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Symmetry-type graphs of Platonic and Archimedean solids
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Abstract. A recently developed theory of flag-graphs and k-orbit maps classifies maps
according to their symmetry-type graphs. We propose a similar classification for poly-
hedra showing that Platonic and Archimedean solids with the same vertex pattern have
isomorphic symmetry-type graphs and introducing some tools for the determination of
symmetry-type graphs of any polyhedron.
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1. Introduction

The goal of this paper is to propose a classification of polyhedra based on their
symmetry-type graphs T (P) and TR(P) of two kinds: the first ones are defined by
all the isometries of Euclidean space preserving a given polyhedron P, and the others
only by orientation preserving isometries (rotations) of R3.
Showing that symmetry-type graphs of Archimedean solids depend only on the type
of their vertex pattern (pq), (p.q.p.q), (p.q.q), (p.q.q.q), (p.q.r.q), (p.q.r) or (p.p.p.p.q)
(Theorem 1, Section 3) we make a first step towards such classification. The nota-
tion by vertex pattern is explained in [4]. The tools from Section 5 (unique face,
position vector, domino rule) and the algorithm from Section 6 can be applied for
the determination of symmetry-type graphs of any uniform polyhedron or tiling.

2. Basic notions

In this section we define or mention some basic concepts, notations and facts about
polyhedra and their symmetries and list some classes of polyhedra with most sym-
metries. We also introduce the concepts of a flag graph and a symmetry-type graph
and explain how they are represented with drawings.
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2.1. Polyhedra: structure and symmetry

polyhedron. There are many definitions of the concept of a polyhedron. Questions
such as: Are polyhedra surfaces or solids?, What are the milestones in the history
of polyhedra? are discussed for instance in [15]. To us a polyhedron P is a solid in
Euclidean space R3 with given sets of vertices V (P), edges E(P) and (polygonal or
star) faces F (P).
type of a face. Two faces f, g ∈ F (P) are of the same type, if they are con-
gruent. The type of a regular polygonal face is denoted by the number of its
edges (3, 4, 5, 6, 8, 10, 12, etc.), the type of a star face is expressed with two num-
bers (5/2, 10/3, etc.), while the type of a rhomb can be denoted by its acute interior
angle α.
isometries of Euclidean space R3. The group of isometries I(R3) of Euclidean
space R3 consists of translations, reflections (over a plane, over a point or central
reflection, and glide-reflections) and rotations.
symmetries of a polyhedron. The symmetry group I(P) of polyhedron P,
defined as the group of isometries h ∈ I(R3) preserving P, consists of the sets of
rotations Rot(P) and reflections (over a plane or a point) Ref(P). The elements of
I(P) are called symmetries of P.
geometric description of some symmetries of a polyhedron. Let Rf,α,
Re,α, Rv,α ∈ Rot(P) denote the rotation symmetries for the angle α with symmetry
axes going through the center of P and the center of a face f , the center of an
edge e and a vertex v, respectively. Let Sf,v, Sf,e ∈ Ref(P) denote the reflection
symmetries with the reflection planes Π(f, v) and Π(f, e) orthogonal to f , passing
through the center of f and meeting the vertex v or the center of e, respectively.

2.2. Some classes of polyhedra with most symmetries

Polyhedra are fascinating objects, interesting to people because of their beautiful
symmetries. Therefore the most studied classes of polyhedra are those with many
symmetries, for example:
equilateral polyhedra. Most symmetries have polyhedra with equilateral faces
(regular polygons, regular stars, rhombs).
vertex-transitive polyhedra. A polyhedron P is vertex-transitive if for any
u, v ∈ V (P) there is a symmetry h ∈ I(P) such that h(u) = v.
uniform polyhedra. A polyhedron P is uniform if it is vertex-transitive and if
all its faces are regular polygons or regular stars.
polyhedra with the same vertex pattern. Uniform polyhedra (and uniform
tilings, defined likewise, too) can be described by their vertex pattern – the cycle
of faces around any of their vertices. Some of them, like a snub cube (3.3.3.3.4)
and a tiling (34.6), have two different forms, being mirror images of each other. A
regular-faced polyhedron with only one type of vertex is not necessarily uniform:
J.C.P. Miller discovered a non-uniform polyhedron with one vertex type, the same
as that of a rhombicuboctahedron (3.4.4.4) ([4], p.172).
regular polyhedra. A polyhedron P is called regular if it has the same number of
faces of the same type around each vertex. There are five convex regular polyhedra
with regular polygonal faces, called the Platonic solids: (3.3.3), (3.3.3.3), (4.4.4),
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(3.3.3.3.3), (5.5.5). And there are four non-convex regular polyhedra with regular
polygonal or regular star faces, called the Kepler-Poinsot polyhedra. Both Platonic
and Kepler-Poinsot polyhedra belong to the class of uniform polyhedra.
semi-regular polyhedra. A polyhedron P is called semi-regular if it has two
or more different types of faces and the same vertex pattern around each vertex.
There are thirteen Archimedean polyhedra, defined as semi-regular convex uniform
polyhedra with regular polygonal faces: (3.4.3.4), (3.5.3.5),(3.6.6), (3.8.8), (4.6.6),
(3.10.10), (5.6.6), (3.4.4.4), (3.4.5.4), (4.6.8), (4,6,10),(3.3.3.3.4), (3.3.3.3.5).

2.3. Flags, flag graphs and symmetry-type graphs

flags and their vertices. If all the faces f of a polyhedron P are regular
polygons, we can make a baricentric subdivision of its faces into triangles, called
flags. The vertices of any such flag Φ, denoted by Φ2 (the center of the face f
incident with Φ), Φ1 (the center of the edge e incident with Φ) and Φ0 (the vertex
of the edge e incident with Φ), are called the face, the edge and the vertex of Φ,
respectively.
adjacent flags. Each flag Φ has three adjacent flags, sharing an edge with Φ:
the 0-adjacent flag Φ0 lies in the same face f as Φ and along the same edge of f ;
the 1-adjacent flag Φ1 lies in the same face f as Φ, but not along the same edge; the
2-adjacent flag Φ2 lies along the same edge of f , but not in the same face as Φ [9].
flag graph. The flag graph GP of a polyhedron P is a graph whose vertex set
consists of all the triangles (flags) obtained from the baricentric subdivision of its
faces. The edges connecting pairs of adjacent flags (Φ, Φ0), (Φ,Φ1), (Φ, Φ2) are
labeled 0, 1 and 2, respectively.
monodromy group. Involutions s0, s1 and s2 of the flag graph, carrying flags
Φ ∈ GP into their adjacent flags: s0(Φ) = Φ0, s1(Φ) = Φ1, s2(Φ) = Φ2, satisfy the
relations (s0s2)2 = id = s2

0 = s2
1 = s2

2. The group Mon(P), generated by s0, s1, s2 is
called the monodromy group of P.
automorphisms of the flag graph. Let Aut(GP) denote the group of automor-
phisms of the flag graph GP , preserving not only adjacency of vertices of GP but
also the labels 0, 1, 2 of edges.
combinatorial description of symmetries of a polyhedron. Given any two
flags Φ and Ψ of GP , there is at most one automorphism h̃ ∈ Aut(GP) carrying a flag
Φ into a flag Ψ [9]. Thus h̃ can be denoted by an ordered pair (Φ, Ψ). Consequently,
any symmetry h ∈ I(P) can be described by an ordered pair (Φ, h̃(Φ)). I(P) is
isomorphic to a subgroup Ĩ(P) of Mon(P), since to different isometries h1, h2 ∈
I(P) correspond different automorphisms h̃1, h̃2 ∈ Aut(GP). Since Mon(P) is a
subgroup of Aut(GP) and Ĩ(P) is a subgroup of Mon(P), any symmetry h ∈ I(P)
can be described by an ordered pair (Φ, h̃(Φ)), where h̃ ∈ Mon(P), or denoted by
h(Φ, h̃(Φ)).
orbit of a flag. The orbit T (Φ) of a flag Φ ∈ V (GP) is a set of all flags into
which Φ is carried by all the isometries h ∈ I(P) preserving the polyhedron: T (Φ) =
{h̃(Φ), h ∈ I(P)}.
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Each member of the orbit T (Φ) is called a representative of that orbit. Now we can
describe any symmetry of a given polyhedron P just by telling which s ∈ Mon(P)
preserve the orbit of a chosen flag Φ.
symmetry-type graph T (P). The quotient graph of GP under the action of
Ĩ(P) (whose vertices are orbits of flags of GP and whose edges labeled 0, 1 and
2 correspond to labeled edges of their representatives) is called the symmetry-type
graph of the polyhedron P and is denoted by T (P). From this definition immediately
follows:

T (si(Φ)) = si(T (Φ))

for all three involutions s0, s1, s2 of the flag graph. Hence T (s(Φ) = s(T (Φ)) for any
s ∈ Mon(P) and any Φ ∈ GP .
symmetry-type graph TR(P). For the classification of polyhedra we will use also
another type of quotient graph of GP , denoted by TR(P). Here the orbit TR(Φ) of Φ
consists only of those flags Ψ, for which there is a rotation of polyhedron, carrying
Φ into Ψ.
symmetry-type graphs of tilings. For a tiling T the flag graph GT and the
symmetry-type graphs T (T ) and TR(T ) are defined likewise. Since there are four
types of plane isometry (reflection over a line, rotation, translation and glide reflec-
tion [3], p.26), the symmetry-type graph T (T ) is defined by all of them and TR(T )
only by rotations and translations.

2.4. Drawings of symmetry-type graphs

labeling the edges. When we represent flag graphs and symmetry-type graphs
with drawings, we usually label the edges with numbers 0, 1, 2 or color them blue,
yellow and red. We can also simply mark the 1-edges with a small line (–) and the
2-edges with two parallel small lines (=).
pre-graphs and half-edges. Flag-graphs are 3-regular, while in the symmetry-
type graphs there may be loops (edges connecting an orbit with itself). Introducing
the concept of pre-graphs and using half-edges instead of loops [10] we can represent
them as 3-regular pregraphs without loops. Half-edges may be also of three types:
0, 1 and 2.

3. Classification

Figure 1 shows representations of symmetry-type graphs T (P) and TR(P) of Platonic
and Archimedean solids. Some of these graphs are well known. The notation we use
here just indicates the number of their orbits and distinguishes between graphs with
the same number of orbits.

Theorem 1. There are 11 different symmetry-type graphs T (P) and TR(P) of the
5 Platonic and 13 Archimedean solids and they have have 1, 2, 3, 4, 6, 8, 10 or 12
orbits.

These symmetry-type graphs can be described by the permutations of orbits a, b,
c, . . . , induced by the involutions s0, s1, s2 of flags, as follows:



Symmetry-type graphs of Platonic and Archimedean solids 495

Figure 1: Symmetry-type graphs of Platonic and Archimedean solids

graph s0 s1 s2

1 id id id

2a (ab) (ab) (ab)

2 id id (ab)

3 id (a)(bc) (ab)(c)

4 id (a)(bc)(d) (ab)(cd)

4a (ab)(cd) (ab)(cd) (bc)(da)

6 id (ab)(cd)(ef) (af)(bc)(de)

6a (ab)(cf)(de) (ab)(cd)(ef) (af)(bc)(de)

8 (ab)(ch)(dg)(ef) (ab)(cd)(ef)(gh) (ah)(bc)(de)(fg)

10 (ah)(bc)(dg)(ef)(ij) (ab)(cd)(ef)(gh)(ij) (aj)(bc)(de)(fg)(hi)

12 (ag)(bh)(ci)(dj)(ek)(fl) (ab)(cd)(ef)(gh)(ij)(kl) (af)(bc)(de)(hi)(jk)(lg)
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The symmetry-type graphs T (P) and TR(P) of Platonic and Archimedean solids
P depend only on the type of their vertex pattern (pr), (p.q.p.q), (p.q.q), (p.q.r.q),
(p.q.q.q), (p.q.r), (p.p.p.p.q). They define the following 6 classes:

class of P vertex type of P T (P) TR(P)

Regular (Platonic) (pq) 1 2a

Quasi-regular (p.q.p.q) 2 4a

Truncated regular (p.q.q) 3 6a

Versi-quasi regular (p.q.r.q) and (p.q.q.q) 4 8

Truncated quasi-regular (p.q.r) 6 12

Snub quasi-regular (p.p.p.p.q) 10 10

class Platonic or Archimedean solid P vertex pattern T (P) TR(P)
I. tetrahedron (3.3.3) 1 2a

I. octahedron (3.3.3.3) 1 2a

I. cube (4.4.4) 1 2a

I. icosahedron (3.3.3.3.3) 1 2a

I. dodecahedron (5.5.5) 1 2a

II. cuboctahedron (3.4.3.4) 2 4a

II. icosidodecahedron (3.5.3.5) 2 4a

III. truncated tetrahedron (3.6.6) 3 6a

III. truncated cube (3.8.8) 3 6a

III. truncated octahedron (4.6.6) 3 6a

III. truncated dodecahedron (3.10.10) 3 6a

III. truncated icosahedron (5.6.6) 3 6a

IV. rhombicuboctahedron (3.4.4.4) 4 8

IV. rhombicosidodecahedron (3.4.5.4) 4 8

V. truncated cuboctahedron (4.6.8) 6 12

V. truncated icosidodecahedron (4.6.10) 6 12

VI. snub cube (3.3.3.3.4) 10 10

VI. snub dodecahedron (3.3.3.3.5) 10 10

The proof of this theorem (the main result of this paper) is given in Section 6.
The comparison of this table with the one given in ([13], Figure 13), presenting the
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derivation of the Platonic and Archimedean polyhedra from the tetrahedron using
the operations on polyhedra called truncation Tr, medial Me, snub Sn and dual
Du, shows that our classes are related as follows: Tr(I) = III, Tr(II) = V I,
Me(II) = IV . Besides this, the two solids from class II are the medials of the two
solids from class I.

4. A method: tools for finding T (P) and TR(P)

In this section we introduce some tools used in the proof of Theorem 1 in Section
6. They are also useful for the determination of symmetry-type graphs T (P) and
TR(P) of other polyhedra.

Definition 1 (Reflections Sφ0 and Sφ1 over two sides of a flag). For any flag Φ and
for any i ∈ {0, 1} let Sφi

: R3 → R3 be the reflection over a plane
∏

Φi
orthogonal

to the face containing flags Φ and Φi.

To express a fact that P is preserved by a SΦi
we can write: SΦi

∈ I(P).

Proposition 1. Let P be a polyhedron. If there is a reflection symmetry SΦi
(P) =

P, it implies T (Φ) = T (si(Φ)). In that case there are half-edges (representing loops)
labeled i in the symmetry-type graph T (G).

Proof. If SΦi(P) = P, then SΦi induces an automorphism of GP , and flags Φ and
si(Φ) = Si(Φ) belong to the same orbit.

Definition 2 (Unique face). A face x is called unique around a given vertex u, if it
is the only face of its type incident with u.

For example, in a polyhedron (3.4.5.4), faces 3 and 5 are unique (around each vertex),
while the two identical faces 4 are not. Likewise, in a polyhedron (10.10.5/2), a
pentagram star 5/2 is a unique face, while the two regular 10-gons are not.

Proposition 2. If a uniform polyhedron P has a unique face x, then T (P) has
either n or 2n vertices (representing orbits of flags).

Proof. Uniform polyhedra are vertex-transitive. If x is a unique face of a uniform
polyhedron P, then the pairs of flags incident to any of the vertices of x belong to at
most two orbits. Since all the orbits contain the same number of flags, there must
be at least n orbits of flags in T (P). And since the number of orbits #o divides 2n,
it is either #o = n (if there is a reflection symmetry SX1(P) = P) or #o = 2n (if
there is no such symmetry).

If two flags X and Y lie in the same orbit, we can write X ≈ Y instead of T (X) =
T (Y ).

Proposition 3 (The domino rule). If two flags X and Y lie in the same orbit:
X ≈ Y , the same is true for their adjacent flags: X0 ≈ Y 0, X1 ≈ Y 1, X2 ≈ Y 2.
Consequently, X ≈ Y if and only if h(X) ≈ h(Y ) for any h, composed of involutions
s0, s1 and s2 of the flag graph. Thus, if h(X) and h(Y ) lie on faces of different
types, then X and Y cannot lie in the same orbit.
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Proof. This rule follows directly from the definition of a symmetry-type graph.

It is named after dominoes standing in a line: if one falls, all the others fall as well.

Definition 3 (Odd face). A face of a polyhedron or a tiling with an odd number of
edges is called an odd face.

Proposition 4. If a uniform polyhedron P contains an odd unique face x, then along
each edge of x there must be flags X and X1, hence X0 ≈ X1 and (T (X))0 = T (X1).
In that case we can find another 0-edge between orbits: T (X2)0 = T (X0)2, since the
0-2 cycles of flags have length 4.

Proof. An odd unique face contains only two types of flags: X and X1, which must
alternate along the edges.

Definition 4 (Position vector). Let f(X) denote the type 3, 4, 5 or 6 of the face x
containing the flag X. The position vector v(X) of a flag X is defined as v(X) =
(f(X), f(s2(X)).

Proposition 5. Any two flags X and Y belonging to the same orbit have the same
position vectors: if T (X) = T (Y ), then v(X) = v(Y ). Any two flags X and Y
belonging to a pair of 0-adjacent orbits have the same position vectors: if T (X) =
s0(T (Y )), then v(X) = v(Y ). Thus if two flags have different position vectors, then
they cannot lie in the same orbit, and they cannot even lie in the 0-adjacent orbits.

Proof. This is also a direct consequence of the domino rule.

Bilinski introduced cyclical sequences A = [a, b, c, . . . , k,l,m] with elements a, b, c,. . . ,
k, l, m in any set S and used them for the classification of homogeneous planar nets
[1]. Likewise, it is very useful to study cycles of flags around a vertex, an edge
or a face in a flag graph G (of a polyhedron P or of a tiling T ), or the cycles
of orbits of flags (represented by the vertices of the corresponding symmetry-type
graphs T (G) or TR(G)). For example, they are useful in the study of local flag
arrangements [9], where the numbers of consecutive flags in a cycle are usually
written into the triangles representing flags. We represent such cycles as graphs
with an even number of vertices (labeled 1, 2, . . . , 2n or a, b, c, . . . , k, l, m), since such
representation is already the first step towards drawing the symmetry-type graph of
a polyhedron.

Definition 5 (1-2 cycle, 2-0 cycle, 0-1 cycle). Let G be any 3-regular graph with
edges labeled 0,1 and 2.

A1-2 cycle is a cyclical sequence of vertices (X1, X2 . . . X2n), such that s1(X2i−1)
= X2i and s2(X2i) = X2i+1(mod 2n) for any i ∈ {1, 2, . . . , n}.

A 2-0 cycle is a cyclical sequence of vertices (X1, X2, X3, X4), such that s2(X2i−1)
= X2i and s0(X2i) = X2i+1(mod 4) for any i ∈ {1, 2}.

A 0-1 cycle is a cyclical sequence of vertices (X1, X2, . . . X2m), such that s0(X2i−1)
= X2i and s1(X2i) = X2i+1(mod 2n) for any i ∈ {1, 2, . . . , m}.
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Proposition 6. Let P be a flag of the unique face p of an uniform polyhedron P.
If there is a reflection symmetry SP1 ∈ I(P), then P remains vertex-transitive even
if we forbid reflections. The same conclusion holds in a more general case when all
the flags of any face p (not necessarily unique) of a uniform polyhedron P lie in the
same orbit.

Proof. The reflection symmetry SP1 implies all the flags from the faces p are in the
same orbit. Since P is vertex-transitive, we can always find symmetries h1, h2 ∈ I(P)
carrying a flag P into a pair of 1-adjacent flags incident with any vertex v ∈ V (P).
One of the symmetries h1, h2 is reflection, the other is rotation. Hence P remains
vertex-transitive even if we forbid reflections.

This proposition is very useful when we try to determine symmetry-type graphs
TR(P) of Platonic and Archimedean solids (and other uniform polyhedra as well),
since many of them have both a unique face p and the symmetry SP1 , or all the flags
of some face p in the same orbit.

5. The algorithm for finding T (P) and TR(P)

In this section we present an algorithm for finding symmetry-type graphs T (P) and
TR(P) for any uniform polyhedron P, based on tools devised in Section 4. In Section
6 we apply it to Platonic and Archimedean solids.
To determine symmetry-type graphs T (P) of any uniform solid P (or any uniform
tiling) it suffices to execute the following general procedure:

Algorithm 1 (symmetry-type graphs of uniform solids).

(1) Label the 1-2 cycle of flags around a chosen vertex 1, 2, . . . , 2n.

(2) Identify flags of this cycle belonging to the same orbit.

(3) Find the 0-edges between orbits.

This algorithm suggests only what to do, not specifying how to do it. One possible
way is the following:
(1) draw a basic 1-2 cycle. Draw a regular 2n-gon, label its vertices with
numbers 1, 2, . . . , 2n and for each i ∈ {1, . . . , n} label the edges (2i − 1, 2i) with 1
and edges (2i, 2i + 1(mod 2n)) with 2.
(2) identify orbits. Use position vectors or other similar tools to obtain a lower
bound m for the number #o of orbits of flags, and use the symmetries of a polyhe-
dron to obtain an upper bound M for #o. Deduce from the vertex pattern which
symmetries are possible at all (and then check their existence by looking at a poly-
hedron net, picture or 3D-model). Thus in the case (p.q.q) there is at most one
reflection symmetry and in the case (p.q.r) there are no symmetries, while (p.q.p.q)
may have a reflection symmetry and a rotation symmetry around the axis going
through the vertex of a polyhedron.
(3) find orientations of 1-2 cycles and label them. Find out how the 1-2
cycles of flags labeled 1, 2, . . . , 2n must be oriented in all the adjacent vertices of a
chosen vertex.



500 J.Kovič

a) an odd unique face. For example, if P has an odd unique face p, there is an
alternating 0-1 cycle of just two types of flags of p (belonging to at most 2 different
orbits. Consequently all the 1-2 cycles of flags must have the same orientation,
and starting at unique face there is only one way to label the flags around each a
vertex with numbers 1, 2, . . . , 2n. Now we can determine which orbits are connected
with edges labeled 0 simply by looking at the part of the polyhedron net containing
labeled 1-2 cycles around one chosen vertex and around all of its adjacent vertices.
This works for six Archimedean polyhedra (3.6.6), (3.8.8), (3.10.10), (5.6.6), (3.4.4.4),
(3.4.5.4), (3.3.3.3.5) and also for one Archimedean tiling (3.12.12).
b) an odd face and a rotation symmetry around its center. Likewise, if
there is an odd face p surrounded by the faces of the same type q and if there is a
rotation symmetry around the center of this face for the angle 2π/p, then we have an
alternating 0-1 cycle of just two types of flags in p. Consequently, all the 1-2 cycles
of flags have the same orientation and the odd flags (labeled with odd numbers) are
always 0-adjacent to even flags (labeled with even numbers). This works for all five
Platonic polyhedra (33), (34), (43), (35) and (53), all three regular tilings (36), (44)
and (63), eleven Archimedean polyhedra (different from (4.6.8) and (4.6.10)) and six
additional Archimedean tilings: (32.4.3.4), (3.4.6.4), (3.6.3.6), (3.122), (4.82) and
two enantiomorphic forms of (34.6).
c)vertex type (p.q.r). This vertex type implies opposite orientations of 1-2 cycles
in adjacent vertices. A unique face p uniquely defines labels 1, 2, ..., 2n of 1-2 cycles
around each vertex. This works for the remaining two Archimedean solids (4.6.8)
and (4.6.10) and for the Archimedean tiling (4.6.12).
To determine the symmetry-type graphs TR(P) of any uniform solid P (and any
uniform tiling) we have to be a little more careful. For if we forbid reflections, the
polyhedron may not be vertex-transitive any more.
For example, in the case (p.q.r) we have two different 1-2 cycles of labeled flags:
1, 2, 3, 4, 5, 6 and 7, 8, 9, 10, 11, 12 around two types of vertices (say black and white)
and the orbits of flags 1, 2, 3, 4, 5, 6 are different from the orbits of flags 7, 8, 9, 10, 11,
12. We will see that in the case (p.q.r) both symmetry-type graphs T (P) and TR(P)
can be simply calculated.
Sometimes (especially when we can prove that the polyhedron remains vertex-
transitive even if we forbid reflections) it is better first to determine TR(P) and
then, if there are any reflection symmetries h(Φ, Φ1), we simply identify pairs of
vertices in TR(P) to get T (P).

6. Classification by symmetry-type graphs

In this section we determine symmetry-type graphs of Archimedean and Platonic
solids. For each of these solids we also give its uniform notation number Uxy and
Wenninger ([17]) notation number Wxy.
Johnson classified uniform polyhedra into ten classes according to the types of their
vertex figure. Since our classification of Archimedean and Platonic polyhedra by
their symmetry-type graphs coincides with his, we use his names (regular, quasi-
regular, truncated regular, versi quasi-regular, truncated quasi-regular and snub
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quasi-regular polyhedra) for our six different classes of Archimedean and Platonic
polyhedra.

6.1. The proof of Theorem 1

We will consider the following six classes of Platonic and Archimedean solids:
Class I (regular polyhedra) consists of the five Platonic solids with vertex
pattern (pq):

U01 W01 Tetrahedron (3.3.3)
U05 W02 Octahedron (3.3.3.3)
U06 W06 Cube (4.4.4)
U22 W04 Icosahedron (3.3.3.3.3)
U23 W05 Dodecahedron (5.5.5).

It is easy to see that for any of these solids P there are reflection symmetries carrying
any chosen flag Φ into its adjacent flags Φ0,Φ1,Φ2; consequently, there is only one
orbit of flags in T (P) and all the edges must be half-edges. Hence (by Proposition 6)
P remains vertex-transitive even if we forbid reflections. Rotations Rp,2π/p around
the center of each face p for the angle 2π/p ensure that there are only two orbits of
flags in TR(P). All the flags at odd distances from any chosen initial flag Φ (if we
define the distance between two flags as the smallest number of involutions needed
to come from one to the other) lie in the same orbit a and all flags at even distances
from Φ lie in the same orbit b of TR(P). Since adjacent pairs of flags lie in different
orbits a and b, the orbits a and b are connected with edges labeled 0, 1 and 2.
Class II (quasi-regular Archimedean polyhedra) consists of two solids with
vertex pattern (p.q.p.q):

U07 W11 Cuboctahedron (3.4.3.4) and
U24 W12 Icosidodecahedron (3.5.3.5).

Here let us first find TR(P). These two polyhedra are the only two Archimedean
polyhedra without unique faces. But they both have an odd face p with 3 edges and a
rotation symmetry R3,2π/3 around the center of any triangle. We already know that
this implies that the 1-2 cycles of flags 1, 2, 3, 4, 5, 6, 7, 8 around each of the vertices
of p have the same orientation. Four of them (1, 2, 5, 6) belong to the triangles and
the other four (3, 4, 7, 8) to squares or pentagons. But since these two polyhedra
are both symmetrical by the rotation symmetries Rπ with axes going through their
vertices, they both have at most four orbits of flags: 1 ≈ 5, 2 ≈ 6 in the triangles and
3 ≈ 7, 4 ≈ 8 in the squares or pentagons. Thus the flags 1 and 2 form an alternating
0-1 cycle 1, 2, 1, 2, 1, 2 in any triangle, hence 10 ≈ 2, 50 ≈ 6. The fact that 0-2
cycles have the length 4 implies 30 = 3202 ≈ 8 and likewise 40 = 4202 ≈ 7. So
there are half-edges labeled 0 in each of the orbits 1, 2, 3, 4. (This could also be seen
directly by looking at 3D-models of polyhedra, since there are obviously reflection
symmetries Sf,e in any face f). Thus TR(P) of both polyhedra has four orbits
a(1, 5), b(2, 6), c(3, 7), d(4, 8) forming a 1-2 cycle, and these orbits are permuted by
involutions s0, s1, s2 like this: s0 = (a)(b)(c)(d), s1 = (a)(bc)(d), s2 = (ab)(cd).
If we also allow reflection symmetries, the reflection symmetry h(1, 2) (it can also be
written as SP1) implies 1 ≈ 2, 3 ≈ 8 and the symmetry-type graph T (P) is described
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with the permutations of 2 orbits a(1, 2, 5, 6), b(3, 8, 4, 7) like this: s0 = (a)(b), s1 =
(a)(b), s2 = (ab).
Class III (truncated regular Archimedean polyhedra) consists of five solids
with the vertex pattern (p.q.q):

U02 W6 Truncated tetrahedron (3.6.6)
U08 W7 Truncated octahedron (4.6.6)
U09 W8 Truncated cube (3.8.8)
U25 W9 Truncated icosahedron (5.6.6)
U26 W10 Truncated dodecahedron (3.10.10)

Here again let us first determine TR(P). We have three faces around each vertex
with flags 1, 2, 3, 4, 5, 6. So the number of orbits in the symmetry-type graph T (P) is
at most 6. The unique face p is surrounded only by faces q. It is easy to see that all
the above polyhedra (p.q.q) are symmetrical by rotations for the angle 2π/p around
the axes going through the center of any of the unique faces and orthogonal to it.
Since the vertex-transitivity of each solid is ensured by these rotations, we can label
flags 1, 2, 3, 4, 5, 6 around each vertex also in our computations of TR(P). These
rotations also imply that we have an alternating 0-1 cycle of flags of type 1 and 2 in
p. Hence all the 1-2 cycles around each vertex have the same orientation, thus odd
flags are always 0-neighbours of some even flags. So the 0-edges must be: 10 ≈ 2,
30 = 3202 ≈ 6, 50 ≈ 4. The flags 1, 3 and 5 must lie in different orbits since they have
different position vectors: 1 lies in a p-gon and 12 lies in a q-gon, 3 lies in a q-gon
and 32 lies in a p-gon, 5 lies in a q-gon and 52 lies in a q-gon. So we have at least
three orbits of flags. But since we have no rotations in axes going through vertices
of polyhedra (p.q.q), the symmetry-type graph TR(P) has 6 orbits a(1), b(2), c(3),
d(4), e(5), f(6), and can be described with the permutations s0 = (a)(b)(c)(d)(e)(f),
s1 = (ab)(cd)(ef), s2 = (bc)(de)(fa). Since all the above polyhedra are symmetrical
with respect to the reflection SP1 , the orbits of the following pairs of flags are the
same: 1 ≈ 2, 3 ≈ 6, 5 ≈ 4, hence T (P) has 3 orbits a(1, 2), b(3, 6), c(5, 4) and can be
described with the permutations: s0 = (a)(b)(c), s1 = (a)(bc), s2 = (ab)(c).
Class IV (versi quasi-regular Archimedean polyhedra) consists of two
solids with the vertex pattern (p.q.q.q) and (p.q.r.q):

U10 W13 Rhombicuboctahedron (3.4.4.4) and
U27 W14 Rhombicosidodecahedron (3.4.5.4).

Let us first find TR(P). In both of these polyhedra we have a unique face p = 3 and
a rotation symmetry around its center for the angle 2π/p; hence all the 0-1 cycles of
labeled flags around each vertex are oriented in the same direction. In the unique
face p = 3 there is an alternating 0-1 cycle of flags 1 and 2. Hence 10 ≈ 2 and
therefore 30 = 3202 ≈ 8.
In (3.4.5.4) we have another unique face r, hence 50 ≈ 6 and therefore 40 = 4202 ≈ 7
and the symmetry type TR(P) of (3.4.5.4) is known.
Likewise we have 50 ≈ 6 and consequently 40 ≈ 7 also in (3.4.4.4). For all other
options lead into contradiction: in TR(P) there are no half-edges, and the only
remaining cases 50 ≈ 7, 40 ≈ 8 or 50 ≈ 4, 70 ≈ 8 would imply a 1-0 cycle of period
6 in each of the squares having only 8 flags.
The reflection symmetry h(1, 2) identifies pairs of orbits: 1 ≈ 2, 3 ≈ 8, 5 ≈ 6 and
7 ≈ 4. Since there are at least three different position vectors of flags ((p, q), (q, p)
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and (q, q)), there are at least four orbits in T (P), and we already know all the 0-edges
between them, so T (P) is also known.
Class V (truncated quasi-regular Archimedean polyhedra) consists of
two solids with the vertex pattern (p.q.r):

U11 W15 Truncated cuboctahedron (4.6.8) and
U28 W16 Great truncated icosidodecahedron (4.6.10)

In that case we can find the symmetry-type graph T (P) as follows: The flags
1, 2, 3, 4, 5, 6 have different position vectors: v(1) = (p, r), v(2) = (p, q), v(3) = (q, p),
v(4) = (q, r), v(5) = (r, q), v(6) = (r, p), so they must lie in different orbits. Conse-
quently, since the position vectors of 0-adjacent flags are the same, the 0-adjacent
flags belong to the same orbit. In other words, all the 0-edges in T (P) must be half-
edges. We could see this directly by looking at 3D-models of polyhedra. But the
value of the above argument lies in the fact that it applies to all uniform polyhedra
with the vertex pattern (p.q.r).
We have already mentioned in Section 5 that in the calculation of TR(P) in the case
of the vertex type (p.q.r) we have two types of vertices (say white and black) and
two 1-2 cycles of labeled flags 1, 2, 3, 4, 5, 6 around the white vertices and 7, 8, 9, 10,
11, 12 around the black ones. These two types of cycles have opposite orientations,
thus 0-neighbours of odd flags are odd flags and 0-neighbours of even flags are even
flags. Since the position vectors of 0-adjacent flags must be the same, the 0-edges
between 12 different orbits must be the following: 10 ≈ 7, 20 ≈ 8, 30 ≈ 9, 40 ≈ 10,
50 ≈ 11, 60 ≈ 12.
Class VI (Snub quasi-regular Archimedean polyhedra) consists of two
solids with the vertex pattern (p.p.p.p.q):

U12 W17 Snub cube (3.3.3.3.4) and
U29 W18 Snub dodecahedron (3.3.3.3.5)

It is easy to see that they have no reflection symmetries, therefore for them TR(P) =
T (P). (We can also prove algebraically that all flags around one vertex lie in different
orbits, for if we count the distances of these flags from the two closest unique faces
in the polyhedron net, we always get a flag with a unique pair at such distances.
And since all orbits contain the same number of flags, each of these ten flags must
lie in a different orbit.) Since they both have a unique face q and rotation symmetry
around its center for the angle 2π/q, they must have the same orientation of 1-2
cycles of flags 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 around each vertex, and we can determine 0-
edges in their symmetry-type graphs by labeling the 1-2 cycles of ten flags around
each vertex in the polyhedron net, starting at the unique face. Each of these two
polyhedra has two enantiomorphic forms, which are mirror images of each other,
and the same holds for their nets. But their symmetry-type graphs are isomorphic.
This completes the proof of Theorem 1.
Using the techniques described in Sections 3, 4 and 5 it is easy to see that there is
an Archimedean tiling T with a vertex type (33.42) having symmetry-type graphs
different from all the aforementioned ones: T (T ) has five orbits and TR(T ) has 10
orbits.
Likewise, for the uniform solid (3.5/3.3.5/2.3.3) we get a new symmetry-type graph
T (P) = TR(P) with 12 orbits. These symmetry-type graphs can be described by
permutations s0, s1, s2 of orbits like this:
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T (33.42) TR(33.42) T (3.5/3.3.5/2.3.3)

s0 (ab)(c)(d)(e) (ab)(cj)(dg)(ef)(hi) (aj)(be)(cd)(fi)(gh)(kl)
s1 (a)(bc)(de) (ab)(cd)(ef)(gh)(ij) (ab)(cd)(ef)(gh)(ij)(kl)
s2 (ab)(cd)(e) (bc)(de)(fg)(hi)(ja) (bc)(de)(fg)(hi)(jk)(la)

The first two symmetry-type graphs have no symmetries. The symmetry-type graph
of the polyhedron (3.5/3.3.5/2.3.3) can be represented by a regular 12-gonal drawing
possessing rotation symmetry for the angle 2π/3.

7. Symmetry-type graphs and operations on polyhedra

Flag graphs and symmetry-type graphs can be defined purely algebraically and for
any map [8],[9]. A k-orbit map [8] is a map M with k distinct orbits of flags. By
recent discoveries in the theory of k-orbit maps the medial Me(M) of a k-orbit map
is either a k-orbit map (if and only if M is self dual) or a 2k-orbit map. Likewise,
for any map M its truncation Tr(M) is either a k-orbit map, a 3k/2-orbit map or
a 3k-map([8], p. 420).

Proposition 7. For any polyhedron P obtained from a tetrahedron by a sequence
of operations medial Me, dual Du and truncation Tr, the number of orbits of T (P)
and TR(P) is of the form 2a3b, a, b ∈ N.

Proof. This is an obvious corollary of the above mentioned result on k-orbit maps
and the fact that the symmetry-type graph of the dual has the same vertices and
edges, and interchanged labels 0 and 2 of edges.

Now we can ask: Is it possible to determine symmetry-type graphs T (P) and TR(P)
of any polyhedron P = F (Q), obtained from another polyhedron Q by a transfor-
mation F , composed of operations on polyhedra like Tr,Me,Du, Sn, etc., directly
from the following two data:
a) the sequence of these operations transforming Q to P,
b) the symmetry-type graphs TR(Q) and T (Q) of polyhedron Q?
If this could be done, the classification of polyhedra by their symmetry-types would
be much easier.
Most recent research in this area [6] shows that the medials of two self-dual maps
with the same symmetry-type graph can be different! The reason for this lies in dif-
ferent kinds of transformations of maps establishing self-duality of a given map. But
since most of the symmetry-type graphs obtained from Archimedean and Platonic
polyhedra are not self-dual (only types 1 and 2a from our Theorem 1 are self-dual),
we can still hope to calculate the symmetry-types of most polyhedra, derived from
this family of polyhedra by operations like medial, truncation, etc.
Thus we come to the following conjecture: (operations determine symmetry
types) For any non self-dual polyhedron P the symmetry-type graphs T (Tr(P)),
T (Me(P)), TR(Tr(P)) and TR(Me (P)) depend only on the symmetry-type graphs
T (P) and TR(P).
An analogous conjecture can be made for any map M and also for other opera-
tions on polyhedra (Snub Sn, Dual Du, Leapfrog Le = Tr(Du) [13], etc.). If this
conjecture turns out to be true, it would make the classification of polyhedra by
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their symmetry-type graphs much easier, at least in theory. But this would re-
ally work only if we could solve another problem: (find induced operations on
symmetry-type graphs). For any basic operation O ∈ {Tr,Me,Du, Sn} defined
on any non self-dual polyhedron P find an algorithm for deducing the symmetry-
type graphs T (O((P)) and TR(O(P)) directly from the symmetry-type graphs T (P)
and TR(P).
So the question is: can we find operations Tr∗, Me∗, Du∗, Sn∗ on symmetry-type
graphs such that T (O(P)) = O∗(T (P)) holds for any operation O∈{Tr,Me, Du, Sn}
and for any non self-dual polyhedron P?
One way to verify or falsify our conjecture would be by using computer programs
like Vega ([12]). If our conjecture is true, then the problem of finding operations
Tr∗, Me∗ on symmetry-type graphs should not be too difficult to solve (at least
for reasonably small k), since by the already mentioned results of the theory of
k-orbit maps ([8], p. 420) there are only two or three possible numbers of orbits
of Tr(P) and Me(P). And maybe these operations Tr∗,Me∗ on symmetry-type
classes, if they exist at all, could be even described by some simple operations on
the corresponding symmetry-type graphs. Then we could draw a graph of symmetry-
classes whose vertices would correspond to symmetry-type graphs and its directed
edges to operations on them. Indeed, such graphs have already been made for the
medials of maps with at most four orbits in [6].
Such a transformation Du∗ on symmetry-type graphs exists at least for the operation
dual Du: it leaves the vertices and edges, and interchanges the labels 0 and 2 of
edges.

8. Summary

We have seen (Theorem 1) that the symmetry-type graphs T (P) and TR(P) of any
Archimedean and Platonic solid P depend only on its vertex type:

class of P vertex type of P T (P) TR(P)

Regular (Platonic) (pq) 1 2a

Quasi-regular (p.q.p.q) 2 4a

Truncated regular (p.q.q) 3 6a

Versi-quasi regular (p.q.r.q) and (p.q.q.q) 4 8

Truncated quasi-regular (p.q.r) 6 12

Snub quasi-regular (p.p.p.p.q) 10 10

Our classification of Archimedean and Platonic solids by their symmetry-type graphs
is thus in perfect accordance with Johnson’s classification for uniform polyhedra (see
the names in the left column of the table above). But since it is based on symmetry-
type graphs, it can be extended to the classification of any family of polyhedra and
tilings, too.
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The comparison of this table with the one given in [13] together with some results
of the theory of k-orbit maps [8] suggested our conjecture that the symmetry-type
graphs T (P) and TR(P) of a given polyhedron can be simply calculated if we know
how a given polyhedron P = F (Q) can be obtained by the sequence F of operations
like truncation, medial, dual, snub, etc. from some other polyhedron Q, at least if
Q is not a self-dual polyhedron.
This paper builds on the ideas and results from many papers from this area: A
classification of edge-transitive maps has been made in [7]. An enumeration of edge-
transitive types is given in [2]. The classification of all edge-transitive maps in the
torus according to their automorphism group type is given in [16]. Flag graphs first
appeared in [5] (there the term gems, an acronym for graph-encoded maps, was
used). Flag-graphs and transformations on maps are discussed in [11]. The question
of enumeration of uniform polyhedra (also with skew faces) is discussed in Problem
26 of [14].
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