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Abstract. In this paper, we study the time variable coefficient modified Korteweg-de Vries
(mKdV) equation from group-theoretic point of view. We obtain Lie point symmetries
admitted by the mKdV equation for various forms for the time variable coefficients. We
use the symmetries to construct the group-invariant solutions for each of the cases of the
arbitrary variable coefficients. Finally, the solitary wave ansatz will be used to carry out
the integration of the mKdV equation that will be supported by a concrete example.
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1. Introduction

There are various nonlinear evolution equations (NLEEs) that are being presently
studied in the literature. The issues that are addressed in these studies are the
integrability aspects, conservation laws, symmetry analysis, stochasticity aspects
and others. One of the main interesting and most widely studied aspects is the
integrability issue. Sometimes these NLEEs have time-dependent coefficients that
are more closely related to real life situations. Therefore it is more practical that
these time-dependencies be taken into account.

There are various methods to address the integrability issues. Some of these
common methods of integrability issues are Adomian decomposition method, Inverse
Scattering Transform, G′/G method, exponential function method, F -expansion
method and many others (see e.g. [1, 2, 9, 11, 8, 7, 12, 13, 14, 15] and the references
therein). In this paper, the method of Lie symmetry will be used to carry out the
integration of an important NLEE that is the mKdV equation with time-dependent
coefficients. For the theory and application of the Lie symmetry groups the reader is
referred to [3, 6, 10]. This equation is used as a mathematical model to study physical
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phenomena arising in several areas of interest. For example, in the study of coastal
waves in ocean and liquid drops and bubbles, in the issues of atmospheric blocking
phenomenon and dipole blocking (see [2, 9, 15]). The dimensionless form of the
mKdV equation that will be studied in this paper with time-dependent coefficients
is given by

qt + q2qx + a(t)q + b(t)qxxx = 0. (1)

In (1), the first term represents the evolution term while the second term represents
the nonlinear term. The third term represents linear damping while the fourth term
is the dispersion term. The time-dependent coefficients of damping and dispersion
are a(t) and b(t), respectively. Equation (1) will be studied by Lie symmetry methods
and also 1-soliton solution will be obtained by the solitary wave ansatz method.

2. Lie point symmetries and group-invariant solutions

In this section, we present the Lie point symmetry generators obtained for various
cases of the time variable coefficients a(t) and b(t). Moreover, we obtain the exact
solutions for these special cases using the symmetry generators or combination of
symmetry generators of the equations.

Case 2.1. a(t) =
1
t
, b(t) =

K

t2
, K is a constant.

In this case, equation (1) takes the form

qt + q2qx +
1
t
q +

K

t2
qxxx = 0. (2)

A vector field
X = ξ1(t, x, q)

∂

∂t
+ ξ2(t, x, q)

∂

∂x
+ η(t, x, q)

∂

∂q
, (3)

is a generator of point symmetry of equation (2) if

X [3]

(
qt + q2qx +

1
t
q +

K

t2
qxxx

)
= 0, (4)

whenever (2) is satisfied. Here the operator X [3] is the third prolongation of the
operator X defined by

X [3] = X + ζt
∂

∂qt
+ ζx

∂

∂qx
+ ζxxx

∂

∂qxxx

and the coefficients ζt, ζx and ζxxx are given by

ζt = Dt(η)− qtDt(ξ1)− qxDt(ξ2),
ζx = Dx(η)− qtDx(ξ1)− qxDx(ξ2),

ζxx = Dx(ζx)− qxtDx(ξ1)− qxxDx(ξ2),
ζxxx = Dx(ζxx)− qxxtDx(ξ1)− qxxxDx(ξ2).

The operator Di denotes the total derivative operator and it is defined by

Di =
∂

∂xi
+ qi

∂

∂q
+ qij

∂

∂qj
+ . . . , i = 1, 2,
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and (x1, x2) = (t, x). Moreover, we use the notations q1 = qt, q2 = qx, q11 = qtt, q21 =
qxt, and so on, to denote a different order of partial derivatives of the dependent
variable q with respect to the independent variables t and x.

The functions ξ1, ξ2 and η are calculated by solving the determining equation
(4). The coefficients ξ1, ξ2 and η are independent of the derivatives of q. Hence the
coefficients of like derivatives of q in (4) can be equated to yield an overdetermined
system of linear partial differential equations (PDEs). Therefore, the determining
equation for symmetries after some tedious calculations yield

ξ1 = ξ1(t), ξ2
q = 0, ηqq = 0, (5)

−2K

t3
ξ1 +

K

t2
ξ1
t −

3K

t2
ξ2
x = 0, (6)

ηxq − ξ2
xx = 0, (7)

2qη + q2 ξ1
t − ξ2

t − q2 ξ2
x +

K

t2
(3ηxxq − ξ2

xxx) = 0, (8)

− 1
t2

q ξ1 +
1
t
η + ηt − 1

t
q ηq +

1
t
q ξ1

t + q2 ηx +
K

t2
ηxxx = 0. (9)

Solving equations (5-9) we obtain

ξ1 = c1 t2 − c3t, ξ2 =
c3

3
x + c2, η =

(
2c3

3
− c1 t

)
q,

where c1, c2, c3 are constants. Thus, equation (2) admits a three-dimensional Lie
algebra of symmetries given by

X1 =
∂

∂x
, X2 = t2

∂

∂t
− tq

∂

∂q
, X3 = −t

∂

∂t
− x

3
∂

∂x
+

2q

3
∂

∂q
.

First we consider the symmetry generator X2 for the group-invariant solution. The
Lagrange system of equations corresponding to X2 is given by

dt

t2
=

dx

0
=

dq

−tq
. (10)

Solving the equations in (10) yields the following group invariants, namely, γ =
x, β = tq, so that a group-invariant solution to (2) is given by q = t−1h(x), where
h(x) is an arbitrary function of its argument. Substituting the derivatives of q with
respect to t and x into equation (2) gives a third-order nonlinear ordinary differential
equation (ODE) with a dependent variable h and an independent variable γ, viz.,

Kh
′′′

+ h2h
′
= 0. (11)

We integrate equation (11) with respect to γ once to obtain

h
′′

= − h3

3K
+ Ã, (12)

where Ã is a constant. Further integration of (12) yields the following nonlinear
first-order ODE (

dh

dγ

)2

= A + Bh− h4

6K
, (13)
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where A and B are constants of integration.
If A = B = 0 and K = −1, then solving equation (13), we find that

h(γ) =
√

6
C ± γ

,

where C is a constant. Hence a group-invariant solution to (2) is

q(x, t) =
√

6
t(C ± x)

.

Now we consider a linear combination of the symmetry generators X1 and X2, i.e.,
X1 + X2. The group invariants are

γ = x +
1
t
, β = tq.

Thus the group-invariant solution of (2) corresponding to X1 + X2 is given by
q(x, t) = t−1h(x+1/t), where h(γ) satisfies the following third-order nonlinear ODE

Kh
′′′

+ h2h
′ − h

′
= 0. (14)

We integrate equation (14) with respect to γ once to obtain

h
′′

= − h3

3K
+

h

K
+ Ã, (15)

where Ã is a constant. Further integration of (15) yields the following nonlinear
first-order ODE (

dh

dγ

)2

= A + Bh +
h2

K
− h4

6K
, (16)

where A and B are constants.
If we take A = B = 0 and K = 1, then solving equation (16) yields

h(γ) =
√

6 sech(C ± γ),

where C is a constant. Hence a solitary wave solution to (2) is

q(x, t) =
√

6
t

sech
[
C ±

(
x +

1
t

)]
.

Now if we choose A = B = 0 and K = −1 we obtain another group-invariant
solution to (2), namely

q(x, t) =
√

6
t

sec
[
C ±

(
x +

1
t

)]
,

where C is a constant.
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Remark 1. Here we restrict ourselves to obtaining some interesting particular so-
lutions of equation (2) by letting the constants, namely A and B, to be zero in (13)
and (16), respectively. However, in general equations (13) and (16) with A 6= 0 and
B 6= 0 have solutions expressed in terms of Jacobi elliptic functions (see e.g., [4, 5]).

Case 2.2. a(t) = K0, b(t) = K1e
−2K0t, K0,K1 are constants.

In this case, equation (1) becomes

qt + q2qx + K0q + K1e
−2K0tqxxx = 0. (17)

Lie point symmetries admitted by equation (17) are given by

X1 =
∂

∂x
, X2 = e2K0t ∂

∂t
−K0e

2K0tq
∂

∂q
, X3 = − ∂

∂t
+

2K0x

3
∂

∂x
+

K0q

3
∂

∂q
.

The symmetry generator X2 gives rise to the group-invariant solution

q(x, t) = e−K0th(x),

where γ = x and h(γ) satisfies the third-order nonlinear ODE

K1h
′′′

+ h2h
′
= 0. (18)

This ODE is similar to the ODE (11) and hence it reduces to

(
dh

dγ

)2

= A + Bh− h4

6K1
, (19)

where A and B are constants. In (19) by taking A = B = 0 and K1 = −1 and
solving the equation one obtains the exact group-invariant solution to (17) given by

q(x, t) =
√

6 e−K0t

(C ± x)
,

where C is a constant.
A linear combination of the symmetry generators X1 and X2, i.e., X1 +X2 gives

the following group-invariant solution of (17)

q(x, t) = e−K0th

(
x +

e−2K0t

2K0

)
,

where γ = x + e−2K0t/2K0 and h(γ) satisfies the following third-order nonlinear
ODE

K0h
′′′

+ h2h
′ − h

′
= 0. (20)

Equation (20) can be simplified as before to the following nonlinear first-order ODE

(
dh

dγ

)2

= A + Bh +
h2

K1
− h4

6K1
, (21)
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where A and B are constants.
By choosing A = B = 0 and K1 = 1 and then solving equation (21) we find that

h(γ) =
√

6 sech(C ± γ),

where C is a constant. Hence a group-invariant solution to (17) is

q(x, t) =
√

6 e−K0t sech
[
C ±

(
x +

e−2K0t

2K0

)]
.

Likewise, one can obtain another exact group-invariant solution

q(x, t) =
√

6 e−K0t sec
[
C ±

(
x +

e−2K0t

2K0

)]
,

where C is a constant, to (17) by taking A = B = 0 and K1 = −1 in (21).

3. Solitary wave solutions

In order to obtain a solitary wave solution to (1), the starting hypothesis is

q(x, t) =
A(t)

coshp [B(t) (x− v(t))]
, (22)

where A represents the amplitude of the soliton, while B is the inverse width of
the soliton and v represents the velocity of the soliton. It needs to be noted that
since damping and dispersion have time-dependent coefficients, one needs to have,
in general,

A = A(t), (23)
B = B(t) (24)

and

v = v(t). (25)

Thus from (22) one gets

qt =
dA

dt

1
coshp τ

+ pAB

(
v + t

dv

dt

)
tanh τ

coshp τ
− pA

B

dB

dt

τ tanh τ

coshp τ
, (26)

q2qx = −pA3B
tanh τ

cosh3p τ
, (27)

a(t)q =
a(t)A
coshp τ

, (28)

b(t)qxxx = p(p + 1)(p + 2)b(t)AB3 tanh τ

coshp+2 τ
− p3b(t)AB3 tanh τ

coshp τ
. (29)
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Substituting (26) to (29) into (1) yields
(

dA

dt
+ a(t)A

)
1

coshp τ
+ pAB

(
v + t

dv

dt
− b(t)p2B2

)
tanh τ

coshp τ

−pA

B

dB

dt

τ tanh τ

coshp τ
− pA3B

tanh τ

cosh3p τ
+ p(p + 1)(p + 2)b(t)AB3 tanh τ

coshp+2 τ
= 0.

(30)

From (30), one can say that the last two terms match up, provided the exponent of
the cosh functions are the same. This gives

3p = p + 2, (31)

which yields

p = 1. (32)

Also, from (30), one can see that the functions 1/ coshp τ , tanh τ/ coshp τ ,
τ tanh τ/ coshp τ are linearly independent and therefore their coefficients must van-
ish, respectively. This leads to the following relations

dA

dt
+ a(t)A = 0, (33)

v + t
dv

dt
= bp2B2 (34)

and

dB

dt
= 0. (35)

From (33), (34) and (35), one can respectively conclude

A(t) = A0e
− ∫

a(t)dt, (36)

v(t) =
p2B2

t

∫
b(t)dt (37)

and

B(t) = constant, (38)

where A0 is the initial amplitude of the soliton. In order to determine the constant
width B, one needs to set the sum of the coefficients of the last two terms in (30)
to zero. This gives

A2 = b(p + 1)(p + 2)B2, (39)

which yields

B(t) = 2

[
A2

0e
−2

∫
a(t)dt

24b(t)

] 1
2

(40)
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so that from (40), one needs to have b(t) > 0. In order to conform to the fact that
B(t) must be a constant, one needs to have the constraint of the time-dependent
coefficients a(t) and b(t) from (40) related as

b(t) = ke−2
∫

a(t)dt (41)

for some positive constant k. Thus, the solitary wave solution to (1) is finally given
by

q(x, t) =
A(t)

cosh [B (x− v(t))]
(42)

where the soliton parameters A(t), B(t) and v(t) are given by (36), (40) and (37),
respectively, while the coefficients a(t) and b(t) are related as given in (41). The only
necessary condition for the solitons to exist is that the time-dependent coefficients
a(t) and b(t) must be Riemenn integrable, as evident from (37) and (41).

3.1. Example

In this section, the same example, as considered before [11] will be studied, to
illustrate the above technique. The gKdV equation considered here is

qt + q2qx + aq + ce−2atqxxx = 0, (43)

where a and c are constants. Starting with the same ansatze as in (22), equation
(30) modifies to

(
dA

dt
+ aA

)
1

coshp τ
− pA

B

dB

dt

τ tanh τ

coshp τ

−pA3B
tanh τ

cosh3p τ
+ pAB

(
v + t

dv

dt
− cp2B2e−2at

)
tanh τ

coshp τ
(44)

+p(p + 1)(p + 2)cAB3e−2at tanh τ

coshp+2 τ
= 0,

which leads to the solitary wave solution

q(x, t) =
A

cosh [B (x− vt)]
, (45)

where

A(t) = A0e
−at, (46)

B =
1√
6c

(47)

and

v(t) = −A2
0e
−2at

12at
. (48)
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The constraint relation (40) is meaningful here as c is a constant as seen from the
hypothesis. From (46), it can be seen that

lim
t→∞

A(t) =
{

0, a > 0
∞, a < 0,

(49)

while from (48), one can conclude that

lim
t→∞

v(t) =
{

0, a > 0
∞, a < 0,

(50)

which shows that the amplitude and velocity of the soliton die down gradually,
provided a > 0. Thus, the solitary wave solution of (43) is given by (45) with the
respective parameters defined in (46), (47) and (48).

4. Concluding remarks

We have studied the mKdV equation with time variable coefficients using the Lie
symmetry method. This approach has enabled us to obtain various possible forms for
time variable coefficients of the underlying equation. For each of the possible forms
of the coefficients of the equation, we derived the Lie point symmetries admitted
by the equation and then used them to construct group-invariant solutions. Finally,
the 1-soliton solution is obtained by using the solitary wave ansatz. In this context,
it was established that time-dependent coefficients must be Riemann integrable for
the solitons to exist.
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