ν^r bounds, which is a contradiction.

By Corrolary 1, we know that a is odd. If b is even and d is odd, then

$$u' = (1 + \alpha)^{a} (1 + \beta)^{b} (1 + \alpha^{2} + \beta)^{d}$$

= (1 + \alpha)(1 + \alpha^{2} + \beta)(1 + \alpha)^{a-1} (1 + \beta)^{b} (1 + \alpha^{2} + \beta)^{d-1}
= (1 + \alpha + \alpha^{2} + \alpha^{3} + \beta + \alpha\beta)(\sum \alpha^{even}\beta^{even}).

If b is odd and d is even, then

$$u' = (1 + \alpha)^{a} (1 + \beta)^{b} (1 + \alpha^{2} + \beta)^{d}$$

= $(1 + \alpha) (1 + \beta) (1 + \alpha)^{a-1} (1 + \beta)^{b-1} (1 + \alpha^{2} + \beta)^{d}$
= $(1 + \alpha + \beta + \alpha\beta) (\sum \alpha^{even} \beta^{even}).$

For both cases, we have $w[0]_2 = u_1c + (w_2 + u_1w_1 + u_2) = \alpha$ and

$$w[0]_4 = u_1 c^3 + (u_2 + w_1 u_1)c^2 + (u_3 + w_2 u_1)c + w_4 + w_3 u_1 + w_2 u_2 + w_1 u_3 + u_4$$

= $\alpha c^2 + \varepsilon_1 \alpha^2 + \beta$,

where $\varepsilon_1 = 0$ or 1. Then

$$w[0]_2^{2m+1}w[0]_4^{2n+1}c^{r-1}[RP(\nu^r)] = \alpha^{2m+1}\beta^{2n+1}c^{r-1}[RP(\nu^r)] \neq 0,$$

which is a contradiction. So b and d are odd.

Lemma 6. Suppose that ν^r is a vector bundle over $CP(2m+1) \times HP(2n+1)$ and the total Stiefel-Whitney class of ν^r has the form $u = (1+\alpha)^a(1+\beta)^b(1+\alpha^2+\beta)^d(1+\alpha^i\beta^{\frac{2^s-2i}{4}})^{\varepsilon}$, for which a, b and d are odd. Then for $2m+1 \ge 5$, ν^r bounds if and only if

- (1) $2m + 1 < 2^{p'+1} 2$, $2n + 1 = 2^{p'}(2q' + 1) 1$, where $p' \ge 1$ and $q' \ge 0$,
- (2) $2m + 1 < 2^{t+1} 2$, where $b d = 2^t (2f + 1)$,
- (3) $\varepsilon = 0$ or $\varepsilon = 1$ and $2m + 1 \neq 2^{j+1} 1$, where 2^j is the largest power of 2 in the common terms of the 2-adic expansions of 2m + 1 and 8n + 4.

Proof.

$$u = (1+\alpha)^{a} (1+\beta)^{b} (1+\alpha^{2}+\beta)^{d} (1+\alpha^{i}\beta^{\frac{2^{s}-2i}{4}})^{\varepsilon} = (1+\alpha+\alpha^{2}+\alpha^{3}+\alpha^{2}\beta+\beta^{2}+\alpha^{3}\beta+\alpha\beta^{2})\hat{u},$$

where $\hat{u} = (1+\alpha)^{a-1}(1+\beta)^{b-1}(1+\alpha^2+\beta)^{d-1}(1+\alpha^i\beta^{\frac{2^s-2i}{4}})^{\varepsilon}$. Since $2m+1 \ge 5$, we have $i \ne 2$, $u_1 = 0$, $u_2 = \alpha$, $u_3 = 0$, $u_4 = \varepsilon_1\alpha^2$, $u_5 = 0$, $u_6 = \varepsilon_1\alpha^3$, $u_7 = 0$ and $u_8 = \alpha^2\beta + \epsilon_2\alpha^4 + \epsilon_3\beta^2$, where $\epsilon_k = 0$ or $1 \ (1 \le k \le 2)$ and $\epsilon_3 \equiv \binom{b}{2} + \binom{d}{2} + bd \equiv \binom{b+d}{2} \pmod{2}$.

407

. . .

Since
$$w = (1 + \alpha)^{2m+2}(1 + \beta)^{2n+2} = (1 + \alpha)^{2m+2}(1 + \beta^{2^{p'}})^{2q'+1}$$
, we have
 $w_{2i'+1} = 0, \ w_{2i'} = {\binom{2m+2}{i'}} \alpha^{i'} \text{ for } i' < 2^{p'+1}$
 $w_{2^{p'+2}} = \beta^{2^{p'}} + {\binom{2m+2}{2^{p'+1}}} \alpha^{2^{p'+1}}.$
Let $\tilde{w}_{2^{p'+2}} = w_{2^{p'+2}} + {\binom{2m+2}{2^{p'+1}}} u_2^{2^{p'+1}} = \beta^{2^{p'}}.$
If $2m+1 > 2^{p'+1} - 2$, we have

$$\begin{split} \tilde{w}_{2p'+2}^{2q'}(u_8 + \epsilon_2 u_2^4)^{2^{p'}-1} u_2^{2m+1-2(2^{p'}-1)} [CP(2m+1) \times HP(2n+1)] \\ &= \beta^{2^{p'} \cdot 2q'} (\alpha^2 \beta + \epsilon \beta^2)^{2^{p'}-1} \alpha^{2m+1-2(2^{p'}-1)} [CP(2m+1) \times HP(2n+1)] \\ &= \alpha^{2m+1} \beta^{2n+1} [CP(2m+1) \times HP(2n+1)], \end{split}$$

which is nonzero. Thus the bundle ν^r does not bound. So we suppose $2m + 1 < 2^{p'+1} - 2$. The following argument is divided into two cases: (1) $u_8 = \alpha^2 \beta + \epsilon_2 \alpha^4$, (2) $u_8 = \alpha^2 \beta + \epsilon_2 \alpha^4 + \beta^2$.

(1) $u_8 = \alpha^2 \beta + \epsilon_2 \alpha^4$

In this case, $\epsilon_3 \equiv \binom{b+d}{2} \equiv 0 \pmod{2}$, then b+d is divisible by 4. We write $b+d = 2^k \cdot \pmod{2} \equiv 4$. Then

$$\begin{split} u'' &= \frac{u}{(1+u_2)^a} \\ &= (1+\beta)^b (1+\alpha^2+\beta)^d (1+\alpha^i \beta^{\frac{2^s-2i}{4}})^{\varepsilon} \\ &= [(1+\beta)^{2^k-1} (1+\alpha^2+\beta)]^d (1+\beta)^{b-(2^k-1)d} (1+\alpha^i \beta^{\frac{2^s-2i}{4}})^{\varepsilon} \\ &= [1+\beta^{2^k}+\alpha^2 (1+\beta)^{2^k-1}]^d (1+\beta)^{b+d-2^k d} (1+\alpha^i \beta^{\frac{2^s-2i}{4}})^{\varepsilon} \\ &= [1+\alpha^2+\alpha^2\beta+\dots+\alpha^2\beta^{2^k-2}+(\alpha^2\beta^{2^k-1}+\beta^{2^k})]^d (1+\beta)^{b+d-2^k d} \\ &\times (1+\alpha^i \beta^{\frac{2^s-2i}{4}})^{\varepsilon} \end{split}$$

with $b + d - 2^k d \equiv 2^k \cdot (\text{odd}) - 2^k \cdot (\text{odd}) \equiv 0 \pmod{2^{k+1}}$.

(i) If $2^k > 2^{p'}$, then the characteristic ring of ν^r (i.e. the subring of $H^*(CP(2m+1) \times HP(2n+1); \mathbb{Z}_2)$ generated by the classes u_i and w_i) contains α , $\alpha^2 \beta$, \cdots , $\alpha^2 \beta^{2^{p'}-1}$ and $\beta^{2^{p'}}$. So we have a nonzero characteristic number

$$(\beta^{2^{p'}})^{2q'}(\alpha^2\beta^{2^{p'-1}})\alpha^{2m+1-2}[CP(2m+1)\times HP(2n+1)].$$

(ii) If $2^k \leq 2^{p'}$, then α , $\alpha^2 \beta$, \cdots , $\alpha^2 \beta^{2^k-2}$ and $\alpha^2 \beta^{2^k-1} + \beta^{2^k}$ are characteristic classes. Let $2n + 1 = 2^k - 1 + 2^k \cdot l$. We have a nonzero characteristic number for $2m+1 \ge 5$

$$(\alpha^2 \beta^{2^k - 1} + \beta^{2^k})^l \alpha^2 \beta^{2^k - 2} \alpha^2 \beta \alpha^{2m + 1 - 4} [CP(2m + 1) \times HP(2n + 1)].$$

These nonzero characteristic numbers show that the bundle is always non-bounding for $u_8 = \alpha^2 \beta + \epsilon_2 \alpha^4$.

In this case,
$$\epsilon_3 \equiv \binom{b+d}{2} \equiv 1 \pmod{2}$$
, so $b+d \equiv 2 \pmod{4}$ and $b-d \equiv b+d-2d \equiv 2-2 \equiv 0 \pmod{4}$. We write $b-d = 2^t(2f+1)$ with $2^t \ge 4$. Then

$$u'' = \frac{u}{(1+u_2)^a} = (1+\alpha^2+\alpha^2\beta+\beta^2)^d(1+\beta)^{b-d}(1+\alpha^i\beta^{\frac{2^s-2i}{4}})^{\varepsilon}$$
$$= (1+\alpha^2+\alpha^2\beta+\beta^2)^d(1+\beta)^{2^t(2f+1)}(1+\alpha^i\beta^{\frac{2^s-2i}{4}})^{\varepsilon}$$

and

(2) $u_8 = \alpha^2 \beta + \epsilon_2 \alpha^4 + \beta^2$

$$u^{'''} = \frac{u^{''}}{(1+u_2^2+u_8+\epsilon_2 u_2^4)^d} = (1+\beta)^{2^t(2f+1)}(1+\alpha^i\beta^{\frac{2^s-2i}{4}})^{\varepsilon}.$$

If $\varepsilon = 0$ and $2^t < 2^{p'}$, the characteristic ring of the bundle is generated by the classes α , $\alpha^2\beta + \beta^2$ and β^{2^t} . If $\varepsilon = 0$ and $2^t \ge 2^{p'}$, the characteristic ring of the bundle is generated by the classes α , $\alpha^2\beta + \beta^2$ and $\beta^{2^{p'}}$.

If $\varepsilon = 1$, then write $2^j < 2m + 1 < 2^{j+1}$, where 2^j is the largest common term of 2m+1 and 8n+4 ($8n+4 = 2^{p'+2}2q'+2^{p'+2}-4 = 2^{p'+2}2q'+2^{p'+1}+\dots+2^{j+1}+2^j+\dots+2^{j+1}+2^{j+$

characteristic ring is generated by the classes α , $\alpha^2 \beta + \beta^2$ and $\alpha^i \beta^{\frac{2^s - 2i}{4}}$

For $\varepsilon = 0$ or 1, write $2n + 1 = 2^t - 1 + 2^t l$. If $2^{t+1} - 2 < 2m + 1 < 2^{p'+1} - 2$, we have

$$(\alpha^2\beta + \beta^2)^{2^t - 1} (\beta^{2^t})^l \alpha^{2m + 1 - (2^{t+1} - 2)} [CP(2m + 1) \times HP(2n + 1)] \neq 0,$$

which shows that the bundle is non-bounding.

Now we suppose $2m + 1 < 2^{t+1} - 2$.

If the class $\alpha^i \beta^{\frac{2^s-2i}{4}}$ is present (i.e. $\varepsilon = 1$), then $\beta^{2^{p'}} = 0$, $\alpha^i \beta^{\frac{2^s-2i}{4}} = \alpha^{2^j} \beta^{\frac{2^s-2j+1}{4}} = \alpha^{2^j} \beta^{\frac{2^s-2j+1}{4}} = \alpha^{2^j} \beta^{\frac{2^s-2j+1}{4}}$ = $\alpha^{2^j} \beta^{2^{p'}-2^{j-1}}$ and $(\alpha^{2^j} \beta^{2^{p'}-2^{j-1}})^2 = 0$. Since $2^t + 2^{p'} - 2^{j-1} \ge 2^{p'}$, we have $\beta^{2^t} \cdot 2^{p'}$ $\alpha^{2^{j}}\beta^{2^{p'}-2^{j-1}}=0$. The only possible characteristic number involving $\alpha^{2^{j}}\beta^{2^{p'}-2^{j-1}}$ which could be nonzero would be of the form

$$\alpha^{x'}(\beta(\alpha^2+\beta))^{y'}(\alpha^{2^j}\beta^{2^{p'}-2^{j-1}})[CP(2m+1)\times HP(2n+1)],$$

and the value of this class is the coefficient of $\alpha^{2m+1-2^j-x'}\beta^{2^{j-1}-1}$ in $(\beta(\alpha^2+\beta))^{y'}$, where $2x' + 8y' = 4m + 2 + 8n + 4 - 2^{j+1} - (2^{p'+2} - 2^{j+1}) = 4m - 2$ and $y' \le 2^{j-1} - 1$. The coefficient is

$$\binom{y'}{\frac{2m+1-2^{j}-x'}{2}} \equiv \binom{y'}{2y'-(2^{j-1}-1)} \equiv \binom{y'}{2^{j-1}-1-y'} \mod 2.$$

It is nonzero if and only if $y' = 2^{j-1} - 1$, and in this case $2m + 1 = 2^{j+1} - 1$.

If $\varepsilon = 0$, or $\varepsilon = 1$ and $2m + 1 \neq 2^{j+1} - 1$, then the characteristic numbers which could be nonzero would involve only polynomials in α , $\alpha^2\beta + \beta^2$ and $\beta^{2^{k'}}$, where $2^{k'} = \min(2^t, 2^{p'})$. We will show that every characteristic number involving α , $\alpha^2\beta + \beta^2$ and $\beta^{2^{k'}}$ is zero.

Suppose that there exist some \tilde{x} , \tilde{y} and \tilde{z} such that

$$\alpha^{\tilde{x}}(\beta(\alpha^2+\beta))^{\tilde{y}}\beta^{2^{k'}\cdot\tilde{z}}[CP(2m+1)\times HP(2n+1)] = \begin{pmatrix} \tilde{y}\\ \frac{2m+1-\tilde{x}}{2} \end{pmatrix} \equiv 1 \pmod{2},$$

where

$$\begin{cases} 2\tilde{x} + 8\tilde{y} + 2^{k'+2} \cdot \tilde{z} = 4m + 2 + 8n + 4, \\ 2\tilde{y} - \frac{2m+1-\tilde{x}}{2} + 2^{k'} \cdot \tilde{z} = 2n + 1. \end{cases}$$

If $\tilde{x} = 2m + 1$, we have $2\tilde{y} + 2^{k'} \cdot \tilde{z} = 2n + 1$, which is impossible since $k' \ge 1$. So $\tilde{x} < 2m + 1$ and \tilde{x} is odd.

Writing $2n + 1 = 2^{k'} - 1 + 2^{k'}l$, we have $\beta^{2^{k'}(l+1)} = 0$. Thus $\tilde{z} \leq l$. Recall that $2m + 1 < 2^{k'+1} - 2$, then $(\alpha^2\beta + \beta^2)^{2^{k'}} = \beta^{2^{k'+1}}$. Suppose $\tilde{y} < 2^{k'}$. We have $4\tilde{y} < 2^{k'+2}$. From

$$\begin{split} 4\tilde{y} &= 4n + 2 + 2m + 1 - 2^{k'+1}\tilde{z} - \tilde{x} \\ &= 2^{k'+1} - 2 + 2^{k'+1}l + 2m + 1 - 2^{k'+1}\tilde{z} - \tilde{x} \\ &= 2^{k'+1}(l - \tilde{z}) + 2^{k'+1} - 2 + 2m + 1 - \tilde{x} \\ &\ge 2^{k'+1}(l - \tilde{z}) + 2^{k'+1}, \end{split}$$

we know that $\tilde{z} = l$ and $4\tilde{y} = 2^{k'+1} - 2 + 2m + 1 - \tilde{x}$. Thus $\tilde{y} = 2^{k'-1} + \frac{2m+1-\tilde{x}-2}{4}$.

$$\begin{pmatrix} \tilde{y} \\ \frac{2m+1-\tilde{x}}{2} \end{pmatrix} \equiv \begin{pmatrix} \tilde{y} \\ 2\tilde{y} - (2^{k'} - 1) \end{pmatrix} \equiv \begin{pmatrix} \tilde{y} \\ 2^{k'} - 1 - \tilde{y} \end{pmatrix} \equiv 1 \pmod{2}$$

implies $\tilde{y} = 2^{k'} - 1$. So $2m + 1 = 2^{k'+1} - 2 + \tilde{x} \ge 2^{k'+1} - 2$, and this is a contradiction. Thus every characteristic number involving α , $\alpha^2\beta + \beta^2$ and $\beta^{2^{k'}}$ is zero and ν^r bounds.

The proof is completed.

Proposition 2. For $2m + 1 = 2^p - 1$ and $2n + 1 = 2^{p'} - 1$, every involution fixing $CP(2m+1) \times HP(2n+1)$ bounds.

Proof. If $2m + 1 = 2^p - 1$ and $2n + 1 = 2^{p'} - 1$, then $w = (1 + \alpha^{2^p})(1 + \beta^{2^{p'}}) = 1$. So the bordism class of the normal bundle ν^r is totally determined by the class u.

By R_* we denote the characteristic ring of the map of $RP(\nu^r)$ into RP^{∞} , i.e. the subring of $H^*(RP(\nu^r); Z_2)$ generated by c and the classes $w_i(RP(\nu^r))$, where

$$w(RP(\nu^{r})) = (1+c)^{r} + u_{1}(1+c)^{r-1} + \dots + u_{r}.$$

Since $c \in R_*$, we can solve inductively to obtain $u_i \in R_*$ for $1 \le i \le r$. So R_* contains the characteristic ring of ν^r (i.e. the classes u_1, u_2, \dots, u_r). For every partition ω of 4m + 2 + 8n + 4, we have $u_{\omega}[CP(2m + 1) \times HP(2n + 1)] = u_{\omega}c^{r-1}[RP(\nu^r)] = 0$. So ν^r bounds.

Lemma 7 (See [5]). Let (M^n, T) be a smooth involution on a closed n-dimensional manifold with the fixed point data $(F, \nu) = \bigsqcup_r (F^{n-r}, \nu^r)$. If $f(x_1, \dots, x_n)$ is a symmetric polynomial over Z_2 in n variables of degree at most n, then

$$f(x_1, \cdots, x_n)[M^n] = \sum_r \frac{f(1+y_1, \cdots, 1+y_r, z_1, \cdots, z_{n-r})}{\prod_{i=1}^r (1+y_i)} [F^{n-r}],$$

where the expressions are evaluated by replacing the elementary symmetric functions $\sigma_i(x)$, $\sigma_i(y)$, and $\sigma_i(z)$ by the Stiefel-Whitney classes $w_i(M)$, $w_i(\nu^r)$, and $w_i(F)$, respectively, and taking the value of the resulting cohomology class on the fundamental homology class of M or F.

Lemma 8 (See [5, p. 317]). Let $\sigma_j(x_1, \dots, x_r, x_{r+1}, \dots, x_n)$ be the *j*-th elementary symmetric function in n variables. Then

$$\sigma_j(1+y_1,\cdots,1+y_r,z_1,\cdots,z_{n-r})$$

= $\sum_{p+q\leq j} {r-p \choose j-p-q} \sigma_p(y_1,\cdots,y_r) \sigma_q(z_1,\cdots,z_{n-r}).$

Proposition 3. For $2m + 1 \ge 5$, every involution fixing $CP(2m + 1) \times HP(2n + 1)$ bounds.

Proof. If there is a non-bounding involution fixing $CP(2m+1) \times HP(2n+1)$, then the total Stiefel-Whitney class of the normal bundle ν^r has the form

$$u = (1+\alpha)^{a} (1+\beta)^{b} (1+\alpha^{2}+\beta)^{d} (1+\alpha^{i}\beta^{\frac{2^{a}-2i}{4}})^{\varepsilon} = (1+\alpha+\alpha^{2}+\alpha^{3}+\alpha^{2}\beta+\beta^{2}+\alpha^{3}\beta+\alpha\beta^{2})\hat{u},$$

where a, b and d are all odd and $\hat{u} = (1+\alpha)^{a-1}(1+\beta)^{b-1}(1+\alpha^2+\beta)^{d-1}(1+\alpha^i\beta^{\frac{2^s-2i}{4}})^{\varepsilon}$. Since $2m+1 \ge 5$, we have $2^s \ge 16$. So $u_1 = 0$, $u_2 = \alpha$, $u_3 = 0$, $u_4 = \varepsilon_1 \alpha^2$, $u_5 = 0$, $u_6 = \varepsilon_1 \alpha^3$, $u_7 = 0$ and $u_8 = \alpha^2 \beta + \epsilon_2 \alpha^4 + \epsilon_3 \beta^2$, where $\epsilon_k = 0$ or $1 \ (1 \le k \le 3)$.

The following argument is divided into two cases: (1) $u_8 = \alpha^2 \beta + \epsilon_2 \alpha^4$, (2) $u_8 = \alpha^2 \beta + \epsilon_2 \alpha^4 + \beta^2$.

(1)
$$u_8 = \alpha^2 \beta + \epsilon_2 \alpha^4$$

Just as in Lemma 6, write $b + d = 2^k \cdot (\text{odd})$ with $2^k \ge 4$.

(i) If $2^k > 2^{p'}$, the characteristic ring of ν^r contains the classes α , α^2 , $\alpha^2\beta$, \cdots , $\alpha^2\beta^{2^{p'}-2}$, $\alpha^2\beta^{2^{p'}-1}$ and $\beta^{2^{p'}}$.

For $2^{p'} = 2$, we have $w_1 = w_2 = w_3 = w_5 = w_7 = 0$, $w_4 = \binom{2m+2}{2}\alpha^2$, $w_6 = \binom{2m+2}{3}\alpha^3$ and $w_8 = \binom{2m+2}{4}\alpha^4 + \beta^2$. From Lemma 8, we know

$$\sigma_2(1+y,z) = \binom{r}{2} + \binom{r-1}{1}\sigma_1(y) + \binom{r}{1}\sigma_1(z) + \sigma_2(y) + \sigma_1(y)\sigma_1(z) + \sigma_2(z)$$
$$= \binom{r}{2} + \alpha.$$

$$\begin{aligned} &\text{H2} & \text{Y. WANG AND Y. CHEN} \\ &\text{Let } \sigma_2'(x) = \sigma_2(x) + \binom{r}{2}. \text{ Then } \sigma_2'(1+y,z) = \sigma_2(1+y,z) + \binom{r}{2} = \alpha. \\ &\sigma_8(1+y,z) = \sum_{p+q \leq 8} \binom{r-p}{8-p-q} \sigma_p(y) \\ &\sigma_q(z) = \binom{r}{8} + \binom{r-1}{7} \sigma_1(y) + \binom{r}{7} \sigma_1(z) + \binom{r-2}{6} \sigma_2(y) + \binom{r-1}{6} \sigma_1(y) \sigma_1(z) \\ &+ \binom{r}{6} \sigma_2(z) + \binom{r-3}{5} \sigma_3(y) + \binom{r-2}{5} \sigma_2(y) \sigma_1(z) + \binom{r-1}{5} \sigma_1(y) \sigma_2(z) \\ &+ \binom{r}{5} \sigma_3(z) + \binom{r-4}{4} \sigma_4(y) + \binom{r-3}{4} \sigma_3(y) \sigma_1(z) + \binom{r-2}{4} \sigma_2(y) \sigma_2(z) \\ &+ \binom{r-1}{4} \sigma_1(y) \sigma_3(z) + \binom{r}{4} \sigma_4(z) + \binom{r-5}{3} \sigma_5(y) + \binom{r-4}{3} \sigma_4(y) \sigma_1(z) \\ &+ \binom{r-3}{3} \sigma_3(y) \sigma_2(z) + \binom{r-2}{3} \sigma_2(y) \sigma_3(z) + \binom{r-1}{3} \sigma_1(y) \sigma_4(z) \\ &+ \binom{r-3}{3} \sigma_5(z) + \binom{r-6}{2} \sigma_6(y) + \binom{r-2}{2} \sigma_2(y) \sigma_4(z) + \binom{r-1}{2} \sigma_4(y) \sigma_2(z) \\ &+ \binom{r-3}{2} \sigma_3(y) \sigma_3(z) + \binom{r-2}{2} \sigma_2(y) \sigma_4(z) + \binom{r-1}{2} \sigma_1(y) \sigma_5(z) \\ &+ \binom{r-4}{1} \sigma_4(y) \sigma_3(z) + \binom{r-3}{1} \sigma_3(y) \sigma_4(z) + \binom{r-2}{1} \sigma_2(y) \sigma_5(z) \\ &+ \binom{r-1}{1} \sigma_1(y) \sigma_6(z) + \binom{r}{1} \sigma_7(z) + \sigma_8(y) + \sigma_7(y) \sigma_1(z) + \sigma_6(y) \sigma_2(z) \\ &+ \sigma_5(y) \sigma_3(z) + \sigma_4(y) \sigma_4(z) + \sigma_4(y) \sigma_5(z) + \sigma_2(y) \sigma_6(z) + \sigma_1(y) \sigma_7(z) + \sigma_8(z) \\ &= \binom{r}{8} + \binom{r-2}{6} \alpha + \varepsilon_1 \binom{r-4}{4} \alpha^2 + \binom{r}{4} \binom{2m+2}{3} \alpha^3 + \alpha^2 \beta + \varepsilon_2 \alpha^4 \\ &+ \varepsilon_1 \binom{2m+2}{2} \alpha^4 + \binom{2m+2}{3} \alpha^4 + \binom{2m+2}{4} \alpha^4 + \beta^2. \end{aligned}$$

Let

$$\begin{aligned} \sigma_8'(x) &= \sigma_8(x) + \binom{r}{8} + \binom{r-2}{6} \sigma_2'(x) + \varepsilon_1 \binom{r-4}{4} \sigma_2'(x)^2 + \binom{r}{4} \binom{2m+2}{2} \sigma_2'(x)^2 \\ &+ \varepsilon_1 \binom{r-6}{2} \sigma_2'(x)^3 + \binom{r-2}{2} \binom{2m+2}{2} \sigma_2'(x)^3 + \binom{r}{2} \binom{2m+2}{3} \sigma_2'(x)^3 \\ &+ \varepsilon_2 \sigma_2'(x)^4 + \varepsilon_1 \binom{2m+2}{2} \sigma_2'(x)^4 + \binom{2m+2}{3} \sigma_2'(x)^4 + \binom{2m+2}{4} \sigma_2'(x)^4. \end{aligned}$$

Then $\sigma_8'(1+y,z) = \alpha^2 \beta + \beta^2$. Taking $f(x) = (\sigma_8'(x))^{2q'+1} (\sigma_2'(x))^{2m+1-2}$ with deg $f = 8(2q'+1) + 2(2m+1-2) = 4m+2 + 8n + 4 < \dim M = 4m+2 + 8n + 4 + r$, by

Lemma 7 we have

$$0 = f(x)[M] = \frac{(\alpha^2 \beta + \beta^2)^{2q'+1} \alpha^{2m+1-2}}{\prod_{i=1}^r (1+y_i)} [CP(2m+1) \times HP(2n+1)] = 1,$$

which is a contradicition.

For $2^{p'} \ge 4$, we have

$$w_{2i'} = \binom{2m+2}{i'} \alpha^{i'} w_{2i'+1} = 0 \ (0 \le i' < 2^{p'+1}), \ w_{2^{p'+2}} = \binom{2m+2}{2^{p'+1}} \alpha^{2^{p'+1}} + \beta^{2^{p'}}, u_{4i'} = \alpha^2 \beta^{i'-1} + \varepsilon_{i'} \alpha^{2i'}, \ u_{4i'+1} = 0, \ u_{4i'+2} = \gamma'_i \alpha^3 \beta^{i'-1} + \delta'_i \alpha^{2i'+1}, u_{4i'+3} = 0 \ (2 \le i' \le 2^{p'}).$$

Using the above method, we get $\sigma'_2(x)$ and $\sigma'_8(x)$ such that $\sigma'_2(1+y,z) = \alpha$ and $\sigma'_8(1+y,z) = \alpha^2\beta$. In the same way, adding a polynomial in $\sigma'_2(x)$ and $\sigma'_8(x)$ to $\sigma_{12}(x)$ to get $\sigma'_{12}(x)$ such that $\sigma'_{12}(1+y,z) = \alpha^2\beta^2$, adding a polynomial in $\sigma'_2(x)$, $\sigma'_8(x)$ and $\sigma'_{12}(x)$ to $\sigma_{16}(x)$ to get $\sigma'_{16}(x)$ such that $\sigma'_{16}(1+y,z) = \alpha^2\beta^3$, \cdots , adding a polynomial in $\sigma'_2(x)$, $\sigma'_8(x)$, \cdots , $\sigma'_{2^{p'+2}-4}(x)$ to $\sigma_{2^{p'+2}}(x)$ to get $\sigma'_{2^{p'+2}}(x)$ such that $\sigma'_{2^{p'+2}}(1+y,z) = \alpha^2\beta^{2^{p'}-1} + \beta^{2^{p'}}$ and taking

$$f(x) = (\sigma'_{2^{p'+2}}(x))^{2q'+1} (\sigma'_2(x))^{2m+1-2},$$

from Lemma 7 we get a contradiction.

(ii) If $4 \leq 2^k \leq 2^{p'}$, writing $2n + 1 = 2^k - 1 + 2^k l$, from Lemma 6 we know that the characteristic ring of ν^r contains the classes α , α^2 , $\alpha^2\beta$, \cdots , $\alpha^2\beta^{2^k-2}$ and $\alpha^2\beta^{2^{k}-1} + \beta^{2^k}$. So $u_{4i'} = \alpha^2\beta^{i'-1} + \epsilon'_i\alpha^{2i'}$, $u_{4i'+1} = 0$, $u_{4i'+2} = \gamma'_i\alpha^3\beta^{i'-1} + \delta'_i\alpha^{2i'+1}$, $u_{4i'+3} = 0$ $(2 \leq i' \leq 2^k - 1)$ and $u_{2^{k+2}} = \alpha^2\beta^{2^k-1} + \beta^{2^k} + \epsilon_{2^k}\alpha^{2^{k+1}}$.

Using the above method, we get a series of symmetric function $\sigma'_2(x)$, $\sigma'_8(x)$, ..., $\sigma'_{2^{k+2}-4}(x)$ and $\sigma'_{2^{k+2}}(x)$ such that $\sigma'_2(1+y,z) = \alpha$, $\sigma'_8(1+y,z) = \alpha^2\beta$, ..., $\sigma'_{2^{k+2}-4}(1+y,z) = \alpha^2\beta^{2^k-2}$ and $\sigma'_{2^{k+2}}(1+y,z) = \alpha^2\beta^{2^k-1} + \beta^{2^k}$. Taking

$$f(x) = (\sigma'_{2^{k+2}}(x))^l \sigma'_{2^{k+2}-4}(x) \sigma'_8(x) (\sigma'_2(x))^{2m+1-4},$$

from Lemma 7 we get a contradiction. So $u_8 = \alpha^2 \beta + \epsilon_2 \alpha^4$ does not occur.

(2) $u_8 = \alpha^2 \beta + \epsilon_2 \alpha^4 + \beta^2$

,

From Lemma 6, we need to consider the following cases:

(a)
$$\varepsilon = 1$$
 and $2m + 1 = 2^{j+1} - 1$,

(b)
$$2^{p'} > 2^t \ge 4$$
 and $2m + 1 > 2^{t+1} - 2$, where $b - d = 2^t (2f + 1)$ with $2^t \ge 4$,

(c) $2 \le 2^{p'} \le 2^t$ and $2m + 1 > 2^{p'+1} - 2$.

In the case (a), $\varepsilon = 1$ implies $2n + 1 = 2^{p'} - 1$. By Proposition 2 we know that every involution fixing $CP(2m + 1) \times HP(2n + 1)$ bounds.

In the case (b), $w_{2i'} = \binom{2m+2}{i'} \alpha^{i'}$ and $w_{2i'+1} = 0 \ (0 \le i' < 2^{t+1})$. $u_{2i'} = \lambda_{i'} (\alpha^2 \beta + \beta^2)^{j'} \alpha^{i'-4j'} + \epsilon_{i'} \alpha^{i'}$, where $\lambda_{i'}$ and $\epsilon_{i'}$ are 0 or 1 $(4 < i' < 2^{t+1})$. $u_{2t+2} = \beta^{2^t} + \lambda_{2t+1} (\alpha^2 \beta + \beta^2)^{j'} \alpha^{2^{t+1}-4j'} + \epsilon_{2t+1} \alpha^{2^{t+1}}$. Let $\sigma'_2(x)$ and $\sigma'_8(x)$ as in (1)-(i). Then $\sigma'_2(1+y,z) = \alpha$ and $\sigma'_8(1+y,z) = \alpha^2 \beta + \beta^2$. We can add a polynomial in $\sigma'_2(x)$ and $\sigma'_8(x)$ to $\sigma_{2t+2}(x)$ to get $\sigma'_{2t+2}(x)$ such that $\sigma'_{2t+2}(1+y,z) = \beta^{2^t}$. Writing $2n+1 = 2^t - 1 + 2^t l$ and taking

$$f(x) = (\sigma'_{2^{t+2}}(x))^l (\sigma'_8(x))^{2^t - 1} (\sigma'_2(x))^{2m + 1 - (2^{t+1} - 2)},$$

from Lemma 7 we get a contradiction.

In the case (c), we have $w_{2i'} = \binom{2m+2}{i'} \alpha^{i'}$, $w_{2i'+1} = 0$ $(0 < i' < 2^{p'+1})$ and $w_{2p'+2} = \beta^{2^{p'}} + \binom{2m+2}{2^{p'+1}} \alpha^{2^{p'+1}}$. For $2^{p'} = 2$ and r odd, $w(RP(\nu^r)) = (1 + \alpha^{2^p})^{2q+1} (1 + \beta^2)^{2q'+1} \{(1+c)^r + u_1(1+c)^{r-1} + \ldots + u_r\}$ $= \alpha^{2^{p} \cdot 2q} \beta^{4q'} (rc^{r-1} + (r-1)u_1c^{r-2} + \ldots + u_{r-1}) + \text{terms with a smaller dimension.}$

Then

$$w_{2^{p+1}\cdot 2q+16q'+r-1}(RP(\nu^{r})) = \alpha^{2^{p}\cdot 2q}\beta^{4q'}(rc^{r-1}+(r-1)u_{1}c^{r-2}+\ldots+u_{r-1})$$

is the top-dimensional class in $w(RP(\nu^r))$. Since $w[0]_2 = u_1c + (w_2 + u_1w_1 + u_2) = \alpha$ and

$$\begin{split} w[0]_8 &= u_1 c^7 + u_2 c^6 + (u_3 + w_2 u_1) c^5 + (u_4 + w_2 u_2) c^4 + (u_5 + w_4 u_1) c^3 \\ &+ (u_6 + w_4 u_2) c^2 + (u_7 + w_2 u_5 + w_4 u_3 + w_6 u_1) c + u_8 + w_2 u_6 \\ &+ w_4 u_4 + w_6 u_2 + w_8 \\ &= \alpha c^6 + \varepsilon_1 \alpha^2 c^4 + \alpha^2 \beta + \varepsilon_2 \alpha^4 + \varepsilon_1 \binom{2m+2}{2} \alpha^4 + \binom{2m+2}{3} \alpha^4 + \binom{2m+2}{4} \alpha^4 \\ &+ \left(\varepsilon_1 + \binom{2m+2}{2}\right) \alpha^3 c^2, \end{split}$$

we have

$$w[0]_{2}^{2^{\nu}-3}w_{2^{p+1}\cdot 2q+16q'+r-1}(RP(\nu^{r}))w[0]_{8}[RP(\nu^{r})]$$

= $\alpha^{2m-1}\beta^{4q'}(rc^{r-1}+(r-1)u_{1}c^{r-2}+\ldots+u_{r-1})w[0]_{8}[RP(\nu^{r})]$
= $r\alpha^{2m+1}\beta^{2n+1}c^{r-1}[RP(\nu^{r})] = r,$

which is a nonzero characteristic number. We know that $RP(\nu^r)$ bounds, so this is a contradiction.

For $2^{p'} = 2$ and r = 4h + 2, we have $\binom{r}{2} \equiv 1 \pmod{2}$, $\binom{r-2}{2} \equiv 0 \pmod{2}$ and

$$w[0]_{2}^{2^{p}-3}w_{2^{p+1}\cdot 2q+16q'+r-2}(RP(\nu^{r}))w[0]_{8}c[RP(\nu^{r})]$$

= $\alpha^{2m+1}\beta^{2n+1}(c^{r-1}+\cdots+u_{r-2}c)[RP(\nu^{r})]$
= $\alpha^{2m+1}\beta^{2n+1}c^{r-1}[RP(\nu^{r})]$
= $1 \neq 0$,

which is a contradiction.

For $2^{p'} = 2$ and r = 4h, we have $\binom{r}{2} \equiv 0 \pmod{2}$, $\binom{r-2}{2} \equiv 1 \pmod{2}$ and

$$w[0]_{2}^{2^{\nu}-4}w_{2^{\nu+1}\cdot 2q+16q'+r-2}(RP(\nu^{r}))w[0]_{8}c^{3}[RP(\nu^{r})]$$

= $\alpha^{2m}\beta^{2n+1}(\alpha c^{r-1}+\cdots+u_{r-2}c^{3})[RP(\nu^{r})]$
= $\alpha^{2m+1}\beta^{2n+1}c^{r-1}[RP(\nu^{r})]$
= $1 \neq 0$,

which is also a contradiction.

For $2^{p'} \geq 4$, we have $u_1 = u_3 = u_5 = u_7 = 0$, $u_2 = \alpha$, $u_4 = \varepsilon_1 \alpha^2$, $u_6 = \varepsilon_1 \alpha^3$, $u_8 = \alpha^2 \beta + \epsilon_2 \alpha^4 + \beta^2$ and $u_{2i'} = \delta_{i'} (\alpha^2 \beta + \beta^2)^{j'} \alpha^{i'-4j'} + \lambda_{i'} \alpha^{i'}$ $(4 < i' \leq 2^{p'+1})$, where $\delta_{i'}$ and $\lambda_{i'}$ are 0 or 1.

Using the method in (1), we get the symmetric functions $\sigma'_2(x)$, $\sigma'_8(x)$ and $\sigma'_{2p'+2}(x)$ such that $\sigma'_2(1+y,z) = \alpha$, $\sigma'_8(1+y,z) = \alpha^2\beta + \beta^2$ and $\sigma'_{2p'+2}(1+y,z) = \beta^{2p'}$. Taking

$$f(x) = (\sigma'_{2^{p'+2}}(x))^{2q'} (\sigma'_8(x))^{2^{p'}-1} (\sigma'_2(x))^{2m+1-(2^{p'+1}-2)},$$

from Lemma 7, we get a contradiction.

This completes the proof.

Proposition 4. Every involution fixing $CP(3) \times HP(2n+1)$ bounds.

Proof. If $\varepsilon = 1$, then $2n + 1 = 2^{p'} - 1$. By Proposition 2, every involution bounds. Thus we need only to consider the case $\varepsilon = 0$, i.e. $u = (1 + \alpha)^a (1 + \alpha^2 + \beta)(1 + \beta)^{b'}$. (1) If $\binom{b'-1}{2} \equiv 1 \pmod{2}$, then $u_8 = \alpha^2 \beta$, $b' - 1 \equiv 2 \pmod{4}$ and $b' + 1 \equiv 0 \pmod{4}$. (mod 4). Let $b' + 1 = 2^k (2f + 1) \ (k \ge 2)$.

$$u = (1+\alpha)^{a} [(1+\alpha^{2}+\beta)(1+\beta)^{2^{k}-1})](1+\beta)^{b'-2^{k}+1}$$

= $(1+\alpha)^{a} [1+\beta^{2^{k}}+\alpha^{2}(1+\beta)^{2^{k}-1}](1+\beta^{2^{k+1}})^{f}$
= $(1+\alpha)^{a} (1+\alpha^{2}+\alpha^{2}\beta+\dots+\alpha^{2}\beta^{2^{k}-1}+\beta^{2^{k}})(1+\beta^{2^{k+1}})^{f}.$

If $2^k > 2^{p'}$, the characteristic ring of ν^r is generated by α , $\alpha^2\beta$, $\alpha^2\beta^2$, \cdots , $\alpha^2\beta^{2^{p'-1}}$ and $\beta^{2^{p'}}$. Just as (1)-(i) in the proof of Proposition 3, taking

$$f(x) = (\sigma'_{2p'+2}(x))^{2q'+1} \sigma'_2(x)^{2m+1-2},$$

from Lemma 7 we get a contradiction. If $2^k \leq 2^{p'}$, the characteristic ring of ν^r is generated by α , $\alpha^2\beta$, $\alpha^2\beta^2$, \cdots , $\alpha^2\beta^{2^k-2}$, $\alpha^2\beta^{2^k-1} + \beta^{2^k}$ and $\beta^{2^{p'}}$. None of these monomials can give a monomial $\alpha^3\beta^{2n+1}$, so ν^r bounds.

(2) If $\binom{b'-1}{2} \equiv 0 \pmod{2}$, we write $b'-1 = 2^t(2f+1)$. The characteristic

ring of ν^r is generated by α , $\alpha^2\beta + \beta^2$ and β^{2^k} , where $k = \min(t, p')$. For $2^{p'} = 2$ and r odd, we have $\binom{2n+2}{2n} \equiv 1 \pmod{2}$,

$$\begin{split} w(RP(\nu^{r})) &= (1+\alpha^{4})(1+\beta)^{2n+2}\{(1+c)^{r}+u_{1}(1+c)^{r-1}+\ldots+u_{r}\} \\ &= (1+\beta)^{2n+2}\{rc^{r-1}+(r-1)u_{1}c^{r-2}+\ldots+u_{r-1} \\ &+ \text{terms with a dimension smaller than } r-1\} \\ &= \beta^{2n}(rc^{r-1}+(r-1)u_{1}c^{r-2}+\ldots+u_{r-1}) \\ &+ \text{terms with a dimension smaller than } 8n+r-1, \\ w_{8n+r-1}(RP(\nu^{r})) &= \beta^{2n}(rc^{r-1}+(r-1)u_{1}c^{r-2}+\ldots+u_{r-1}), \\ w[0]_{2} &= u_{1}c+(w_{2}+u_{1}w_{1}+u_{2}) = \alpha, \\ w[0]_{8} &= u_{1}c^{7}+u_{2}c^{6}+(u_{3}+w_{2}u_{1})c^{5}+(u_{4}+w_{2}u_{2})c^{4}+(u_{5}+w_{4}u_{1})c^{3} \\ &+(u_{6}+w_{4}u_{2})c^{2}+(u_{7}+w_{2}u_{5}+w_{4}u_{3}+w_{6}u_{1})c \\ &+u_{8}+w_{2}u_{6}+w_{4}u_{4}+w_{6}u_{2}+w_{8} \\ &= \alpha c^{6}+\varepsilon_{1}\alpha^{2}c^{4}+\alpha^{2}\beta+\varepsilon_{1}\binom{2m+2}{2}\alpha^{4}+\binom{2m+2}{3}\alpha^{4} \\ &+\binom{2m+2}{4}\alpha^{4}+(\varepsilon_{1}+\binom{2m+2}{2})\alpha^{3}c^{2}. \end{split}$$

Let

$$(w[0]_8)' = w[0]_8 + w[0]_2 c^6 + \epsilon_1 w[0]_2^2 c^4 + (\varepsilon_1 + \binom{2m+2}{2}) w[0]_2^3 c^2$$

$$+ \varepsilon_1 \binom{2m+2}{2} w[0]_2^4 + \binom{2m+2}{3} w[0]_2^4 + \binom{2m+2}{4} w[0]_2^4$$

$$= \alpha^2 \beta.$$

Then $w[0]_2(w[0]_8)'w_{8n+r-1}(RP(\nu^r))[RP(\nu^r)] \neq 0$, which is a contradiction. For $2^{p'} = 2$ and r = 4h + 2, we have $\binom{r}{2} \equiv 1 \pmod{2}$, $\binom{r-2}{2} \equiv 0 \pmod{2}$,

$$w(RP(\nu^{r})) = \beta^{2n} \begin{bmatrix} r \\ 2 \end{bmatrix} c^{r-2} + \binom{r-1}{2} u_{1} c^{r-3} + \binom{r-2}{2} u_{2} c^{r-4} + \dots + u_{r-2} \\ + \text{ terms with a dimension smaller than } 8n + r - 2, \\ w_{8n+r-2}(RP(\nu^{r})) = \beta^{2n} \begin{bmatrix} r \\ 2 \end{bmatrix} c^{r-2} + \binom{r-1}{2} u_{1} c^{r-3} + \binom{r-2}{2} u_{2} c^{r-4} + \dots + u_{r-2}], \\ w[0]_{2} = u_{1} c + (w_{2} + u_{1} w_{1} + u_{2}) = \alpha.$$

Just as above, we also get $(w[0]_8)'$ such that $(w[0]_8)' = \alpha^2 \beta$. Then

$$w[0]_{2}(w[0]_{8})'w_{8n+r-2}(RP(\nu^{r}))c[RP(\nu^{r})] = \alpha^{3}\beta^{2n+1}(c^{r-1} + \dots + u_{r-2}c)[RP(\nu^{r})] = \alpha^{3}\beta^{2n+1}c^{r-1}[RP(\nu^{r})] \neq 0,$$

which is a contradiction.

For $2^{p'} = 2$ and r = 4h, we have $\binom{r}{2} \equiv 0 \pmod{2}$ and $\binom{r-2}{2} \equiv 1 \pmod{2}$. Then

$$(w[0]_8)' w_{8n+r-2} (RP(\nu^r)) c^3 [RP(\nu^r)] = \alpha^2 \beta^{2n+1} (\alpha c^{r-4} + \dots + u_{r-2}) c^3 [RP(\nu^r)] = \alpha^3 \beta^{2n+1} c^{r-1} [RP(\nu^r)] \neq 0,$$

which is also a contradiction.

So for $2^{p'} = 2$, there is no non-bounding involution fixing $CP(3) \times HP(2n+1)$. For $2^{p'} > 2$, suppose that there exist some \tilde{x} , \tilde{y} and \tilde{z} such that

$$\alpha^{x'}(\alpha^2\beta + \beta^2)^{y'}\beta^{2^k \cdot z'}[CP(3) \times HP(2n+1)] \neq 0,$$

where $2x' + 8y' + 2^{k+2} \cdot z' = 6 + 8n + 4$, i.e. $x' + 4y' + 2^{k+1} \cdot z' = 3 + 4n + 2$. Then x' is odd. Since $x' \leq 3$, x' = 1 or 3. If x' = 3, then $2y' + 2^k \cdot z' = 2n + 1$, which is impossible. If x' = 1, then $\binom{y'}{1} \equiv 1 \pmod{2}$, i.e. y' is odd. Thus $1 + 2(y' - 1) + 2^k \cdot z' = 2n + 1 = 2^{p'}(2q' + 1) - 1$, which is also impossible. So ν^r bounds.

The proof is completed.

Proposition 5. Every involution fixing $CP(1) \times HP(2n+1)$ bounds.

Proof. In this case, $\alpha^2 = 0$. From Theorem 1 and Lemma 5, we know that every involution fixing $CP(1) \times HP(2n+1)$ has the total Stiefel-Whitney class $u = (1 + \alpha)(1 + \beta)^{b+d}$, where b and d are odd. So we cannot obtain any odd power of β from u and w and every involution fixing $CP(1) \times HP(2n+1)$ bounds.

Combining Propositions 1, 3, 4 and 5 together, we have Theorem 2.

Acknowledgement

The authors are indebted to the National Natural Science Foundation of China (No. 10971050) for financial support during this work.

References

- [1] P. E. CONNER, Differentiable Periodic Maps, Springer-Verlag, New York, 1979.
- [2] P. E. CONNER, The bordism class of a bundle space, Michigan Math. J. 14(1967), 289-303.
- [3] D. HOU, B. TORRENCE, Involutions fixing the disjoint union of odd-dimensional projective spaces, Canad. Math. Bull. 37(1994), 66–74.
- [4] S. M. KELTON, Involutions fixing $RP^{j} \cup F^{n}$, Topology Appl. 142(2004), 197–203.

Y. WANG AND Y. CHEN

- [5] C. KOSNIOWSKI, R. E. STONG, Involutions and characteristic numbers, Topology 17(1978), 309–330.
- [6] J. LI, Y. WANG, Characteristic classes of vector bundles over RP(h) × HP(k), Topology Appl. 154(2007), 1778–1793.
- [7] Z. Lü, Involutions fixing $RP^{odd} \cup P(h, i)$ I, Trans. Amer. Math. Soc. **354**(2002), 4539–4570.
- [8] Z. Lü, Involutions fixing $RP^{odd} \cup P(h,i)$ II, Trans. Amer. Math. Soc. **356**(2003), 1291–1314.
- [9] P. L. Q. PERGHER, R. E. STONG, Involutions fixing {point}∪Fⁿ, Transform. Groups 6(2001), 78–85.
- [10] P. L. Q. PERGHER, Involutions fixing an arbitrary product of spheres and a point, Manuscripta Math. 89(1996), 471–474.
- [11] D. C. ROYSTER, Involutions fixing the disjoint union of two projective spaces, Indiana Univ. Math. J. 29(1980), 267–276.
- [12] R. E. STONG, Involutions fixing projective spaces, Michigan Math. J. 13(1966), 445– 447.
- [13] R. E. STONG, Involutions fixing product of circles, Proc. Amer. Math. Soc. 119(1993), 1005–1008.