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Abstract. In this paper, we establish at least two symmetric positive solutions for the
system of higher order two-point boundary value problems on symmetric time scales by
determining growth conditions and applying fixed point theorem in cone under suitable
conditions. At the end of the paper, as an application, we demonstrate our results with
examples.
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1. Introduction

In this paper, we consider the system of higher order dynamical equations on sym-
metric time scales,

{
y
(∆∇)n

1 + f1(t, y1, y2) = 0, t ∈ [a, b]T
y
(∆∇)m

2 + f2(t, y1, y2) = 0, t ∈ [a, b]T
(1)

subject to the two-point boundary conditions
{

y
(∆∇)i

1 (a) = 0 = y
(∆∇)i

1 (b), i = 0, 1, 2, ..., n− 1,

y
(∆∇)j

2 (a) = 0 = y
(∆∇)j

2 (b), j = 0, 1, 2, ..., m− 1,
(2)

where fi : [a, b]T×R
2 → [0,∞) are continuous and fi(t, y1, y2) = fi(a+ b− t, y1, y2)

for i = 1, 2, a ∈ Tk, b ∈ Tk for a time scale T, and also σ(a) < ρ(b). By using the
cone theory techniques, we establish sufficient conditions for the existence of at least
two symmetric positive solutions to the BVP (1)-(2).

The development of the theory has gained attention by many researchers; to
mention a few, Erbe and Wang [15], Eloe and Henderson [12, 13], Eloe, Henderson
and Sheng [14], Henderson and Thompson [20], Avery and Henderson [3, 4, 5], Avery,
Davis and Henderson [7], Davis and Henderson [10], Davis, Henderson and Wong
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[11], Anderson [2], Henderson and Wong [19], and Henderson, Murali and Prasad
[18].

By an interval time scale, we mean the intersection of a real interval with a given
time scale.

i.e. [a, b]T = [a, b] ∩T.

An interval time scale T = [a, b]T is said to be a symmetric time scale if

t ∈ T⇔ a + b− t ∈ T.

If T = R or T = hZ, (h > 0), then the symmetry definition is always satisfied. In
addition, the interval time scaleT = [1, 2]∪{3, 4, 5}∪[6, 7]∪{8}∪[9, 10]∪{11, 12, 13}∪
[14, 15] has the symmetry property. But the time scale T = {0} ∪ { 1

n : n ∈ N} is
not a symmetric time scale.

By a symmetric solution (y1, y2) of the BVP (1)-(2), we mean (y1, y2) is a solution
of the BVP (1)-(2) and satisfies

y1(t) = y1(b + a− t) and y2(t) = y2(b + a− t), t ∈ [a, b]T.

This paper is organized as follows. In Section 2, we prove some lemmas and
inequalities which are needed later. In Section 3, by using the cone theory techniques,
we establish sufficient conditions for the existence of at least two symmetric positive
solutions to the BVP (1)-(2). The main tool in this paper is an application of the
Avery and Henderson’s fixed point theorem for the operator leaving a Banach space
cone invariant.

2. Green’s function and bounds

In this section, we give some lemmas and inequalities for the Green’s function of the
homogeneous BVP corresponding to (1)-(2).

To obtain a solution (y1(t), y2(t)) of the BVP (1)-(2) we need the Gp(t, s) (p is
a positive integer) which is the Green’s function of the BVP,

(−1)py(∆∇)p

= 0, t ∈ [a, b]T
y(∆∇)i

(a) = 0 = y(∆∇)i

(b), i = 0, 1, ..., p− 1.

By induction method, the Green’s function Gp(t, s) can be recursively expressed
as

Gj(t, s) =
∫ b

a

Gj−1(t, r)G1(r, s)∇r, for j = 2, 3, ..., p, (t, s) ∈ [a, b]T×[a, b]T, (3)

where G1(t, s) is the Green’s function of the BVP,

−y∆∇ = 0, t ∈ [a, b]T,

y(a) = 0 = y(b),
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and it is given by

G1(t, s) =

{
(b−s)(t−a)

(b−a) , t ≤ s
(b−t)(s−a)

(b−a) , s ≤ t
.

Further, it is easy to verify that

Gp(t, s) ≥ 0 on (t, s) ∈ [a, b]T × [a, b]T.

We derive growth conditions on f1, f2 so that the BVP (1)-(2) has at least two
symmetric positive solutions. For this the following are needed.

Let D = {v(t)|v : [a, b]T → R isa continuous function}. Define the operator
Fj : D → D by

Fjv(t) :=
∫ b

a

Gj(t, s)v(s)∇s, for t ∈ [a, b]T, j ≥ 1.

By the construction of Fj , it is clear that

(−1)j(Fjv)(∆∇)j

(t) = v(t), t ∈ [a, b]T
(Fjv)(∆∇)i

(a) = 0 = (Fjv)(∆∇)i

(b), i = 0, 1, ..., j − 1, and j ≥ 1.

Hence, we see that the BVP (1)-(2) has a solution if and only if the following
BVP has a solution,

{
v∆∇
1 + f1(t, Fn−1v1, Fm−1v2) = 0, t ∈ [a, b]T

v∆∇
2 + f2(t, Fn−1v1, Fm−1v2) = 0, t ∈ [a, b]T,

(4)

{
v1(a) = 0 = v1(b),
v2(a) = 0 = v2(b).

(5)

Indeed, if (y1, y2) is a solution of the BVP (1)-(2), then (v1 = y
(∆∇)(n−1)

1 , v2 =

y
(∆∇)(m−1)

2 ) is a solution of the BVP (4)-(5). Conversely, if (v1, v2) is a solution of
the BVP (4)-(5), then (y1 = Fn−1v1, y2 = Fm−1v2) is a solution of the BVP (1)-(2).
In fact, we have the representation

y1(t) =
∫ b

a

Gn−1(t, s)v1(s)∇s, y2(t) =
∫ b

a

Gm−1(t, s)v2(s)∇s,

where

v1(s) =
∫ b

a

G1(s, τ)f1(τ, Fn−1v1, Fm−1v2)∇τ,

v2(s) =
∫ b

a

G1(s, τ)f2(τ, Fn−1v1, Fm−1v2)∇τ.

It is also noted that a solution (v1, v2) of the BVP (4)-(5) is symmetric;

i.e., v1(t) = v1(b + a− t) and v2(t) = v2(b + a− t), t ∈ [a, b]T,

and it gives rise to a symmetric solution (y1, y2) of the BVP (1)-(2).
The following lemmas are needed to establish the main result.
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Lemma 1. Let l ∈ [ b−a
8 , b−a

2 ]T. For (t, s) ∈ [a + l, b− l]T × [a, b]T, we have

|Gj(t, s)| ≥ Lj
l φ

j−1
l

(b− s)(s− a)
b− a

, (6)

where j is a positive integer, Ll = l
b−a and φl =

∫ b−l

a+l
(b−s)(s−a)

b−a ∇s.

Proof. First, for j = 1 inequality (6) holds provided

Ll ≤ min{min
t≤s

t− a

s− a
, min

s≤t

b− t

b− s
} =

l

b− a
.

Next for fixed j, assuming that (6) is true, from (3) we have for (t, s) ∈ [a + l, b −
l]T × [a, b]T,

|Gj+1(t, s)| = |
∫ b

a

Gj(t, r)G1(r, s)∇r|

≥ |
∫ b−l

a+l

Gj(t, r)G1(r, s)∇r|

≥
∫ b−l

a+l

Lj
l φ

j−1
l

(b− r)(r − a)
b− a

× Ll
(b− s)(s− a)

b− a
∇r

= Lj+1
l φj

l

(b− s)(s− a)
b− a

.

Hence, by induction the proof is complete.

Lemma 2. For (t, s) ∈ [a, b]T × [a, b]T, we have

|Gj(t, s)| ≤ φj−1
0

(b− s)(s− a)
b− a

, (7)

where j is a positive integer and φ0 =
∫ b

a
(b−s)(s−a)

b−a ∇s.

Proof. For j = 1 inequality (7) is obvious. Next, for fixed j, assume that (7) is
true, then from (3) we have

|Gj+1(t, s)| = |
∫ b

a

Gj(t, r)G1(r, s)∇r|

≤
∫ b

a

φj−1
0

(b− r)(r − a)
b− a

× (b− s)(s− a)
b− a

∇r

= φj
0

(b− s)(s− a)
b− a

.

Hence, by induction the proof is complete.

Lemma 3. For t, s ∈ [a, b]T, the Green’s function Gj(t, s) satisfies the symmetric
property,

Gj(t, s) = Gj(b + a− t, b + a− s). (8)
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Proof. By the definition of Gj(t, s), (j ≥ 2)

Gj(t, s) =
∫ b

a

Gj−1(t, r)G1(r, s)∇r, for all t, s ∈ [a, b]T.

Clearly, we can see, G1(t, s) = G1(a+b−t, a+b−s). Now, the proof is by induction.
For j = 2, the inequality (8) is obvious. Next, assume that (8) is true, for fixed j ≥ 2,
then from (3) we have

Gj+1(t, s) =
∫ b

a

Gj(t, r)G1(r, s)∇r

=
∫ b

a

Gj(a + b− t, a + b− r)G1(a + b− r, a + b− s)∇r

=
∫ b

a

Gj(a + b− t, r1)G1(r1, a + b− s)∇r1

= Gj+1(a + b− t, a + b− s).

Lemma 4. For t ∈ [a, b]T, the operator Fj satisfies the symmetric property

Fjy(t) = Fjy(b + a− t).

Proof. By definition of Fj ,

Fjy(t) =
∫ b

a

Gj(t, s)v(s)∇s

=
∫ b

a

Gj(a + b− t, a + b− s)v(s)∇s

=
∫ b

a

Gj(a + b− t, s1)v(s1)∇s1

= Fjy(b + a− t).

3. Existence of multiple symmetric positive solutions

In this section, we establish the existence of at least two symmetric positive solutions
for the system of higher order BVP (1)-(2), by using Avery and Henderson’s fixed
point theorem.

Let ψ be a nonnegative continuous functional on a cone P of the real Banach
space B. Then for a positive real number c′, we define the set

P (ψ, c′) = {y ∈ P |ψ(y) < c′},
In obtaining multiple symmetric positive solutions of the BVP (1)-(2), the fol-

lowing Avery and Hendersons Fixed Point Theorem will be fundamental.
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Theorem 1 (See [6]). Let P be a cone in a real Banach space B. Suppose α
and γ are increasing nonnegative continuous functionals on P and θ is nonnegative
continuous functional on P with θ(0) = 0 such that for some positive numbers c′

and k,

γ(y) ≤ θ(y) ≤ α(y) and ‖ y ‖≤ kγ(y) for all y ∈ P (γ, c′).

Suppose there exist positive numbers a′ and b′ with a′ < b′ < c′ such that

θ(λy) ≤ λθ(y) 0 ≤ λ ≤ 1 and y ∈ ∂P (θ, b′).

Further, let T : P (γ, c′) → P be a completely continuous operator such that

(B1) γ(Ty) > c′ for all y ∈ ∂P (γ, c′),

(B2) θ(Ty) < b′ for all y ∈ ∂P (θ, b′),

(B3) P (α, a′) 6= ∅ and α(Ty) > a′ for all y ∈ ∂P (α, a′) with θ(Ty) > b′.

Then, T has at least two fixed points y1, y2 ∈ P (γ, c′) such that

θ(y1) < b′, with α(y1) > a′,

and
γ(y2) < c′ with θ(y2) > b′. 2

To apply the above theorem we define the following.
Let C0 = {(v1, v2)|v1, v2 : [a, b]T → R are continuous functions} be the Banach

space equipped with the norm

‖ (v1, v2) ‖=‖ v1 ‖0 + ‖ v2 ‖0,
where

‖ v ‖0= max
t∈[a,b]T

|v(t)|.

For a fixed k0 ∈ [ b−a
8 , b−a

2 ]T, define the cone P ⊂ C0 by

P = {(v1, v2) ∈ C0|v1(t) = v1(b + a− t) and v2(t) = v2(b + a− t),
v1(t) ≥ 0 and v2(t) ≥ 0,

v∆∇
1 (t) ≤ 0 and v∆∇

2 (t) ≤ 0, t ∈ [a, b]T,

mint∈[a+k0,b−k0]T(|v1(t)|+ |v2(t)|) ≥ k0
t1−a ‖ (v1, v2) ‖},

where t1 = b+a
2 . We let t0 = a + k0 and t0 ≤ t1. Now, define the nonnegative

continuous increasing functionals γ, θ and α on P by

θ(v1, v2) = max
t∈[a,a+k0]T∪[b−k0,b]T

(|v1(t)|+ |v2(t)|) = |v1(t0)|+ |v2(t0)|,

γ(v1, v2) = min
t∈[a+k0,b−k0]T

(|v1(t)|+ |v2(t)|) = |v1(t0)|+ |v2(t0)|,

α(v1, v2) = max
t∈[a+k0,b−k0]T

(|v1(t)|+ |v2(t)|) = |v1(t1)|+ |v2(t1)|.
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We observe that for any (v1, v2) ∈ P ,

γ(v1, v2) = θ(v1, v2) ≤ max
t∈[a+k0,b−k0]T

(|v1(t)|+ |v2(t)|) = α(v1, v2), (9)

‖ (v1, v2) ‖ ≤ b− a

2k0
min

t∈[a+k0,b−k0]T
(|v1(t)|+ |v2(t)|) (10)

≤ b− a

2k0
max

t∈[a,a+k0]T∪[b−k0,b]T
(|v1(t)|+ |v2(t)|)

=
b− a

2k0
θ(v1, v2) =

b− a

2k0
γ(v1, v2),

and also

‖ (v1, v2) ‖ ≤ b− a

2k0
min

t∈[a+k0,b−k0]T
(|v1(t)|+ |v2(t)|)

≤ b− a

2k0
max

t∈[a+k0,b−k0]T
(|v1(t)|+ |v2(t)|)

=
b− a

2k0
α(v1, v2).

We are now ready to present the main result of this section.

Theorem 2. Suppose there exist 0 < a′ < b′ < c′ such that f1 and f2 satisfy the
following conditions:

(A1) |f1(t, un−1, wm−1)| > c′
φ0

for all (t, |un−1|, |wm−1|) in [a, b]T × [Ln−1
l φn−1

l c′,
(b−a)c′

2k0
φn−1

0 ]× [Lm−1
l φm−1

l c′, (b−a)c′

2k0
φm−1

0 ],

or

|f2(t, un−1, wm−1)| > c′
φ0

for all (t, |un−1|, |wm−1|) in [a, b]T × [Ln−1
l φn−1

l c′,
(b−a)c′

2k0
φn−1

0 ]× [Lm−1
l φm−1

l c′, (b−a)c′

2k0
φm−1

0 ].

(A2) |fi(t, un−1, wm−1)| < b′
2φ0

for all (t, |un−1|, |wm−1|) in [a, b]T× [Ln−1
l φn−1

l b′,
(b−a)b′

2k0
φn−1

0 ]× [Lm−1
l φm−1

l b′, (b−a)b′

2k0
φm−1

0 ] for i = 1, 2.

(A3) |f1(t, un−1, wm−1)| > a′
φ0

for all (t, |un−1|, |wm−1|) in [a, b]T× [Ln−1
l φn−1

l a′,
(b−a)a′

2k0
φn−1

0 ]× [Lm−1
l φm−1

l a′, (b−a)a′

2k0
φm−1

0 ],

or

|f2(t, un−1, wm−1)| > a′
φ0

for all (t, |un−1|, |wm−1|) in [a, b]T × [Ln−1
l φn−1

l a′,
(b−a)a′

2k0
φn−1

0 ]× [Lm−1
l φm−1

l a′, (b−a)a′

2k0
φm−1

0 ].

Then the BVP (1)-(2) has at least two symmetric positive solutions.
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Proof. Define the completely continuous operator T : C0 → C0 by

T (v1, v2) := (
∫ b

a
G1(t, s)f1(s, Fn−1v1, Fm−1v2)∇s,∫ b

a
G1(t, s)f2(s, Fn−1v1, Fm−1v2)∇s).

(11)

And also we denote

T1(v1, v2) :=
∫ b

a

G1(t, s)f1(s, Fn−1v1, Fm−1v2)∇s,

T2(v1, v2) :=
∫ b

a

G1(t, s)f2(s, Fn−1v1, Fm−1v2)∇s.

It is obvious that a fixed point of T is a solution of the BVP (4)-(5). We seek
two fixed points (x1, x2), (y1, y2) ∈ P of T . First, we show that T : P → P .
Let (v1, v2) ∈ P . Clearly, T1(v1, v2)(t) ≥ 0, T2(v1, v2)(t) ≥ 0 for t ∈ [a, b]T,
and T∆∇

1 (v1, v2)(t) ≤ 0, T∆∇
2 (v1, v2)(t) ≤ 0 for t ∈ [a, b]T. Further, since

G1(t, s) = G1(b+a− t, b+a−s). Hence, it follows that T1(v1, v2)(t) = T1(v1, v2)(b+
a − t), T2(v1, v2)(t) = T2(v1, v2)(b + a − t), for t ∈ [a, b]T. Also, noting that
T1(v1, v2)(a) = 0 = T1(v1, v2)(b), T2(v1, v2)(a) = 0 = T2(v1, v2)(b) and ‖ T (v1, v2) ‖=
|T1(v1, v2)(t1)|+ |T1(v1, v2)(t1)|, we have

min
t∈[a+k0,b−k0]T

(|T1(v1, v2)(t)|+ |T2(v1, v2)(t)|)

= min
t∈[a+k0,t1]T

(|T1(v1, v2)(t)|+ |T2(v1, v2)(t)|)

≥ min
t∈[a+k0,t1]T

t− a

t1 − a
‖ T (v1, v2) ‖

=
k0

t1 − a
‖ T (v1, v2) ‖= 2k0

b− a
‖ T (v1, v2) ‖ .

Thus, T : P → P .
Next, it obvious that θ(0, 0) = 0. Further, for any (v1, v2) ∈ P , by (9)-(10),

respectively, we have γ(v1, v2) = θ(v1, v2) ≤ α(v1, v2) and ‖ (v1, v2) ‖≤ b−a
2k0

γ(v1, v2).
Also, for any 0 ≤ λ ≤ 1 and (v1, v2) ∈ P. We have

θ(λ(v1, v2)) = max
[a,a+k0]T∪[b−k0,b]T

| λ(| v1(t) | + | v2(t) |) |

= λ max
[a,a+k0]T∪[b−k0,b]T

(| v1(t) | + | v2(t) |) = λθ(v1, v2).

It remains to verify conditions (B1)−(B3) of Theorem 1. To show that condition
(B1) holds, let (v1, v2) ∈ ∂P (γ, c′). So

γ(v1, v2) = min
t∈[a+k0,b−k0]T

(| v1(t) | + | v2(t) |).

For t ∈ [a + k0, b− k0]T, it is clear from (10) that

c′ = min
t∈[a+k0,b−k0]T

(| v1(t) | + | v2(t) |) ≤‖ (v1, v2) ‖≤ b− a

2k0
c′.
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Using Lemma 2, and for t ∈ [a, b]T,

Fn−1v1 =
∫ b

a

Gn−1(t, s)v1(s)∇s

≤ (b− a)c′

2k0

∫ b

a

Gn−1(t, s)∇s

≤ (b− a)c′

2k0
φn−2

0

∫ b

a

(b− s)(s− a)
b− a

∇s =
(b− a)c′

2k0
φn−1

0 .

Similarly,

Fm−1v2 ≤ (b− a)c′

2k0
φm−1

0 .

Using Lemma 1, we obtain

Fn−1v1 =
∫ b

a

Gn−1(t, s)v1(s)∇s

≥
∫ b−l

a−l

Gn−1(t, s)∇s

≥ Ln−1
l φn−2

l c′
∫ b−l

a−l

(b− s)(s− a)
b− a

∇s

= Ln−1
l φn−1

l c′.

Similarly,
Fm−1v2 ≥ Lm−1

l φm−1
l c′.

We may now use condition (A1) to obtain

γ(T (v1, v2)) = min
t∈[a+k0,b−k0]T

|(
∫ b

a

G1(t, s)f1(Fn−1v1(s), Fm−1v2(s))∇s|

+ |
∫ b

a

G1(t, s)f2(Fn−1v1(s), Fm−1v2(s))∇s|)

>
c′

φ0

∫ b

a

(b− s)(s− a)
b− a

∇s = c′.

Therefore, we have shown that γ(T (v1, v2)) > c′ for all (v1, v2) ∈ ∂P (γ, c′).
Next, we shall verify condition (B2) holds, let (v1, v2) ∈ ∂P (θ, b′). So

θ((v1, v2)) = max
t∈[a,a+k0]T∪[b−k0,b]T

(| |v1(t)|+ |v2(t)|) | .

For t ∈ [a, a + k0]T ∪ [b− k0, b]T. It is clear from (10) that

b′ = max
t∈[a,a+k0]T∪[b−k0,b]T

(| |v1(t)|+ |v2(t)|) |≤‖ (v1, v2) ‖≤ (b− a)b′

2k0
.
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Using Lemma 2, we obtain for t ∈ [a, b]T,

Fn−1v1 =
∫ b

a

Gn−1(t, s)v1(s)∇s

≤ (b− a)b′

2k0

∫ b

a

Gn−1(t, s)∇s

≤ (b− a)b′

2k0
φn−2

0

∫ b

a

(b− s)(s− a)
b− a

∇s

=
(b− a)b′

2k0
φn−1

0 .

Similarly,

Fm−1v2 ≤ (b− a)b′

2k0
φm−1

0 .

Using Lemma 1, we obtain for t ∈ [a, b]T,

Fn−1v1 =
∫ b

a

Gn−1(t, s)v1(s)∇s

≥ b′
∫ b−l

a−l

Gn−1(t, s)∇s

≥ Ln−1
l φn−2

l b′
∫ b−l

a−l

(b− s)(s− a)
b− a

∇s

= Ln−1
l φn−1

l b′.

Similarly,
Fm−1v2 ≥ Lm−1

l φm−1
l b′.

We may now use condition (A2) to obtain

θ(T (v1, v2)) = max
t∈[a,a+k0]T∪[b−k0,b]T

(
∫ b

a

G1(t, s)f1(Fn−1v1(s), Fm−1v2(s))∇s,

∫ b

a

G1(t, s)f2(Fn−1v1(s), Fm−1v2(s))∇s)

<
b′

2φ0

∫ b

a

(b− s)(s− a)
b− a

∇s +
b′

2φ0

∫ b

a

(b− s)(s− a)
b− a

∇s = b′.

Therefore, we have shown that θ(T (v1, v2)) < b′ for all (v1, v2) ∈ ∂P (θ, b′).
Finally, we show that (B3) holds. Clearly, a′

2 ∈ P (α, a′) 6= ∅. Now, let (v1, v2) ∈
∂P (α, a′). So α(v1, v2) = maxt∈[a+k0,b−k0]T(| v1(t) | + | v2 |). For t ∈ [a + k0, b −
k0]T. It is clear from (10) that

a′ = max
t∈[a+k0,b−k0]T

(| v1(t) | + | v2(t) |) ≤‖ (v1, v2) ‖≤ (b− a)a′

2k0
.
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Using Lemma 2, we obtain for t ∈ [a, b]T,

Fn−1v1 =
∫ b

a

Gn−1(t, s)v1(s)∇s

≤ (b− a)a′

2k0

∫ b

a

Gn−1(t, s)∇s

≤ (b− a)a′

2k0
φn−2

0

∫ b

a

(b− s)(s− a)
b− a

∇s =
(b− a)a′

2k0
φn−1

0 .

Similarly,

Fm−1v2 ≤ (b− a)a′

2k0
φm−1

0 .

Using Lemma 1, we obtain for t ∈ [a, b]T,

Fn−1v1 =
∫ b

a

Gn−1(t, s)v1(s)∇s

≥ a′
∫ b−l

a−l

Gn−1(t, s)∇s

≥ Ln−1
l φn−2

l a′
∫ b−l

a−l

(b− s)(s− a)
b− a

∇s = Ln−1
l φn−1

l a′.

Similarly,

Fn−1v2 ≥ Lm−1
l φm−1

l a′.

We may now use condition (A3) to obtain

α(T (v1, v2)) = max
t∈[a+k0,b−k0]T

(
∫ b

a

G1(t, s)f1(Fn−1v1(s), Fm−1v2(s))∇s

∫ b

a

G1(t, s)f2(Fn−1v1(s), Fm−1v2(s))∇s)

>
a′

φ0

∫ b

a

(b− s)(s− a)
b− a

∇s = a′.

Therefore, we have shown that α(T (v1, v2)) > a′ for all (v1, v2) ∈ ∂P (α, a′).

We have proved that all the conditions of Theorem 1 are satisfied and so there ex-
ist at least two symmetric positive solutions (v1, v2), (w1, w2) ∈ P (γ, c′) for the BVP
(4)-(5). Therefore, the BVP (1)-(2) has at least two symmetric positive solutions
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(y1, y2), (x1, x2) of the form

y1(t) = Fn−1v1(t) =
∫ b

a

Gn−1(t, s)v1(s)∇s,

y2(t) = Fm−1v2(t) =
∫ b

a

Gm−1(t, s)v2(s)∇s,

x1(t) = Fn−1w1(t) =
∫ b

a

Gn−1(t, s)w1(s)∇s,

x2(t) = Fm−1w2(t) =
∫ b

a

Gm−1(t, s)w2(s)∇s.

This completes the proof of the theorem.

4. Examples

As an application, we demonstrate our results with examples.

Example 1

Consider the system of differential equations,
{

y∆∇
1 + f1(t, y1, y2) = 0, t ∈ [0, 1]T

y∆∇
2 + f2(t, y1, y2) = 0, t ∈ [0, 1]T

(12)

subject to the two-point boundary conditions
{

y1(0) = 0 = y1(1),
y2(0) = 0 = y2(1), (13)

where

f1(t, y1, y2) =





5(t− 1
2 )2 sin(2y1y2 + 1)π

4 , t ∈ [0, 1]T, y1 ∈ [0, 1
2 ], y2 ∈ [0, 1

4 ]
127y1−142

12 , y1 ∈ [ 12 , 2],
37y1+157

7 , y1 ∈ [2, 9],

35y1 − 245, y1 ∈ [9, 13],
200y1+599

39 , y1 ∈ [13, 55],

f2(t, y1, y2) =





112y2
1y2

2 , y1 ∈ [ 1
20 , 1], y2 ∈ [ 14 , 1],

−101y2 + 213, y2 ∈ [2, 8],

812y2 − 7091, y2 ∈ [9, 36],

on a time scale,

T =
[
0,

1
8

]
∪

{
1
4
,
3
8
,
1
2
,
5
8
,
3
4

}
∪

[
7
8
, 1

]
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and

[0, 1]T = [0, 1] ∩T.

Clearly, fi, i = 1, 2 satisfies the symmetry property

i.e., fi(t, y1, y2) = fi(1− t, y1, y2), for all t ∈ [0, 1]T, for i = 1, 2.

Let G(t, s), be the Green’s function of the following boundary value problem

−y∆∇(t) = 0, t ∈ [0, 1]T,

y(0) = 0 = y(1),

}
(14)

which is given by

G(t, s) =
{

(1− s)t, t ≤ s,
(1− t)s, s ≤ t,

for all t, s ∈ [0, 1]T.

The operator T (v1, v2) satisfies the symmetry property, i.e.

T (v1, v2)(t) = T (v1, v2)(1− t), for all t ∈ [0, 1]T.

After computation

φ0 =
∫ 1

0

G(s, s)∇s =
1
6
.

If we choose the positive constants a′, b′ and c′ as 1
4 , 3

2 and 7 respectively, then
all the conditions of Theorem 2 are satisfied. Hence by Theorem 2,the boundary
value problem (12), (13) has at least two symmetric positive solutions.

Example 2

Consider the system of differential equations

{
y
(∆∇)2

1 + f1(t, y1, y2) = 0, t ∈ [0, 1]T
y∆∇
2 + f2(t, y1, y2) = 0, t ∈ [0, 1]T

(15)

subject to the two-point boundary conditions





y1(0) = 0 = y1(1),
y∆∇
1 (0) = 0 = y∆∇

1 (1),
y2(0) = 0 = y2(1),

(16)
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where

f1(t, y1, y2) =





2688y1y2, y1 ∈ [ 14 , 1], y2 ∈ [ 1
96 , 1

6 ],

−17y1 + 45, y1 ∈ [2, 8],

308y1 − 2247, y1 ∈ [9, 36],

−4303y1 + 86295, y1 ∈ [40, 100],

60267y1 − 3012865, y1 ∈ [200, 800],

f2(t, y1, y2) =





y2
2e(t− 1

2 )2 , t ∈ [0, 1]T, y ∈ [0, 1
4 ],

(800−2e
1
4 )y2−200+3e

1
4

40 , y2 ∈ [ 14 , 3
2 ],

50(y2+4)
11 , y2 ∈ [ 32 , 7],

on a time scale

T =
[
0,

1
8

]
∪

{
1
4
,
3
8
,
1
2
,
5
8
,
3
4

}
∪

[
7
8
, 1

]

and
[0, 1]T = [0, 1] ∩T.

Clearly, fi, i = 1, 2 satisfies the symmetry property, i.e.

fi(t, y1, y2) = fi(1− t, y1, y2), for all t ∈ [0, 1]T for i = 1, 2.

Let G1(t, s), be the Green’s function of the following boundary value problem

−y∆∇(t) = 0, t ∈ [0, 1]T,

y(0) = 0 = y(1),

}
, (17)

which is given by

G1(t, s) =
{

(1− s)t, t ≤ s,
(1− t)s, s ≤ t,

for all t, s ∈ [0, 1]T. Now we define

G2(t, s) =
∫ 1

0

G1(t, r)G1(r, s)∇r,

and it is the Green’s function of the boundary value problem

y(∆∇)2(t) = 0, t ∈ [0, 1]T,

y(0) = 0 = y(1),
y∆∇(0) = 0 = y∆∇(1).



 (18)

The operator T (v1, v2) satisfies the symmetry property, i.e.

T (v1, v2)(t) = T (v1, v2)(a + b− t), for all t ∈ [0, 1]T.
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After computation

φ0 =
∫ 1

0

G1(s, s)∇s =
1
6
.

If we choose the positive constants a′, b′ and c′ as 1
4 , 2 and 9, respectively, then

all the conditions of Theorem 2 are satisfied. Hence by Theorem 2, the boundary
value problem (15), (16) has at least two symmetric positive solutions.
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