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Abstract. In this paper, the concept of an ARH–quasigroup is introduced and identities
valid in that quasigroup are studied. The geometrical concept of an affine–regular heptagon
is defined in a general ARH–quasigroup and geometrical representation in the quasigroup
C(2 cos π

7
) is given. Some statements about new points obtained from the vertices of an

affine–regular heptagon are also studied.
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1. Definition and examples

A quasigroup (Q, ·) will be called an ARH–quasigroup if it satisfies the identities of
idempotency and mediality, i.e. we have the identities

aa = a, (1)
ab · cd = ac · bd, (2)

and besides, if the identity

(a · ab)b = ba (3)

also holds.

Example 1. Let (G,+) be a commutative group in which there is an automorphism
ϕ which satisfies the identity

(ϕ ◦ ϕ ◦ ϕ)(a)− (ϕ ◦ ϕ)(a)− ϕ(a)− ϕ(a) + a = 0, (4)

where ◦ is the composition of functions. Let us define multiplication · on the set G
by the formula

ab = a + ϕ(b− a). (5)
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Now we shall prove that (G, ·) is an ARH–quasigroup.
For each a, b ∈ G, because of (5), the equations ax = b and ya = b are equivalent

to the equations

a + ϕ(x− a) = b and y + ϕ(a)− ϕ(y) = b. (6)

The first equation has a unique solution x = a + ϕ−1(b− a), and the second one can
be written in the form

(ϕ ◦ ϕ)(y)− (ϕ ◦ ϕ ◦ ϕ)(y) = (ϕ ◦ ϕ)(b)− (ϕ ◦ ϕ ◦ ϕ)(a),

i.e. according to (4) in the form

y − ϕ(y)− ϕ(y) = (ϕ ◦ ϕ)(b)− (ϕ ◦ ϕ ◦ ϕ)(a)

or owing to (6) it gets the form

b− ϕ(a)− ϕ(y) = (ϕ ◦ ϕ)(b)− (ϕ ◦ ϕ ◦ ϕ)(a).

The last equation has a unique solution

y = ϕ−1[b− (ϕ ◦ ϕ)(b)− ϕ(a) + (ϕ ◦ ϕ ◦ ϕ)(a)],

which also satisfies equation (6) as due to (4) we get

y − ϕ(y) = ϕ−1[b− (ϕ ◦ ϕ)(b)− ϕ(a) + (ϕ ◦ ϕ ◦ ϕ)(a)]
−[b− (ϕ ◦ ϕ)(b)− ϕ(a) + (ϕ ◦ ϕ ◦ ϕ)(a)]

= ϕ−1[b− ϕ(b)− (ϕ ◦ ϕ)(b) + (ϕ ◦ ϕ ◦ ϕ)(b)]
−[a− ϕ(a)− (ϕ ◦ ϕ)(a) + (ϕ ◦ ϕ ◦ ϕ)(a)]

= ϕ−1[ϕ(b)]− ϕ(a) = b− ϕ(a).

We have just proved that (G, ·) is a quasigroup. Its idempotency is obvious from
(5). According to (5), it follows

ab · cd = ab + ϕ(cd− ab) = a + ϕ(b− a) + ϕ[c + ϕ(d− c)− a− ϕ(b− a)]
= a− ϕ(a)− ϕ(a) + (ϕ ◦ ϕ)(a) + ϕ(b)− (ϕ ◦ ϕ)(b) + ϕ(c)− (ϕ ◦ ϕ)(c)

+(ϕ ◦ ϕ)(d)

and the symmetry of the obtained expression by b and c proves mediality (2). From
(5) firstly follows

a · ab = a + ϕ[a + ϕ(b− a)− a] = a− (ϕ ◦ ϕ)(a) + (ϕ ◦ ϕ)(b)

and by means of (4) we get

(a · ab)b = a · ab + ϕ(b− a · ab)
= a− (ϕ ◦ ϕ)(a) + (ϕ ◦ ϕ)(b) + ϕ[b− a + (ϕ ◦ ϕ)(a)− (ϕ ◦ ϕ)(b)]
= a− ϕ(a)−(ϕ ◦ ϕ)(a) + (ϕ ◦ ϕ ◦ ϕ)(a) + ϕ(b) + (ϕ ◦ ϕ)(b)−(ϕ ◦ ϕ ◦ ϕ)(b)
= ϕ(a) + b− ϕ(b) = b + ϕ(a− b) = ba;

therefore, identity (3) also holds.
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Example 2. Let (F, +, ·) be a field in which the equation

q3 − q2 − 2q + 1 = 0 (7)

has the solution q and the operation ∗ on the set F is defined by

a ∗ b = (1− q)a + qb. (8)

Then it is obvious that the identity ϕ(a) = qa defines an automorphism of the
commutative group (F, +), and since equality (7) holds, then for each a ∈ F equality
(4) holds. However, equation (8) can be written in the form

a ∗ b = a + ϕ(b− a),

and based on Example 1 it follows that (F, ∗) is a ARH–quasigroup.

Example 3. Let (C,+, ·) be a field of complex numbers and ∗ a binary operation
on the set C defined by (8), where q is the solution of (7). Example 2 implies that
(C, ∗) is an ARH–quasigroup.

Namely, besides the trivial solution ϕ = 0, the equation sin 3ϕ = sin 4ϕ has also
the solutions ϕ ∈ {π

7 , 3π
7 , 9π

7 } due to sin 3π
7 = sin 4π

7 , sin 9π
7 = sin 12π

7 , sin 27π
7 =

sin 36π
7 . That equation gets the form

8 sinϕ cos3 ϕ− 4 sin ϕ cos2 ϕ− 4 sinϕ cosϕ + sin ϕ = 0,

and without the factor sin ϕ it can be written in the form (7) where q = 2 cos ϕ.
Therefore, the solutions of the obtained equation are

q1 =2 cos
π

7
∼1, 8019377, q2 =2 cos

3π

7
∼0, 4450419, q3 =2 cos

9π

7
∼−1, 2469796. (9)

For each of these three solutions we get a nice geometrical interpretation which
justifies studying ARH–quasigroups and defining geometrical concepts in them. Let
us consider the set of complex numbers as a set of the points of Euclidean plane.
For two different points a and b equation (8) can be written in the form

a ∗ b− a

b− a
= q,

meaning that points a, b, a ∗ b form the cross ratio q. Let symbol ∗i represent the
operation ∗ defined by formula (8) with value q = qi, where, with i ∈ {1, 2, 3}, that
value qi is given by (9). Then, Figure 1 shows all three operations ∗, for which (C, ∗)
is an ARH–quasigroup.

Figure 1:

These three quasigroups will be denoted by C(q1), C(q2) and C(q3) because for
a = 0 and b = 1 we get a ∗i b = qi. Each identity in an ARH–quasigroup can be
interpreted as a geometrical theorem. So, in Figure 2 the illustration of the identity
(3) in the quasigroup C(q1) is given, where instead of e.g. a ∗1 b it will be written
ab, and such notation will be used in all figures.
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Figure 2:

2. Basic properties of ARH–quasigroups

Direct consequences of identities (1) and (2) are the following identities of elasticity
and left and right distributivity, i.e.

ab · a = a · ba, (10)
a · bc = ab · ac, (11)
ab · c = ac · bc. (12)

Because of (12), identity (3) can also be written in the form

ab · (ab · b) = ba, (13)

which will be very useful later. Let us prove the following theorem now.

Theorem 1. In an ARH–quasigroup (Q, ·) the following identities

a(ab · b) = ba · a, (14)
(a · ab)c = (c · cb)a, (15)
(a · bc)c = c(ba · a) (16)

hold.

Proof. (see [2], Th. 27) We get successively

a(ab · b) (11)
= (a · ab) · ab

(11)
= (a · ab)a · (a · ab)b

(3)
= (a · ab)a · ba (12)

= (a · ab)b · a (3)
= ba · a.

For each a, b, c ∈ Q there is d ∈ Q such that

cd = b. (17)

Now we get

(a · ab)c · (a · ab)c
(1)
= (a · ab)c

(17)
= a(a · cd) · c (11)

= a(ac · ad) · c (11)
= (a · ac)(a · ad) · c

(12)
= (a · ac)c · (a · ad)c

(3)
= ca · (a · ad)c

(2)
= c(a · ad) · ac

(11)
= (ca)(ca · cd) · ac

(17)
= (ca)(ca · b) · ac

(12)
= (ca)(cb · ab) · ac

(2)
= (c · cb)(a · ab) · ac

(2)
= (c · cb)a · (a · ab)c,

so identity (15) follows. For each a, b, c ∈ Q there is an element e ∈ Q such that

ae = b, (18)
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and then there follows

(a · bc)c (18)
= a(ae · c) · c (12)

= a(ac · ec) · c (11)
= (a · ac)(a · ec) · c (12)

= (a · ac)c · (a · ec)c
(3)
= ca · (a · ec)c (11)

= ca · (ae · ac)c
(18)
= ca · (b · ac)c

(12)
= ca · (bc)(ac · c)

(2)
= (c · bc) · a(ac · c) (14)

= (c · bc)(ca · a)
(2)
= (c · ca)(bc · a)

(12)
= (c · ca)(ba · ca)

(12)
= (c · ba) · ca (11)

= c(ba · a),

thus identity (16) holds.

3. Affine–regular heptagon

From now on let (Q, ·) be any ARH–quasigroup. The elements of the set Q are said
to be points.

Theorem 2. In the cyclical order of seven equalities aiai+1 = ai+3ai+2 (i = 1, 2, 3, 4,
5, 6, 7), where the indexes are taken modulo 7 from the set {1, 2, 3, 4, 5, 6, 7}, each
four consecutive equalities imply the remaining three equalities.

Proof. It is sufficient to prove that from equalities

a1a2 = a4a3, (19)
a2a3 = a5a4, (20)
a3a4 = a6a5, (21)
a4a5 = a7a6 (22)

follows the equality

a5a6 = a1a7. (23)

Firstly, let us prove that equalities (19) and (20) imply the equality

a3 · a3a4 = a1a5, (24)

and then (with the substitution i → i + 2) in the same way from (21) and (22)
follows the equality

a5 · a5a6 = a3a7. (25)

Indeed, we get successively

(a3 · a3a4)a2
(15)
= (a2 · a2a4)a3

(12)
= a2a3 · (a2a3 · a4a3)

(1)
= (a2a3 · a2a3) · (a2a3 · a2a3)(a4a3)

(20)
= (a5a4 · a2a3) · (a5a4 · a2a3)(a4a3)
(2)
= (a5a2 · a4a3) · (a5a2 · a4a3)(a4a3)

(19)
= (a5a2 · a1a2) · (a5a2 · a1a2)(a1a2)

(12)
= (a5a1 · a2) · (a5a1 · a1)a2

(12)
= (a5a1)(a5a1 · a1) · a2

(12)
= (a5 · a5a1)a1 · a2

(3)
= a1a5 · a2,
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wherefrom follows equality (24). Then we also prove equality (23), which follows
from

a5a6 · a5
(1)
= (a5a6 · a5)(a5a6 · a5)

(10)
= (a5 · a6a5)(a5a6 · a5)

(21)
= (a5 · a3a4) · (a5a6 · a5)

(2)
= (a5 · a5a6)(a3a4 · a5)

(25)
= a3a7 · (a3a4 · a5)

(2)
= (a3 · a3a4) · a7a5

(24)
= a1a5 · a7a5

(12)
= a1a7 · a5.

We shall say that (a1, a2, a3, a4, a5, a6, a7) is an affine–regular heptagon with the
vertices a1, a2, a3, a4, a5, a6, a7 and it is denoted by ARH(a1, a2, a3, a4, a5, a6, a7) if
any four adjacent equalities, and then also all seven, out of seven equalities aiai+1 =
ai+3ai+2 (i = 1, 2, 3, 4, 5, 6, 7) hold (Figure 3).

The possibility of introducing the concept of the affine–regular heptagon into
this quasigroup justifies naming it an ARH–quasigroup.

Corollary 1. If (i1, i2, i3, i4, i5, i6, i7) is any cyclic permutation of (1, 2, 3, 4, 5, 6, 7)
or of (7, 6, 5, 4, 3, 2, 1), then from ARH (a1, a2, a3, a4, a5, a6, a7) follows ARH (ai1 ,
ai2 , ai3 , ai4 , ai5 , ai6 , ai7).

Corollary 2. An affine–regular heptagon is uniquely determined by any three adja-
cent vertices of its vertices.

Proof. If e.g. a1, a2, a3 are the given vertices, then the vertices a4, a5, a6, a7 are
given by the identities (19) – (22), respectively.

Figure 3:

Theorem 3. An affine–regular heptagon is uniquely determined by any three of its
vertices.

Proof. By means of the statement of Corollary 2 it is necessary to prove three
more statements which, by means of cyclical permutation, can lead to the proofs of
statements (i), (ii) and (iii) out of the following proofs:
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(i) The vertices a1, a2, a4 determine the vertex a3 uniquely. This statement is
obvious from (19).

(ii) The vertices a1, a2, a5 determine the vertex a3 uniquely. In fact, let a3 be the
point such that a5a1 ·a2 = a2a3, and then let a4 be the point such that a1a2 = a4a3.
It is necessary to prove that equality a2a3 = a5a4 holds. Here is the proof of this
fact:

a2a3 · a2a3
(1)
= a2a3 = a5a1 · a2

(12)
= a5a2 · a1a2 = a5a2 · a4a3

(2)
= a5a4 · a2a3.

(iii) The vertices a1, a3, a5 determine the vertex a4 uniquely. In fact, let a4 be
the point such that a3 ·a3a4 = a1a5, and then let a2 be the point so that a2a3 = a5a4.
It is necessary to prove the equality a1a2 = a4a3. This equality follows from this
conclusion:

a1a2 · a5a3
(2)
= a1a5 · a2a3 = (a3 · a3a4) · a5a4

(11)
= (a3 · a3a4)a5 · (a3 · a3a4)a4

(3)
= (a3 · a3a4)a5 · a4a3

(2)
= (a3 · a3a4)a4 · a5a3

(3)
= a4a3 · a5a3.

Let us examine more precisely those points, which can be explicitly expressed by
means of the vertices of the affine–regular heptagon ARH(a1, a2, a3, a4, a5, a6, a7).
Let us always take the indexes modulo 7 from the set {1, 2, 3, 4, 5, 6, 7}. The same
products of the adjacent vertices from the definition of an affine–regular heptagon
will be labelled so that

ai+2 ai+3 = bi = ai−2 ai−3 (26)

(Figures 3 and 4). Besides that, let us state

bi,i+3 = ai ai+3, bi,i−3 = ai ai−3 (27)

(Figure 4).
Equality (24) can be written in the form a3b1 = b15, and then according to

Corollary 1, general equalities

bi,i−3 = ai+2 bi = ai+2 · ai+2 ai+3, (28)
bi,i+3 = ai−2 bi = ai−2 · ai−2 ai−3 (29)

are valid. Since by substituting i → −i equality (24) implies the equality a4 ·a4a3 =
a6a2, i.e. the equality b62 = a4b6, then we get

b63b7
(27),(26)

= a6a3·a2a3
(12)
= a6a2·a3 = b62a3 = a4b6·a3

(26)
= (a4·a4a3)a3

(3)
= a3a4

(26)
= b1,

what implies general equalities

bi−2,i+1 ai+2 = bi, bi+2,i−1 ai−2 = bi, (30)
bi−2,i+2 bi−1 = bi, bi+2,i−2 bi+1 = bi. (31)
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Figure 4:

Further, we get

b52a2 · b6
(26)
= b52a2 · a1a2

(12)
= b52a1 · a2

(30)
= b3a2

(26)
= a1a7 · a2

(12)
= a1a2 · a7a2

(26)
= a4a3 · a7a2

(2)
= a4a7 · a3a2

(27),(26)
= b47 · a7a1

(11)
= b47a7 · b47a1

(30)
= b47a7 · b6,

so the equality b52a2 = b47a7 follows. The obtained equal products are labelled by
c1 in Figure 4. In general, we get equalities

bi−3,i+1 ai+1 = ci = bi+3,i−1 ai−1, (32)

which define the points ci in Figure 4. Because of (27), equalities (32) can be written
in the form

ai−3 ai+1 · ai+1 = ci = ai+3 ai−1 · ai−1. (33)

Now we get

a5c1
(33)
= a5(a5a2 · a2)

(14)
= a2a5 · a5

(33)
= c6,
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and generally the equalities

ai−3 ci = ci−2, ai+3 ci = ci+2 (34)

are valid. Besides that, we get

b25c6
(27),(33)

= a2a5 · (a2a5 · a5)
(12)
= (a2 · a2a5)a5

(3)
= a5a2

(27)
= b52,

i.e. the equalities

bi,i+3 ci−3 = bi+3,i, bi,i−3 ci+3 = bi−3,i (35)

hold. As it follows

b6c1
(26),(33)

= a4a3 · (a4a7 · a7)
(2)
= (a4 · a4a7) · a3a7

(12)
= (a4 · a3a7)(a4a7 · a3a7)

(12)
= (a4 · a3a7)(a4a3 · a7)

(26)
= (a4 · a3a7)(a1a2 · a7)

(12)
= (a4 · a3a7)(a1a7 · a2a7)

(2)
= (a4 · a1a7)(a3a7 · a2a7)

(12)
= (a4 · a1a7)(a3a2 · a7)

(26)
= (a4 · a1a7)(a7a1 · a7)

(10)
= (a4 · a1a7)(a7 · a1a7)

(12)
= a4a7 · a1a7

(26)
= a4a7 · a5a6

(2)
= a4a5 · a7a6

(26)
= b2b2

(1)
= b2,

so the general equalities hold

bi−2 ci = bi+1, bi+2 ci = bi−1. (36)

Further, we get

a2 · a5a1
(27)
= a2b51

(29)
= a2(a3 · a3a2)

(11)
= a2a3 · (a2 · a3a2)

(10)
= a2a3 · (a2a3 · a2)

(2)
= (a2 · a2a3) · a3a2

(28)
= b74 · a3a2

(27),(26)
= a7a4 · a7a1

(11)
= a7 · a4a1

(27)
= a7b41, (37)

and, as in Figure 4, the obtained equal products will be designated by d1. Generally,
we have equalities

ai+1 · ai−3 ai = ai+1 bi−3,i = di = ai−1 bi+3,i = ai−1 · ai+3ai, (38)

which define the points di in Figure 4. For these points some interesting relations
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also hold. So, we get

d1b51 = a2b51 · b51
(29)
= a2(a3 · a3a2) · (a3 · a3a2)

(2)
= a2a3 · (a3 · a3a2)(a3a2)

(11)
= a2a3 · a3(a3a2 · a2)

(14)
= a2a3 · (a2a3 · a3)

(12)
= (a2 · a2a3)a3

(3)
= a3a2

(26)
= b5,

d1b5 = a2(a3 · a3a2) · a3a2
(2)
= a2a3 · (a3 · a3a2)a2

(3)
= a2a3 · a2a3

(1)
= a2a3

(26)
= b7,

d1a2 = a2(a3 · a3a2) · a2
(10)
= a2 · (a3 · a3a2)a2

(3)
= a2 · a2a3

(28)
= b74,

d1a3 = a2(a3 · a3a2) · a3
(12)
= a2a3 · (a3 · a3a2)a3

(3)
= (a3 · a3a2)a2 · (a3 · a3a2)a3

(11)
= (a3 · a3a2) · a2a3

(2)
= a3a2 · (a3a2 · a3)

(10)
= a3a2 · (a3 · a2a3)

(11)
= a3(a2 · a2a3)

(28)
= a3b74

(38)
= d4,

d1b62 = a2b51 · b62
(27)
= a2b51 · a6a2

(2)
= a2a6 · b51a2

(30)
= a2a6 · b7

(26)
= a2a6 · a2a3

(11)
= a2 · a6a3

(27)
= a2b63

(38)
= d3,

and the following general equalities

di bi−3,i = bi−3, di bi+3,i = bi+3, (39)
di bi−3 = bi−1, di bi+3 = bi+1, (40)
di ai+1 = bi−1,i+3, di ai−1 = bi+1,i−3, (41)
di ai+2 = di+3, di ai−2 = di−3, (42)

di bi−2,i+1 = di+2, di bi+2,i−1 = di−2 (43)

hold. In (37), the equality d1 = b74 · a3a2 holds, which, because of (26), gets the
form b74b5 = d1, thus the general equalities

bi−1,i+3 bi−3 = di, bi+1,i−3 bi+3 = di (44)

hold. For the points ai, bi, ci, di the following equalities

ai ci = bi, di ai = bi (45)

also hold because, e.g., we get

a1c1
(33)
= a1(a5a2 · a2)

(11)
= (a1a5 · a1a2) · a1a2

(27),(26)
= b15b6 · b6

(44)
= d2b6

(40)
= b1,

d1a1
(37)
= a2(a3 · a3a2) · a1

(12)
= a2a1 · (a3 · a3a2)a1

(3),(15)
= (a1 · a1a2)a2 · (a1 · a1a2)a3

(11)
= (a1 · a1a2) · a2a3

(28),(26)
= b63b7

(31)
= b1.

We have proved the following theorem.

Theorem 4. If the statement ARH(a1, a2, a3, a4, a5, a6, a7) holds, then there are
the points bi, bi,i+3, bi,i−3, ci, di so that equalities (26)–(36) and (38)–(45) hold,
where the indexes are taken modulo 7 from the set {1, 2, 3, 4, 5, 6, 7}.
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Numerous proofs in this article use the properties of cancellation and solvability
in a quasigroup (Q, ·), so it is interesting to observe one direct proof, in which only
properties (1)–(3) and (10)–(16) of a groupoid (Q, ·) are used explicitly. We shall
prove that equality a6a7 = a2a1 follows from equalities

a1a2 = a4a3, a2a3 = a5a4, a3a4 = a6a5, a4a5 = a7a6.

We get successively

a6a7
(13)
= a7a6 · (a7a6 · a6) = a4a5 · (a4a5 · a6)

(2)
= (a4 · a4a5) · a5a6

(13)
= (a4 · a4a5) · (a6a5)(a6a5 · a5) = (a4 · a4a5) · (a3a4)(a3a4 · a5)
(2)
= (a4 · a4a5) · (a3 · a3a4)(a4a5)

(12)
= a4(a3 · a3a4) · a4a5

(13)
= a4(a3 · a3a4) · (a5a4)(a5a4 · a4) = a4(a3 · a3a4) · (a2a3)(a2a3 · a4)

(11)
= (a4a3)(a4 · a3a4) · (a2a3)(a2a3 · a4)

(2)
= (a4a3 · a2a3) · (a4 · a3a4)(a2a3 · a4)

(10)
= (a4a3 · a2a3) · (a4a3 · a4)(a2a3 · a4) = (a1a2 · a2a3) · (a1a2 · a4)(a2a3 · a4)

(12)
= (a1a2 · a2a3) · (a1a2 · a2a3)a4

(2)
= (a1a2)(a1a2 · a2a3) · (a2a3 · a4)

(12)
= (a1a2)(a1a2 · a2a3) · (a2a4 · a3a4)

(13)
= (a1a2)(a1a2 · a2a3) · [a2a4 · (a4a3)(a4a3 · a3)]
= (a1a2)(a1a2 · a2a3) · [a2a4 · (a1a2)(a1a2 · a3)]
(2)
= (a1a2 · a2a4)[(a1a2 · a2a3) · (a1a2)(a1a2 · a3)]

(11)
= (a1a2 · a2a4)[a1a2 · (a2a3)(a1a2 · a3)]

(11)
= a1a2 · [a2a4 · (a2a3)(a1a2 · a3)]

(12)
= a1a2 · [a2a4 · (a2 · a1a2)a3]

(2)
= a1a2 · [a2(a2 · a1a2) · a4a3]

= a1a2 · [a2(a2 · a1a2) · a1a2]
(10)
= a1a2 · [a2(a2a1 · a2) · a1a2]

(10)
= a1a2 · [(a2 · a2a1)a2 · a1a2]

(12)
= a1a2 · [(a2 · a2a1)a1 · a2]

(3)
= a1a2 · (a1a2 · a2)

(13)
= a2a1.

By means of labels from Theorem 4 the following theorem can be proved.

Theorem 5. If the statement ARH(a1, a2, a3, a4, a5, a6, a7) holds, then the state-
ments ARH(b1, b2, b3, b4, b5, b6, b7), ARH(c1, c2, c3, c4, c5, c6, c7), ARH(d1, d2, d3, d4,
d5, d6, d7), ARH(b14, b25, b36, b47, b51, b62, b73), ARH(b15, b26, b37, b41, b52, b63, b74) hold
(Figure 4).

Proof. It can be proved that for each i from the set {1, 2, 3, 4, 5, 6, 7} the following



550 V.Volenec, Z.Kolar–Begović and R.Kolar–Šuper

equalities hold

bibi+1
(26)
= ai+5ai+4 · ai+6ai+5

(2)
= ai+5ai+6 · ai+4ai+5

(26)
= bi+3bi+2

cici+1
(33)
= (ai+3ai−1 · ai−1)(ai+4ai · ai)

(2)
= (ai+3ai−1 · ai+4ai) · ai−1ai

(2)
= (ai+3ai+4 · ai−1ai) · ai−1ai

(26)
= (ai+6ai+5 · ai+2ai+1) · ai+2ai+1

(2)
= (ai+6ai+2 · ai+5ai+1) · ai+2ai+1

(2)
= (ai+6ai+2 · ai+2)(ai+5ai+1 · ai+1)

(33)
= ci+3ci+2

didi+1
(38)
= (ai+1 · ai+4ai)(ai+2 · ai+5ai+1)

(2)
= ai+1ai+2 · (ai+4ai · ai+5ai+1)

(2)
= ai+1ai+2 · (ai+4ai+5 · aiai+1)

(26)
= ai+4ai+3 · (aiai+6 · ai+3ai+2)

(2)
= ai+4ai+3 · (aiai+3 · ai+6ai+2)

(2)
= (ai+4 · aiai+3)(ai+3 · ai+6ai+2)

(38)
= di+3di+2

bi,i+3bi+1,i+4
(27)
= aiai+3 · ai+1ai+4

(2)
= aiai+1 · ai+3ai+4

(26)
= ai+3ai+2 · ai+6ai+5

(2)
= ai+3ai+6 · ai+2ai+5

(27)
= bi+3,i+6bi+2,i+5

bi,i−3bi+1,i−2
(27)
= aiai−3 · ai+1ai−2

(2)
= aiai+1 · ai−3ai−2

(26)
= ai+3ai+2 · aiai−1

(2)
= ai+3ai · ai+2ai−1

(27)
= bi+3,ibi+2,i−1,

where the indexes are taken modulo 7 from the set {1, 2, 3, 4, 5, 6, 7}, so the assertions
of the theorem are proved.
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