Adjacency preserving mappings on real symmetric matrices

Peter Legiša ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, FMF, University of Ljubljana, Jadranska 19, SL-1 000 Ljubljana, Slovenia

Received July 1, 2010; accepted January 3, 2011

Abstract

Let S_{n} denote the space of all $n \times n$ real symmetric matrices. Let $n \geq 2$ and let $\Phi: S_{n} \rightarrow S_{m}$ be a map preserving adjacency, i.e. if $A, B \in S_{n}$ and rank $(A-B)=1$, then $\operatorname{rank}(\Phi(A)-\Phi(B))=1$. If $\Phi(0)=0$, we prove that either: (i) Φ maps S_{n} into $\mathbb{R} B$, where B is a rank one matrix, or (ii) there exist $c \in\{-1,1\}$ and $R \in M_{m}$ invertible ($m \geq n$) such that for $A \in S_{n}$, $$
\Phi(A)=c R\left[\begin{array}{cc} A & 0 \\ 0 & 0 \end{array}\right] R^{T}
$$ (If $m=n$, the zeros on the right-hand side are absent.) AMS subject classifications: 15A03, 15A04, 15A30, 15A57, 15A99, 16S50, 16W10, 17A15, 17C55

Key words: real symmetric matrix, adjacency preserving map, rank, geometry of matrices

1. Introduction

Wen-Ling Huang and Peter Šemrl in [7] characterized adjacency preserving maps from H_{n} to H_{m}, where H_{n} denotes the $n \times n$ hermitian matrices over \mathbb{C}. They improved the results going back to Hua ([4, 5]). See also $[2,3,8,9,10,13,15,17$, $18,19,20,21,23,24,25,26]$. This article considers adjacency preserving mappings from S_{n} to S_{m}, where S_{n} denotes the $n \times n$ symmetric matrices over \mathbb{R}. The authors of [7] suggested this problem in their article. It turns out that the ideas and methods of their paper work in the real case as well (with modifications in some places).

The proof of the complex case uses results by Wen-Ling Huang, Roland Höfer and Zhe-Xian Wan [6], which hold in the real case as well.

The main result of this paper is Theorem 1.

2. Notation

We will consider only matrices over the real number field \mathbb{R}. Let $M_{n}=M_{n}(\mathbb{R})$ be the space of all $n \times n$ matrices over \mathbb{R}. Let S_{n} denote the linear subspace of all symmetric matrices in M_{n}, i.e. all $A \in M_{n}$ such that $A=A^{T}$, where A^{T} is the transpose of A. Let $G L(n)$ denote the group of all invertible matrices in M_{n}. Let

[^0]lin Z denote the real linear span of a set Z (in some vector space). We will often look at matrices in M_{n} as linear operators on \mathbb{R}^{n}. So for $A \in M_{n}, \operatorname{Im} A=A \mathbb{R}^{n}$ is the image of A or the column space of A.

If we consider $x, y \in \mathbb{R}^{n}$ as $n \times 1$ matrices, $x y^{T}=x \otimes y$ is the rank one matrix with the property $(x \otimes y) z=\langle z, y\rangle x$ for $z \in \mathbb{R}^{n}$.

If $P \in S_{n}$ and $P^{2}=P=P^{T} \neq 0$, then we call P a projection, as it is the orthogonal projection on $\operatorname{Im} P$. Two projections P, Q are orthogonal, $P \perp Q$, iff $P Q=0$. If x is a unit vector, then $x \otimes x$ is the projection on lin $\{x\}$.

Let $e_{1}, \ldots e_{n}$ be the standard basis in \mathbb{R}^{n} and let $e_{i} \otimes e_{j}=E_{i j}$ be the matrix unit, i.e. the matrix with 1 in place (i, j) and zeros elsewhere.

We know that for $R, T \in M_{n}, \operatorname{Im}(R+T) \subseteq \operatorname{Im} R+\operatorname{Im} T$ and so $\operatorname{rank}(R+T) \leq$ rank $R+\operatorname{rank} T$.

For $A, B \in S_{n}$ let $d(A, B)=\operatorname{rank}(A-B)$. Then $\left(S_{n}, d\right)$ is a metric space. We will often use

Lemma 1. Let $A, B, C \in M_{n}$ and $A+B=C$. Then rank $A=\operatorname{rank} B+\operatorname{rank} C i f f$ $\operatorname{Im} A=\operatorname{Im} B \oplus \operatorname{Im} C$.

Two matrices A, B are adjacent if $d(A, B)=1$, i.e. $\operatorname{rank}(A-B)=1$. If $d(A, B)=$ k, there is a sequence of consecutively adjacent matrices $A_{0}=A, A_{1}, \ldots, A_{k}=B$ (see Proposition 5.5 in [24]). Conversely, if there is such a sequence, it is straightforward that $d(A, B) \leq k$.

Let $A, B \in S_{n}$ be adjacent. The line $l(A, B)$ joining A and B is the set consisting of A, B and all $Y \in S_{n}$, which are adjacent to both A and B. By Corollary 5.9 in [24],

$$
l(A, B)=\{A+\lambda(B-A) \mid \lambda \in \mathbb{R}\}
$$

If $P \in S_{n}$ is a projection, let $P S_{n} P=\left\{P A P \mid A \in S_{n}\right\}=\left\{C \in S_{n} \mid P C P=C\right\}$.
Proposition 1. For $A, B, S \in S_{n}, R \in G L(n)$, and $c \in \mathbb{R} \backslash\{0\}$ we have $d(A+S, B+S)=d(A, B)=d\left(R A R^{T}, R B R^{T}\right)=d(c A, c B)$. Consequently, these are equivalent:
i) A is adjacent to B;
ii) $A+S$ is adjacent to $B+S$;
iii) $R A R^{T}$ is adjacent to $R B R^{T}$;
iv) $c A$ is adjacent to $c B$.

Corollary 1. Let $\Phi: S_{n} \rightarrow S_{m}$ be a map preserving adjacency, i.e. A is adjacent to B implies $\Phi(A)$ is adjacent to $\Phi(B)$. Let $\Psi(A)=\Phi(A)-\Phi(0)$ for $A \in S_{n}$. Then Ψ is adjacency preserving and $\Psi(0)=0$.

Theorem 1 (MAIN THEOREM). Let m, n be natural numbers, $n \geq 2$. Let Φ : $S_{n} \rightarrow S_{m}$ be a map preserving adjacency, with $\Phi(0)=0$. Then either:
i) There is a rank one matrix $B \in S_{m}$ and a function $f: S_{n} \rightarrow \mathbb{R}$ such that for $A \in S_{n}$

$$
\Phi(A)=f(A) B
$$

In this case we say Φ is a degenerate adjacency preserving map.
ii) We have $c \in\{-1,1\}, R \in G L(m)$ such that for $A \in S_{n}$,

$$
\Phi(A)=c R\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right] R^{T}
$$

In this case we say Φ is a standard map. (Obviously, in this case $m \geq n$. If $m=n$, the zeros on the right-hand side of the formula are absent.)

3. Preliminary results

We borrow Lemma 2.1. in [6]:
Lemma 2. Let $G \in S_{n}$ and let l be a line in S_{n}. Then either:
i) There is k such that $d(G, X)=k$ for all $X \in l$ or
ii) There is a point $K \in l$ such that $d(G, X)=d(G, K)+1$ for all $X \in l, X \neq K$.

Lemma 3. Let $A \in S_{n}$ be adjacent to both R and λR, where $R \in S_{n}$ has rank one and $\lambda \neq 1$. Then $A=\mu R$ for some $\mu \in \mathbb{R}, \mu \neq 1, \lambda$.

Proof. Since $\lambda \neq 1, R$ and λR are adjacent and A is contained in the line $l(R, \lambda R)$. So $A=R+\mu^{\prime}(R-\lambda R)=\mu R$ and $\mu \neq \lambda, 1$.

The following lemma is slightly more general than Lemma 2.3. in [7].
Lemma 4. Let $P \in M_{n}$ be an idempotent and $A, B \in M_{n}$ such that $P=A+B$ and $\operatorname{rank} P=\operatorname{rank} A+\operatorname{rank} B$. Then A, B are idempotents and $A B=B A=0$.

Proof. By Lemma 1, $\operatorname{Im} P=\operatorname{Im} A \oplus \operatorname{Im} B$. So if $P x=0, A x=B x=0$ and thus $\operatorname{ker} P \subset \operatorname{ker} A$. For $y \in \operatorname{Im} A \subset \operatorname{Im} P, P y=y=A y+B y$, hence $y-A y=B y$. Since $y-A y \in \operatorname{Im} A$, we have $B y=0$. Thus $B A=0$ and $A^{2}=A$. By symmetry, $A B=0$ and $B^{2}=B$.

Lemma 5. Let $P_{1}, P_{2}, \ldots, P_{k} \in S_{n}$ be mutually orthogonal rank one projections and $P=P_{1}+\ldots+P_{k}$. Let $\xi(1), \ldots, \xi(n)$ be an orthonormal system in \mathbb{R}^{n} such that $P_{i}(\xi(i))=\xi(i)$ for $i=1, \ldots, k$. Then $P_{i}(\xi(j))=\delta_{i j} \xi(j)$. Let V be the orthogonal matrix defined by $V e_{i}=\xi(i)$ for $i=1, \ldots, n$, so that $\xi(i)$ is the $i-t h$ column of V. Then $V^{T} P_{i} V=E_{i i}$ for $i=1, \ldots, k$. If $A \in P S_{n} P=\left\{C \in S_{n} \mid P C P=C\right\}$, then

$$
V^{T} A V=\left[\begin{array}{cc}
q(A) & 0 \\
0 & 0
\end{array}\right]
$$

where $q(A) \in S_{k}$. We have $q\left(P_{i}\right)=E_{i i}$ for $i=1, \ldots, k$ and $q(P)=E_{11}+\ldots+E_{k k}$.
The mapping $q: P S_{n} P \rightarrow S_{k}$ is linear, bijective, and $q(A B)=q(A) q(B)$ for $A, B, A B \in P S_{n} P$. So $q\left(A^{2}\right)=q(A)^{2}$ and q is a Jordan isomorphism. It preserves
the distance d and thus adjacency. Also $q(A B A)=q(A) q(B) q(A)$ for all $A, B \in$ $P S_{n} P$. All these properties are shared by the mappings $h: S_{k} \rightarrow S_{n}$ and $q^{-1}: S_{k} \rightarrow$ $P S_{n} P$, where

$$
h(B)=\left[\begin{array}{ll}
B & 0 \\
0 & 0
\end{array}\right]
$$

and $q^{-1}(B)=V h(B) V^{T}$.
Lemma 6. Let k, n be natural numbers with $3 \leq k \leq n$. Let $\lambda_{1}, \ldots, \lambda_{k}$ be nonzero real numbers and $P_{1}, \ldots, P_{k} \in S_{n}$ mutually orthogonal rank one projections. Let $A=\sum_{j=1}^{k} \lambda_{j} P_{j}$. Let $B \in S_{n}$ have rank $B=\operatorname{rank} A=k$ and let B be adjacent to $A-\lambda_{i} P_{i}$ for all i. Assume that $d\left(B, \lambda_{i} P_{i}\right)=k-1$ for all i. Then $B=A$.

Proof. By Lemma 1, $\operatorname{Im} B=\operatorname{Im}\left(\lambda_{i} P_{i}\right) \oplus \operatorname{Im}\left(B-\lambda_{i} P_{i}\right)$. So $\operatorname{Im} P_{i} \subset \operatorname{Im} B$ for all i. If $P=P_{1}+\ldots+P_{k}$, then $\operatorname{Im} P \subset \operatorname{Im} B$ and rank $P=k$, so $\operatorname{Im} P=\operatorname{Im} B$ and consequently $P B=B=B P$. Thus $A, B \in P S_{n} P$. Using notation from Lemma 5 , $q(A), q(B) \in S_{k}$ and $q(B)$ is adjacent to $q(A)-\lambda_{i} q\left(P_{i}\right), d\left(q(B), \lambda_{i} q\left(P_{i}\right)\right)=k-1$. Also, $q(P)=E_{11}+\ldots+E_{k k}=I_{k}$ and $q(A), q(B)$ have maximal rank as elements in S_{k}. Thus we may assume that $k=n$ and A, B are invertible in $S_{n}, P_{1}+\ldots+P_{n}=I$.

Now $1=\operatorname{rank}\left(B-A+\lambda_{i} P_{i}\right)=\operatorname{rank}\left(A^{-1} B-I+\lambda_{i} A^{-1} P_{i}\right)$. But $A^{-1}=\sum \lambda_{i}^{-1} P_{i}$, so $\lambda_{i} A^{-1} P_{i}=P_{i}$. Let $C=B^{-1} A \in M_{n}$. Then $C \in G L(n)$ and $1=\operatorname{rank}\left(C^{-1}-\right.$ $\left.\left(I-P_{i}\right)\right)=\operatorname{rank}\left(I-C\left(I-P_{i}\right)\right)$.

Now $I=\left(I-C\left(I-P_{i}\right)\right)+C\left(I-P_{i}\right)$ and rank $C\left(I-P_{i}\right)=\operatorname{rank}\left(I-P_{i}\right)=n-1$. By Lemma 4, $C\left(I-P_{i}\right)$ is an idempotent.

Let f_{1}, \ldots, f_{n} be an orthonormal basis of \mathbb{R}^{n} such that $P_{i} f_{i}=f_{i}$. Then for $j \neq i$, $\left(I-P_{i}\right) f_{j}=f_{j}$, so $C f_{j}=C\left(I-P_{i}\right) f_{j}=C\left(I-P_{i}\right) C\left(I-P_{i}\right) f_{j}=C\left(I-P_{i}\right) C f_{j}$. Since C is invertible,

$$
\left(I-P_{i}\right) C f_{j}=f_{j} \text { for } j \neq i
$$

Let $C f_{j}=\sum_{m=1}^{n} a_{m} f_{m}$. Then $\left(I-P_{i}\right) C f_{j}=C f_{j}-P_{i} C f_{j}=C f_{j}-a_{i} f_{i}=$ $\sum_{m \neq i} a_{m} f_{m}=f_{j}$. So $a_{m}=0$ for $m \neq i, j$ and $a_{j}=1$. Thus $C f_{j}=f_{j}+a_{i} f_{i}$. Since $n \geq 3$, there exists $k, 1 \leq k \leq n, k \neq i, j$. So $C f_{j}=f_{j}+a_{k} f_{k}$ also. Thus $C f_{j}=f_{j}$ for all j and $C=I$. This implies $A=B$.

Lemma 7. Let $A, B \in S_{m}$ and let rank $A=1$. If rank $(A+\lambda B)=1$ for every $\lambda \in \mathbb{R}$, then $B=0$.

Proof. If rank $B \geq 2$, then there exists a nonsingular 2×2 submatrix in B. For $\lambda \neq 0$, we have $\operatorname{rank}(A+\lambda B)=\operatorname{rank}\left(B+\frac{1}{\lambda} A\right) \geq 2$ for λ large enough, since the chosen submatrix of $\left(B+\frac{1}{\lambda} A\right)$ will be nonsingular. Therefore, rank $B \leq 1$.

If $B \neq 0$, then B is adjacent to 0 . Also, $A+B$ is adjacent to 0 and B, so $A+B \in l(B, 0)$. Thus $A+B=\mu B$ and $A+(1-\mu) B=0-$ a contradiction.

Lemma 8. Let $A, B \in S_{n}$ have rank $n \quad(n \geq 2)$, with $A \neq B$. There exists a natural number k and invertible matrices $A=A_{0}, A_{1}, \ldots, A_{k}=B$ such that the neighbours in this sequence are adjacent and there is a matrix $C_{j} \in l\left(A_{j}, A_{j+1}\right)$ with rank $C_{j}=n-1$ for $j=0, \ldots, k-1$.

Proof. This is a consequence of Lemmas 2.5 and 2.6 in [6] and it is stated in the proof of Lemma 3.1 in the same paper.

Lemma 9. Let $\Phi: S_{n} \rightarrow S_{m}$ be an adjacency preserving map. Let $A, B \in S_{n}$ be adjacent. Then $\Phi(l(A, B)) \subset l(\Phi(A), \Phi(B))$. The restriction of Φ to $l(A, B)$ is injective.

Proof. If $\lambda_{1} \neq \lambda_{2}$ and $C_{i}=A+\lambda_{i}(B-A) \in l(A, B)(i=1,2)$, then C_{1} is adjacent to C_{2} and therefore $\Phi\left(C_{1}\right)$ is adjacent to $\Phi\left(C_{2}\right)$, thus $\Phi\left(C_{1}\right) \neq \Phi\left(C_{2}\right)$.

Lemma 10. Let $\Phi: S_{n} \rightarrow S_{m}(n \geq 2)$ be a map preserving adjacency and $\Phi(0)=0$. Let $\max \{\operatorname{rank} \Phi(A) \mid A \in G L(n)\}=k$. If $k \geq 2$ and for every singular $A \in S_{n}$ we have rank $\Phi(A)<k$, then rank $\Phi(B)=k$ for every invertible $B \in S_{n}$.

Proof. Let $A, B \in S_{n} \cap G L(n)$ with $A \neq B$ and let $\operatorname{rank} \Phi(A)=k$. By Lemma 8 , there exists a natural number r and invertible matrices $A=A_{0}, A_{1}, \ldots, A_{r}=B$ such that the neighbours in this sequence are adjacent and for $j=0, \ldots, r-1$ there is a matrix $C_{j} \in l\left(A_{j}, A_{j+1}\right)$ with rank $C_{j}=n-1$. Hence rank $\Phi\left(C_{j}\right)<k$. Now $\operatorname{rank} \Phi(A)=k$, rank $\Phi\left(A_{1}\right) \leq k$, rank $\Phi\left(C_{0}\right)<k$. Lemma 2 (for $G=0$) tells us that $\Phi\left(C_{0}\right)$ is the only point on the line $l\left(\Phi(A), \Phi\left(A_{1}\right)\right)$ with rank less than k. Since $C_{0} \neq A_{1}$, Lemma 9 tells us that $\Phi\left(C_{0}\right) \neq \Phi\left(A_{1}\right)$. So rank $\Phi\left(A_{1}\right)=k$. Proceeding in this way we find $\operatorname{rank} \Phi\left(A_{j}\right)=k$ for all j, so $\operatorname{rank} \Phi(B)=k$.

Lemma 11. Let $\Phi: S_{n} \rightarrow S_{m}(n \geq 2)$ be a map preserving adjacency. If there are $A, B \in S_{n}$ with $d(\Phi(A), \Phi(B))=n$, then $d(\Phi(X), \Phi(Y))=d(X, Y)$ for all $X, Y \in S_{n}$ and Φ is injective.

Proof. For $n=m$ this was proved (in even greater generality) by Wen-ling Huang (Corollary 3.1 in [9]).

We know that $d(X, Y)=k \geq 1$ implies the existence of a sequence $X=$ $X_{0}, X_{1}, \ldots, X_{k}=Y$ of consecutively adjacent matrices. If $\Psi: S_{n} \rightarrow S_{m}$ is adjacency preserving, the neighbours in the sequence $\Psi\left(X_{0}\right), \Psi\left(X_{1}\right), \ldots, \Psi\left(X_{k}\right)$ are also adjacent and therefore $d(\Psi(X), \Psi(Y)) \leq k$. So

$$
d(\Psi(X), \Psi(Y)) \leq d(X, Y)
$$

for any adjacency preserving map Ψ.
Now the map Ψ, defined by $\Psi(X)=\Phi(X+A)-\Phi(A)$ for $X \in S_{n}$ is adjacency preserving by Proposition 1 and $\Psi(0)=0$. We note that $\operatorname{rank}(\Psi(B-A))=$ $d(\Phi(B), \Phi(A))=n$.

If $Z \in S_{n}$ is singular, $\operatorname{rank}(\Psi(Z))=d(\Psi(Z), \Psi(0)) \leq d(Z, 0)=\operatorname{rank} Z \leq n-1$. Lemma 10 tells us that rank $(\Psi(X))=n$ for every $X \in S_{n} \cap G L(n)$. In particular, if $d(C, A)=n$, i.e. $\operatorname{rank}(C-A)=n$, then $n=\operatorname{rank}(\Psi(C-A))=\operatorname{rank}(\Phi(C)-$ $\Phi(A))=d(\Phi(C), \Phi(A))$.

Let $X, Y \in S_{n}$ be such that $d(X, Y)=n$. For λ large enough, $d(\lambda I, A)=$ $\operatorname{rank}(\lambda I-A)=n$ and $d(\lambda I, X)=n$. If we set $C=\lambda I$ above, we see $d(\Phi(\lambda I) \Phi(A))=$ n. We may substitute λI for A, A for B in the previous argument and get $d(\Phi(\lambda I), \Phi(X))=n$. Repeating this procedure we get $d(\Phi(X), \Phi(Y))=n$.

We have proven that $d(X, Y)=n$ implies $d(\Phi(X), \Phi(Y))=n$. Suppose now $d(Z, W)=\operatorname{rank}(Z-W)=k<n$, with $k \geq 1$. There is U orthogonal such that $Z-W=U\left(\lambda_{1} E_{11}+\ldots+\lambda_{k} E_{k k}\right) U^{T}$, with $\lambda_{1}, \ldots, \lambda_{k}$ nonzero. Let $G=$ $W-U\left(E_{k+1, k+1}+\ldots+E_{n n}\right) U^{T}$. Then $d(G, W)=\operatorname{rank}(G-W)=n-k$ and
$(Z-W)+(W-G)=Z-G$ is invertible. Since Φ does not increase the metric $d, n=$ $d(Z, G)=d(Z, W)+d(W, G) \geq d(\Phi(Z), \Phi(W))+d(\Phi(W), \Phi(G)) \geq d(\Phi(Z), \Phi(G))=$ n. So $d(Z, W)=d(\Phi(Z), \Phi(W))$.

If $\Phi(X)=\Phi(Y)$ and $X \neq Y$, then $d(X, Y) \geq 1$, so $d(\Phi(X), \Phi(Y)) \geq 1-\mathrm{a}$ contradiction.

Lemma 12. Let $m>n \geq 2$ and let $A_{1}, B_{1} \in S_{n}$ with $A_{1} \neq B_{1}$. If $A, B \in S_{m}$ are such that

$$
A=\left[\begin{array}{rr}
A_{1} & 0 \\
0 & 0
\end{array}\right], B=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & 0
\end{array}\right]
$$

and C is adjacent to both A and B, then there is $C_{1} \in S_{n}$ such that

$$
C=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & 0
\end{array}\right]
$$

Proof. The matrices $A-C$ and $C-B$ have rank one. So $A-B=(A-C)+(C-B)$ has rank one or two. If A is adjacent to B, then C lies one the line $l(A, B)$, so $C=A+\lambda(B-A)$ has the desired form.

If $A-B$ has rank two, then $\operatorname{Im}(A-B)=\operatorname{Im}(A-C) \oplus \operatorname{Im}(C-B)$ by Lemma 1. So $\operatorname{Im}(A-C) \subset \operatorname{Im}(A-B)$ and $C=A-(A-C)$ has the desired form.

Lemma 13. Let $m>n \geq 2$ and let $\Phi: S_{n} \rightarrow S_{m}$ be an adjacency preserving map with $\Phi(0)=0$. Let

$$
\Phi(I)=\left[\begin{array}{cc}
K & 0 \\
0 & 0
\end{array}\right]
$$

where $K \in S_{n}$ has rank n. Then for all $A \in S_{n}$,

$$
\Phi(A)=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right]
$$

where $A_{1} \in S_{n}$.
Proof. Since $n=d(\Phi(I), \Phi(0))$, Lemma 11 tells us that d preserves the distance. Suppose $P \in S_{n}$ is a projection of rank one. Then $d(0, P)=1, d(I, P)=n-1$, so $d(\Phi(I), \Phi(P))=n-1$ and $d(0, \Phi(P))=1$. Thus

$$
n=\operatorname{rank} \Phi(I)=\operatorname{rank} \Phi(P)+\operatorname{rank}(\Phi(I)-\Phi(P))
$$

By Lemma $1, \operatorname{Im} \Phi(I)=\operatorname{Im} \Phi(P) \oplus \operatorname{Im}(\Phi(I)-\Phi(P))$, so $\operatorname{Im} \Phi(P) \subset \operatorname{Im} \Phi(I)$ and $\Phi(P)$ has the desired form.

If $A=\lambda P$, then A lies on the line $l(0, P)$, so $\Phi(A)$ lies on the line $l(0, \Phi(P))$, so $\Phi(A)=\mu \Phi(P)$ has the desired form.

Now we use the induction on the rank of A. Suppose we have proved the lemma for all matrices of rank $k \geq 1$. Let rank $A=k+1$. There is U orthogonal and nonzero numbers $\lambda_{1}, \ldots, \lambda_{k+1}$ such that $A=U\left(\lambda_{1} E_{11}+\ldots+\lambda_{k+1} E_{k+1, k+1}\right) U^{T}$. The matrix A is adjacent to $B=U\left(\lambda_{2} E_{22}+\ldots+\lambda_{k+1} E_{k+1, k+1}\right) U^{T}$ and to $C=$ $U\left(\lambda_{1} E_{11}+\ldots+\lambda_{k} E_{k k}\right) U^{T}$. So $\Phi(A)$ is adjacent to

$$
\Phi(B)=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & 0
\end{array}\right] \text { and } \Phi(C)=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & 0
\end{array}\right]
$$

where $B_{1}, C_{1} \in S_{n}$ and $B_{1} \neq C_{1}$. By Lemma $11, \Phi(B) \neq \Phi(C)$. We use Lemma 12.

4. Adjacent matrices in S_{2}

Lemma 14. Let $\Phi: S_{2} \rightarrow S_{2}$ be a map such that A is adjacent to B iff $\Phi(A)$ is adjacent to $\Phi(B)$. Then Φ is injective.

Proof. If there are $A, B \in S_{2}$ such that $d(\Phi(A), \Phi(B))=2$, then, by Lemma $11, \Phi$ is injective.

Suppose now that $d(\Phi(X), \Phi(Y)) \leq 1$ for all $X, Y \in S_{2}$. We will show this is impossible. Since E_{11} and E_{22} are not adjacent, $\Phi\left(E_{11}\right)$ and $\Phi\left(E_{22}\right)$ are not adjacent. Therefore $\Phi\left(E_{11}\right)=\Phi\left(E_{22}\right)$. Similarly, $\Phi\left(2 E_{11}\right)=\Phi\left(E_{22}\right)=\Phi\left(E_{11}\right)$. On the other hand, E_{11} is adjacent to $2 E_{11}$, so $\Phi\left(E_{11}\right)$ is adjacent to $\Phi\left(2 E_{11}\right)=\Phi\left(E_{11}\right)$ - a contradiction.

We denote by Q the quadratic form on \mathbb{R}^{n}, defined by

$$
Q(x)=x_{n}^{2}-x_{1}^{2}-x_{2}^{2}-\ldots-x_{n-1}^{2}
$$

Then $Q(x-y)$ is the Lorentz separation of x and y. A bijective linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a Lorentz transformation if $Q(L x)=Q(x)$ for all $x \in \mathbb{R}^{n}$. All Lorentz transformations on \mathbb{R}^{n} form the Lorentz group. A mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a Weyl transformation if there are: $\alpha \in \mathbb{R} \backslash\{0\}$, a Lorentz transformation L and $b \in \mathbb{R}^{n}$ such that $f(x)=\alpha L x+b$ for all $x \in \mathbb{R}^{n}$.

The following theorem is due to Alexandrov [1]. We quote it from Lester [11] p. 929, who rediscovered it.

Theorem 2. (cf. Theorem 3.1 in [7]). Let D be an open connected subset of $\mathbb{R}^{n} \quad(n \geq 3)$ and let $f: D \rightarrow \mathbb{R}^{n}$ be an injective mapping such that $Q(x-y)=0$ iff $Q(f(x)-f(y))=0$. Then f is the restriction of a conformal mapping.

Any conformal mapping on \mathbb{R}^{n} is a Weyl transformation (see [11], p. 929 or [14], pp. 132-133) and that is all we will need:

Corollary 2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad(n \geq 3)$ be an injective mapping such that $Q(x-y)=0$ iff $Q(f(x)-f(y))=0$.
Then f is a Weyl transformation.
We have the linear bijection $T: \mathbb{R}^{3} \rightarrow S_{2}$, defined by

$$
T x=\left[\begin{array}{cc}
x_{3}+x_{1} & x_{2} \\
x_{2} & x_{3}-x_{1}
\end{array}\right]
$$

Now $\operatorname{det}(T x-T y)=\operatorname{det}(T(x-y))=Q(x-y)$. Therefore:

$$
\begin{equation*}
T x \text { is adjacent to } T y \text { iff } x \neq y \text { and } Q(x-y)=0 . \tag{1}
\end{equation*}
$$

The following, including Propositions 2 and 3 , is reconstructed from the book [16] on Hyperbolic geometry by Ramsey and Richtmyer, pp. 246-250, and the book [12] on the Lorentz group by Paërl, pp. 5-7.

Let $J=-E_{11}-E_{22}+E_{33}$. Then for $x \in \mathbb{R}^{3}$ and $L \in M_{3}$ we have $Q(x)=<J x, x>$ and $Q(L x)=<J L x, L x>=<L^{T} J L x, x>$. So L is a Lorentz transformation iff $L^{T} J L=J$ and this implies $\operatorname{det} L= \pm 1$. A Lorentz matrix $L=\left[l_{i j}\right] \in M_{3}$ maps the vector $(0,0,1)^{T}$ into $\left(l_{13}, l_{23}, l_{33}\right)^{T}$ and so $l_{33}^{2}-l_{13}^{2}-l_{23}^{2}=1$, thus $l_{33}^{2} \geq 1$. By definition, a Lorentz matrix $L=\left[l_{i j}\right] \in M_{3}$ is a restricted Lorentz matrix if $\operatorname{det} L=1$ and $l_{33} \geq 1$.

Proposition 2. If $L \in M_{3}$ is a restricted Lorentz matrix, then there is a matrix $P_{1} \in M_{2}$ with $\operatorname{det} P_{1}=1$ such that

$$
T(L x)=P_{1}(T x) P_{1}^{T}
$$

for all $x \in \mathbb{R}^{3}$.
Proof. For $b \in \mathbb{R}$ we have the restricted Lorentz matrices

$$
H(b)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cosh b & \sinh b \\
0 & \sinh b & \cosh b
\end{array}\right)
$$

and

$$
R(b)=\left(\begin{array}{ccc}
\cos b & -\sin b & 0 \\
\sin b & \cos b & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Let $L=\left[l_{i j}\right]$ be a restricted Lorentz matrix. We find $b \in \mathbb{R}$ such that $l_{33}=\cosh b$. So $H(b)\left((0,0,1)^{T}\right)=(0, \sinh b, \cosh b)^{T}$. Since

$$
(\sinh b)^{2}=(\cosh b)^{2}-1=l_{33}^{2}-1=l_{13}^{2}+l_{23}^{2},
$$

there is $\alpha \in \mathbb{R}$ such that

$$
\left.R(\alpha) H(b)\left((0,0,1)^{T}\right)\right)=\left(l_{13}, l_{23}, l_{33}\right)^{T}=L\left((0,0,1)^{T}\right)
$$

If $U=H(b)^{-1} R(\alpha)^{-1} L$, then U is a Lorentz matrix with $\operatorname{det} L=1$ and $U\left((0,0,1)^{T}\right)=$ $(0,0,1)^{T}$. We claim that $u_{31}=u_{32}=0$. In fact, since $U\left((1,0,0)^{T}\right)=\left(u_{11}, u_{21}, u_{31}\right)^{T}$, we have $u_{31}^{2}-u_{21}^{2}-u_{11}^{2}=-1$. But

$$
U\left((1,0,1)^{T}\right)=U\left((1,0,0)^{T}\right)+U\left((0,0,1)^{T}\right)=\left(u_{11}, u_{21}, u_{31}+1\right)^{T}
$$

so $\left(u_{31}+1\right)^{2}=u_{31}{ }^{2}+1$ and thus $u_{31}=0$. We observe that U, restricted to the $x y$-plane, is a linear isometry. Since $\operatorname{det} U=1, U=R(\gamma)$ for some γ. Thus

$$
L=R(\alpha) H(b) R(\gamma)
$$

Let

$$
W(t)=\binom{\cosh t \sinh t}{\sinh t \cosh t}
$$

and

$$
V(s)=\left(\begin{array}{cc}
\cos s & -\sin s \\
\sin s & \cos s
\end{array}\right)
$$

Then $W(t)(T x) W(t)^{T}=T(H(2 t) x)$ and $V(s)(T x) V(s)^{T}=T(R(2 s) x)$ for all $x \in$ \mathbb{R}^{3}. If $P_{1}=V\left(\frac{\alpha}{2}\right) W\left(\frac{b}{2}\right) V\left(\frac{\gamma}{2}\right)$, then $T(L x)=P_{1}(T x) P_{1}^{T}$.

Proposition 3. For any Lorentz matrix $L \in M_{3}$ there is $c_{1} \in\{-1,1\}$ and a matrix $P \in M_{2}$ with $|\operatorname{det} P|=1$, such that

$$
T(L x)=c_{1} P(T x) P^{T}
$$

for all $x \in \mathbb{R}^{3}$.
Proof. We note that $K=-E_{11}+E_{22}+E_{33}=K^{-1}$ is a Lorentz matrix with $\operatorname{det} K=-1$. For $B=E_{12}+E_{21} \in S_{2}$ we have det $B=-1$ and $T(K x)=B(T x) B^{T}$.

If $L \in M_{3}$ is any Lorentz matrix and $r \in\{-1,1\}$, then $\operatorname{det}(r L)=r^{3} \operatorname{det} L=$ $r \operatorname{det} L$ and $\operatorname{det}(r L K)=-r \operatorname{det} L$. Thus there is $r \in\{-1,1\}$ such that $r L$ or $r L K$ is a restricted Lorentz matrix.

If $r L$ is a restricted Lorentz matrix, then by Proposition 2 there is a matrix $P_{1} \in M_{2}$ with $\operatorname{det} P_{1}=1$ such that

$$
r T(L x)=T(r L x)=P_{1}(T x) P_{1}^{T}
$$

If $r L K$ is a restricted Lorentz matrix, then by Proposition 2 there is a matrix $P_{1} \in M_{2}$ with $\operatorname{det} P_{1}=1$ such that

$$
r T(L x)=T(r L x)=T(r L K(K x))=P_{1}(T(K x)) P_{1}^{T}=P_{1}\left(B(T x) B^{T}\right) P_{1}^{T}
$$

where $\operatorname{det}\left(P_{1} B\right)=-1$.

Corollary 3. Let $\Phi: S_{2} \rightarrow S_{2}$ be a map such that A is adjacent to B iff $\Phi(A)$ is adjacent to $\Phi(B)$. Then there exist $c \in\{-1,1\}, R \in G L(2)$ such that

$$
\Phi(A)=c R A R^{T}+\Phi(0) \quad\left(A \in S_{2}\right)
$$

Proof. We consider the mapping $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, defined by

$$
f(x)=T^{-1} \Phi(T x)
$$

where $T: \mathbb{R}^{3} \rightarrow S_{2}$ is the linear bijection defined above. By Lemma $14, \Phi$ is injective and so f is injective. If $x \neq y$ and $Q(x-y)=0$, then by (1) $T x$ is adjacent to $T y$, so $\Phi(T x)=T f(x)$ is adjacent to $\Phi(T y)=T f(y)$. Since $f(x) \neq f(y)$, $Q(f(x)-f(y))=0$.

If $f(x) \neq f(y)$ and $Q(f(x)-f(y))=0$, then by (1) $T f(x)=\Phi(T x)$ is adjacent to $T f(y)=\Phi(T y)$, so $T x$ is adjacent to $T y$ and $Q(x-y)=0$. If $f(x)=f(y)$, then $x=y$.

We see that $Q(x-y)=0$ iff $Q(f(x)-f(y))=0$. By Corollary 2 , there exist $\alpha \in \mathbb{R} \backslash\{0\}, b \in \mathbb{R}^{3}$ and a Lorentz matrix $L \in G L(3)$ such that $f(x)=\alpha L x+b$ for all $x \in \mathbb{R}^{3}$, hence

$$
\Phi(T x)=T f(x)=\alpha T(L x)+T b
$$

By Proposition 3, there are $c_{1} \in\{-1,1\}$ and $P \in G L(2)$ such that

$$
\Phi(T x)=\alpha c_{1} P(T x) P^{T}+T b
$$

i.e.

$$
\Phi(A)=c R A R^{T}+\Phi(0)
$$

for $A \in S_{2}$, where $c \in\{-1,1\}$ and $R \in G L(2)$.
(Alternatively, instead of using Proposition 3, we could assume $\Phi(0)=0$. Since $\Phi(T x)=T f(x)=\alpha T(L x)$ is a linear map, we have a linear preserver problem and we could use Theorem 2.2.1 in [26].)

Proposition 4. Let $\Phi: S_{2} \rightarrow S_{2}$ be an adjacency preserving mapping. Suppose $d(\Phi(G), \Phi(H))=2$ for some $G, H \in S_{2}$. Then there are $c \in\{-1,1\}, R \in G L(2)$ and $S \in S_{2}$ such that

$$
\Phi(A)=c R A R^{T}+\Phi(0)
$$

Proof. By Lemma 11, $d(\Phi(X), \Phi(Y))=d(X, Y)$ for all $X, Y \in S_{2}$. So $\Phi(X)$ is adjacent to $\Phi(Y)$ iff X is adjacent to Y. We use Corollary 3.

5. Proof of Theorem 1.4

Let $n \geq 2$ and let $\Phi: S_{n} \rightarrow S_{m}$ be a mapping preserving adjacency, $\Phi(0)=0$. Theorem 1 claims that Φ is either a degenerate or a standard map.

Lemma 15. Theorem 1 is true if $n=2$.
Proof. If $m=1, \Phi$ is a degenerate map. Let $m \geq 2$. We consider two cases.
Case I. Let $d(\Phi(A), \Phi(B)) \leq 1$ for all A, B.
Then $\operatorname{rank} \Phi(A) \leq 1$ for all A. Since E_{11} is adjacent to $0, \Phi\left(E_{11}\right)$ is adjacent to $\Phi(0)=0$, so $\operatorname{rank} \Phi\left(E_{11}\right)=1$. Let $A \in S_{2}$. Then $d\left(\Phi(A), \Phi\left(E_{11}\right)\right) \leq 1$. So $\Phi(A)=\Phi\left(E_{11}\right)$ or $\Phi(A)$ is adjacent to $\Phi\left(E_{11}\right)$. In the latter case, if $\Phi(A) \neq 0$, then $\Phi(A)$ is adjacent to 0 , so $\Phi(A) \in l\left(0, \Phi\left(E_{11}\right)\right)$, thus $\Phi(A)=\lambda \Phi\left(E_{11}\right)$. So $\Phi(A)=\lambda \Phi\left(E_{11}\right)$ in any case. Thus Φ is a degenerate map.

Case II. We have $A, B \in S_{2}$ such that $d(\Phi(A), \Phi(B))=2$.
If $m=2$, then Proposition 4 ends the proof. Let $m>2$. By Lemma 11, Φ preserves the distance and it is injective. So $d(\Phi(I), 0)=2=\operatorname{rank} \Phi(I)$. Since $\Phi(I) \in S_{m}$, there is $U \in M_{m}$ orthogonal such that

$$
U \Phi(I) U^{T}=\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right] \text { and } D=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

Let $\Psi(A)=U \Phi(A) U^{T}$ for $A \in S_{2}$. Then Ψ is distance preserving and $\Psi(0)=0$. By Lemma 13,

$$
\Psi(A)=\left[\begin{array}{cc}
\Psi_{1}(A) & 0 \\
0 & 0
\end{array}\right]
$$

where $\Psi_{1}(A) \in S_{2}$ and $\Psi_{1}(0)=0$.
Obviously, $d(\Psi(A), \Psi(B))=d\left(\Psi_{1}(A), \Psi_{1}(B)\right)=d(A, B)$. By Corollary 3, there are $c \in\{-1,1\}$ and $R \in G L(2)$ such that $\Psi_{1}(A)=c R A R^{T}$. Let

$$
W=\left[\begin{array}{cc}
R & 0 \\
0 & I
\end{array}\right] \in G L(m)
$$

Then

$$
\Psi(A)=c W\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right] W^{T}
$$

and

$$
\Phi(A)=c U^{T} W\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]\left(U^{T} W\right)^{T}
$$

Lemma 16. Let $n \geq 2$ and let $\Phi: S_{n} \rightarrow S_{m}$ be a map preserving adjacency, with $\Phi(0)=0$. Let

$$
\Phi(I)=\left[\begin{array}{cc}
I_{n} & 0 \\
0 & 0
\end{array}\right] \in S_{m}
$$

where $I_{n} \in M_{n}$ is the identity matrix. Then we can find $U \in M_{n}$ orthogonal such that for all $A \in S_{n}$ we have

$$
\Phi(A)=\left[\begin{array}{cc}
U A U^{T} & 0 \\
0 & 0
\end{array}\right] .
$$

The proof is almost the same as the proof of Step 4.2 in [7].
Lemma 17. Let $\Phi: S_{n} \rightarrow S_{m}(m, n \geq 3)$ be an adjacency preserving map and $\Phi(0)=0$. Suppose that for every projection $P \in S_{n}$ with rank $P=n-1$ there is a rank one projection Q such that $\Phi\left(P S_{n} P\right) \subset \mathbb{R} Q$. Then Φ is a degenerate adjacency preserving map.

The proof is almost the same as the proof of Step 4.3 in [7].
Lemma 18. Let $\Phi: S_{n} \rightarrow S_{m}(m, n \geq 3)$ be an adjacency preserving map with $\Phi(0)=0$. Assume that for every projection P with rank $P=n-1$ the restriction of Φ to $P S_{n} P$ is a standard map. Then Φ is a standard adjacency preserving map.

The proof is practically the same as the proof of Step 4.4 in [7].
Lemma 19. The statement of Theorem 1 is true for $n=3$.
Proof. Although the proof follows Step 4.5 in [7], in our case the calculation at the end is simpler. Let $P \in S_{3}$ be any projection of rank 2. By Lemma 15, the mapping Φ restricted to $P S_{3} P$ is either standard or degenerate. If Φ restricted to $P S_{3} P$ is degenerate for all projections $P \in S_{3}$ of rank 2, Lemma 17 tells us that Φ is degenerate. If Φ restricted to $P S_{3} P$ is standard for all such P, then Lemma 18 tells us that Φ is a standard map.

Suppose there exist two projections P and Q of rank 2 such that Φ restricted to $P S_{3} P$ is degenerate and Φ restricted to $Q S_{3} Q$ is standard. We will show this is impossible. As in Step 4.5 in [7] we may assume that

- $Q=E_{11}+E_{22}=E_{2}$;
- Φ is linear;
- for $A \in S_{2}$ we have

$$
\Phi\left(\left[\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right]\right)=A=h(A)
$$

for $m=2$ or

$$
\Phi\left(\left[\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right]=h(A) \in S_{m}
$$

for $m \geq 3$;

- $\Phi\left(E_{33}\right)=E_{22}$.

If P_{1} is a rank two projection in S_{3}, then, by Lemma $15, \Phi$ restricted to $P_{1} S_{3} P_{1}$ is either standard or degenerate. Now $\Phi\left(E_{22}+E_{33}\right)=2 E_{22}$, so Φ restricted to $\left(E_{22}+E_{33}\right) S_{2}\left(E_{22}+E_{33}\right)$ cannot be standard and is therefore degenerate. So

$$
\Phi\left(E_{23}+E_{32}\right)=\alpha E_{22}
$$

with $\alpha \neq 0$.
Since $\Phi\left(E_{11}+E_{33}\right)=E_{11}+E_{22}$ has rank two, the restriction of Φ to $\left(E_{11}+E_{33}\right) S_{3}\left(E_{11}+E_{33}\right)$ is a standard map. As before, there are $c_{1} \in\{-1,1\}$ and $W_{1} \in G L(m)$ such that for $A \in\left(E_{11}+E_{33}\right) S_{3}\left(E_{11}+E_{33}\right)$ we have

$$
\Phi(A)=c_{1} W_{1} h(A) W_{1}^{T}
$$

But $\Phi\left(E_{11}\right)=E_{11}$ and $\Phi\left(E_{33}\right)=E_{22}$. So

$$
c_{1} W_{1}\left(e_{1} \otimes e_{1}\right) W_{1}^{T}=c_{1}\left(W_{1} e_{1}\right) \otimes\left(W_{1} e_{1}\right)=e_{1} \otimes e_{1}
$$

This implies $c_{1}=1$ and $W e_{1}= \pm e_{1}$. By exchanging W with $-W$ if necessary we may assume $W e_{1}=e_{1}$. Similarly, $W e_{3}=d e_{2}$, where $d \in\{-1,1\}$. This implies
$\Phi\left(E_{13}+E_{31}\right)=W\left(e_{1} \otimes e_{3}+e_{3} \otimes e_{1}\right) W^{T}=W e_{1} \otimes W e_{3}+W e_{3} \otimes W e_{1}=d\left(E_{12}+E_{21}\right)$.
Let $A=[1,1,1]^{T}[1,1,1]=E_{11}+E_{22}+E_{33}+\left(E_{12}+E_{21}\right)+\left(E_{13}+E_{31}\right)+\left(E_{23}+E_{32}\right)$. Since A has rank $1, A$ is adjacent to 0 , so $\Phi(A)$ is adjacent to 0 and has rank one. We calculate $\Phi(A)=E_{11}+(2+\alpha) E_{22}+(1+d)\left(E_{12}+E_{21}\right)$ and $\operatorname{det} \Phi(A)=2+\alpha-(1+d)^{2}=$ $\alpha-2 d=0$, since $d^{2}=1$. So $\Phi\left(E_{23}+E_{32}\right)=\alpha E_{22}=2 d E_{22}$.

Let now $B=[0, d,-1]^{T}[0, d,-1]=d^{2} E_{22}+E_{33}-d\left(E_{23}+E_{32}\right)$. Then B has rank one and is adjacent to 0 . But $\Phi(B)=\left(1-d^{2}\right) E_{22}=0$ - a contradiction.

We can end the proof of Theorem 1 as in [7].

Acknowledgement

The author would like to thank Professor Peter Šemrl for suggesting this problem to him and for providing the preprint of the article [7]. He would also like to thank the anonymous reviewer, who provided several corrections, suggested improvements and pointed out a problematic reference in the first version of this paper.

References

[1] A. D. Alexandrov, On the axioms of relativity theory, Vestnik Leningrad. Univ. Math. 19(1976), 5-28
[2] R. An, J. Hou, L. Zhao, Adjacency preserving maps on the space of symmetric operators, Linear Algebra Appl. 405(2005), 311-324.
[3] W. L. Chooi, M. H. Lim, P. Šemrl, Adjacency preserving maps on upper triangular matrix algebras, Linear Algebra Appl. 367(2003), 105-130.
[4] L. K. Hua, Geometries of matrices $I, I_{1}, I I, I I I$, Trans. Amer. Math. Soc. 57(1945), 441-481, 57(1945), 482-490, 61(1947), 193-228, 61(1947), 229-255.
[5] L. K. Hua, Geometries of symmetric matrices over any field with characteristic other than two, Ann. of Math. 50(1949), 8-31.
[6] W.-L. Huang, R. Höfer, Z.-L. Wan, Adjacency preserving mappings of symmetric and hermitian matrices, Aequationes Math. 67(2004), 132-139.
[7] W.-L. Huang, P. Šemrl, Adjacency preserving maps on hermitian matrices, Canad. J. Math. 60(2008), 1050-1066.
[8] W.-L. Huang, On the fundamental theorems of the geometries of symmetric matrices, Geom. Dedicata 78(1999), 315-325.
[9] W.-L. Huang, Adjacency preserving mappings between point-line geometries, Innovations in Incidence Geometry 3(2006), 25-32.
[10] W.-L. Huang, A. E. Schroth, Adjacency preserving mappings, Adv. Geom. 3(2003), 53-59.
[11] J. A. Lester, Distance preserving transformations, in: Handbook of Incidence Geometry, (F. Buekenhout, Ed.), Elsevier, Amsterdam, 1995, 921-944.
[12] E. R. Paërl, Representations of the Lorentz Group and Projective Geometry, Mathematisch Centrum, Amsterdam, 1975.
[13] T. Petek, P. Šemrl, Adjacency preserving maps on matrices and operators, Proc. Roy. Soc. Edinburgh Sect. A 132(2002), 661-684.
[14] I. Popovici, D. C. Radulescu, Characterizing the conformality in a Minkowski space, Ann. Inst. H. Poincaré Phys. Théor. 35(1981), 131-148.
[15] H. Radjavi, P. Šemrl, A short proof of Hua's fundamental theorem of the geometry of hermitian matrices, Expos. math. 21(2003), 83-93.
[16] A. Ramsey, R. D. Richtmyer, Introduction to hyperbolic geometry, Springer Verlag, New York, 1995.
[17] L. Rodman, P. Šemrl, A. R. Sourour, Continuous adjacency preserving maps on real matrices, Can. Math. Bull. 48(2005), 267-274.
[18] P. Šemrl, On Hua's fundamental theorem of the geometry of rectangular matrices, J. Algebra 248(2002), 366-380.
[19] P. Šemrl, Hua's fundamental theorem of the geometry of matrices and related results, Linear Algebra Appl. 361(2003), 161-179.
[20] P. Šemrl, Hua's fundamental theorem of the geometry of matrices, J. Algebra 272(2004), 801-837.
[21] P. Šemrl, Maps on matrix and operator algebras, Jahresber. Deutsch. Math.-Ver. 108(2006), 91-103.
[22] P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413(2006), 364-393.
[23] Z.-X. Wan, Geometry of matrices, Adv. stud. Pure Math. 24(1996), 443-453.
[24] Z.-X. Wan, Geometry of matrices, World Scientific, Singapore, 1996.
[25] Z.-X. Wan, Geometry of symmetric matrices and its applications I, II, Algebra Colloq. 1(1994), 97-120, 1(1994), 201-224.
[26] X. Zhang, X. Tang, C. Cao, Preserver Problems on Spaces of Matrices, Science Press, Beijing, 2007.

[^0]: *Corresponding author. Email address: peter.legisa@fmf.uni-lj.si (P. Legiša)

