ARH - quasigroups

Vladimir Volenec ${ }^{1}$, Zdenka Kolar-Begović ${ }^{2, *}$ and Ružica Kolar-Šuper ${ }^{3}$
${ }^{1}$ Department of Mathematics, University of Zagreb, Bijenička cesta 30, HR-10 000 Zagreb, Croatia
${ }^{2}$ Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, HR-31 000 Osijek, Croatia
${ }^{3}$ Faculty of Teacher Education, University of Osijek, Ulica cara Hadrijana bb, HR-31 000 Osijek, Croatia

Received November 20, 2008; accepted March 14, 2011

Abstract

In this paper, the concept of an ARH-quasigroup is introduced and identities valid in that quasigroup are studied. The geometrical concept of an affine-regular heptagon is defined in a general ARH-quasigroup and geometrical representation in the quasigroup $\mathbb{C}\left(2 \cos \frac{\pi}{7}\right)$ is given. Some statements about new points obtained from the vertices of an affine-regular heptagon are also studied. AMS subject classifications: 20N05 Key words: ARH-quasigroup, mediality, affine-regular heptagon

1. Definition and examples

A quasigroup (Q, \cdot) will be called an $A R H$-quasigroup if it satisfies the identities of idempotency and mediality, i.e. we have the identities

$$
\begin{align*}
a a & =a \tag{1}\\
a b \cdot c d & =a c \cdot b d \tag{2}
\end{align*}
$$

and besides, if the identity

$$
\begin{equation*}
(a \cdot a b) b=b a \tag{3}
\end{equation*}
$$

also holds.
Example 1. Let $(G,+)$ be a commutative group in which there is an automorphism φ which satisfies the identity

$$
\begin{equation*}
(\varphi \circ \varphi \circ \varphi)(a)-(\varphi \circ \varphi)(a)-\varphi(a)-\varphi(a)+a=0, \tag{4}
\end{equation*}
$$

where \circ is the composition of functions. Let us define multiplication \cdot on the set G by the formula

$$
\begin{equation*}
a b=a+\varphi(b-a) \tag{5}
\end{equation*}
$$

[^0]Now we shall prove that (G, \cdot) is an ARH-quasigroup.
For each $a, b \in G$, because of (5), the equations $a x=b$ and $y a=b$ are equivalent to the equations

$$
\begin{equation*}
a+\varphi(x-a)=b \quad \text { and } \quad y+\varphi(a)-\varphi(y)=b \tag{6}
\end{equation*}
$$

The first equation has a unique solution $x=a+\varphi^{-1}(b-a)$, and the second one can be written in the form

$$
(\varphi \circ \varphi)(y)-(\varphi \circ \varphi \circ \varphi)(y)=(\varphi \circ \varphi)(b)-(\varphi \circ \varphi \circ \varphi)(a)
$$

i.e. according to (4) in the form

$$
y-\varphi(y)-\varphi(y)=(\varphi \circ \varphi)(b)-(\varphi \circ \varphi \circ \varphi)(a)
$$

or owing to (6) it gets the form

$$
b-\varphi(a)-\varphi(y)=(\varphi \circ \varphi)(b)-(\varphi \circ \varphi \circ \varphi)(a)
$$

The last equation has a unique solution

$$
y=\varphi^{-1}[b-(\varphi \circ \varphi)(b)-\varphi(a)+(\varphi \circ \varphi \circ \varphi)(a)],
$$

which also satisfies equation (6) as due to (4) we get

$$
\begin{aligned}
y-\varphi(y)= & \varphi^{-1}[b-(\varphi \circ \varphi)(b)-\varphi(a)+(\varphi \circ \varphi \circ \varphi)(a)] \\
& -[b-(\varphi \circ \varphi)(b)-\varphi(a)+(\varphi \circ \varphi \circ \varphi)(a)] \\
= & \varphi^{-1}[b-\varphi(b)-(\varphi \circ \varphi)(b)+(\varphi \circ \varphi \circ \varphi)(b)] \\
& -[a-\varphi(a)-(\varphi \circ \varphi)(a)+(\varphi \circ \varphi \circ \varphi)(a)] \\
= & \varphi^{-1}[\varphi(b)]-\varphi(a)=b-\varphi(a) .
\end{aligned}
$$

We have just proved that (G, \cdot) is a quasigroup. Its idempotency is obvious from (5). According to (5), it follows

$$
\begin{aligned}
a b \cdot c d= & a b+\varphi(c d-a b)=a+\varphi(b-a)+\varphi[c+\varphi(d-c)-a-\varphi(b-a)] \\
= & a-\varphi(a)-\varphi(a)+(\varphi \circ \varphi)(a)+\varphi(b)-(\varphi \circ \varphi)(b)+\varphi(c)-(\varphi \circ \varphi)(c) \\
& +(\varphi \circ \varphi)(d)
\end{aligned}
$$

and the symmetry of the obtained expression by b and c proves mediality (2). From (5) firstly follows

$$
a \cdot a b=a+\varphi[a+\varphi(b-a)-a]=a-(\varphi \circ \varphi)(a)+(\varphi \circ \varphi)(b)
$$

and by means of (4) we get

$$
\begin{aligned}
(a \cdot a b) b & =a \cdot a b+\varphi(b-a \cdot a b) \\
& =a-(\varphi \circ \varphi)(a)+(\varphi \circ \varphi)(b)+\varphi[b-a+(\varphi \circ \varphi)(a)-(\varphi \circ \varphi)(b)] \\
& =a-\varphi(a)-(\varphi \circ \varphi)(a)+(\varphi \circ \varphi \circ \varphi)(a)+\varphi(b)+(\varphi \circ \varphi)(b)-(\varphi \circ \varphi \circ \varphi)(b) \\
& =\varphi(a)+b-\varphi(b)=b+\varphi(a-b)=b a
\end{aligned}
$$

therefore, identity (3) also holds.
ARH - Quasigroups

Example 2. Let $(F,+, \cdot)$ be a field in which the equation

$$
\begin{equation*}
q^{3}-q^{2}-2 q+1=0 \tag{7}
\end{equation*}
$$

has the solution q and the operation $*$ on the set F is defined by

$$
\begin{equation*}
a * b=(1-q) a+q b \tag{8}
\end{equation*}
$$

Then it is obvious that the identity $\varphi(a)=q a$ defines an automorphism of the commutative group $(F,+)$, and since equality (7) holds, then for each $a \in F$ equality (4) holds. However, equation (8) can be written in the form

$$
a * b=a+\varphi(b-a),
$$

and based on Example 1 it follows that $(F, *)$ is a ARH-quasigroup.
Example 3. Let $(\mathbb{C},+, \cdot)$ be a field of complex numbers and $*$ a binary operation on the set \mathbb{C} defined by (8), where q is the solution of (7). Example 2 implies that $(\mathbb{C}, *)$ is an $A R H$-quasigroup.

Namely, besides the trivial solution $\varphi=0$, the equation $\sin 3 \varphi=\sin 4 \varphi$ has also the solutions $\varphi \in\left\{\frac{\pi}{7}, \frac{3 \pi}{7}, \frac{9 \pi}{7}\right\}$ due to $\sin \frac{3 \pi}{7}=\sin \frac{4 \pi}{7}, \sin \frac{9 \pi}{7}=\sin \frac{12 \pi}{7}, \sin \frac{27 \pi}{7}=$ $\sin \frac{36 \pi}{7}$. That equation gets the form

$$
8 \sin \varphi \cos ^{3} \varphi-4 \sin \varphi \cos ^{2} \varphi-4 \sin \varphi \cos \varphi+\sin \varphi=0
$$

and without the factor $\sin \varphi$ it can be written in the form (7) where $q=2 \cos \varphi$. Therefore, the solutions of the obtained equation are

$$
q_{1}=2 \cos \frac{\pi}{7} \sim 1,8019377, q_{2}=2 \cos \frac{3 \pi}{7} \sim 0,4450419, q_{3}=2 \cos \frac{9 \pi}{7} \sim-1,2469796
$$

For each of these three solutions we get a nice geometrical interpretation which justifies studying ARH-quasigroups and defining geometrical concepts in them. Let us consider the set of complex numbers as a set of the points of Euclidean plane. For two different points a and b equation (8) can be written in the form

$$
\frac{a * b-a}{b-a}=q
$$

meaning that points $a, b, a * b$ form the cross ratio q. Let symbol $*_{i}$ represent the operation $*$ defined by formula (8) with value $q=q_{i}$, where, with $i \in\{1,2,3\}$, that value q_{i} is given by (9). Then, Figure 1 shows all three operations $*$, for which $(\mathbb{C}, *)$ is an $A R H$-quasigroup.

Figure 1:
These three quasigroups will be denoted by $\mathbb{C}\left(q_{1}\right), \mathbb{C}\left(q_{2}\right)$ and $\mathbb{C}\left(q_{3}\right)$ because for $a=0$ and $b=1$ we get $a *_{i} b=q_{i}$. Each identity in an ARH-quasigroup can be interpreted as a geometrical theorem. So, in Figure 2 the illustration of the identity (3) in the quasigroup $\mathbb{C}\left(q_{1}\right)$ is given, where instead of e.g. $a *_{1} b$ it will be written $a b$, and such notation will be used in all figures.
$(a \cdot a b) b=b a \quad a \quad a b a \cdot a b$

Figure 2:

2. Basic properties of ARH-quasigroups

Direct consequences of identities (1) and (2) are the following identities of elasticity and left and right distributivity, i.e.

$$
\begin{array}{r}
a b \cdot a=a \cdot b a \\
a \cdot b c=a b \cdot a c \\
a b \cdot c=a c \cdot b c \tag{12}
\end{array}
$$

Because of (12), identity (3) can also be written in the form

$$
\begin{equation*}
a b \cdot(a b \cdot b)=b a, \tag{13}
\end{equation*}
$$

which will be very useful later. Let us prove the following theorem now.
Theorem 1. In an ARH-quasigroup (Q, \cdot) the following identities

$$
\begin{array}{r}
a(a b \cdot b)=b a \cdot a \\
(a \cdot a b) c=(c \cdot c b) a \\
(a \cdot b c) c=c(b a \cdot a) \tag{16}
\end{array}
$$

hold.
Proof. (see [2], Th. 27) We get successively
$a(a b \cdot b) \stackrel{(11)}{=}(a \cdot a b) \cdot a b \stackrel{(11)}{=}(a \cdot a b) a \cdot(a \cdot a b) b \stackrel{(3)}{=}(a \cdot a b) a \cdot b a \stackrel{(12)}{=}(a \cdot a b) b \cdot a \stackrel{(3)}{=} b a \cdot a$.
For each $a, b, c \in Q$ there is $d \in Q$ such that

$$
\begin{equation*}
c d=b \tag{17}
\end{equation*}
$$

Now we get

$$
\begin{aligned}
(a \cdot a b) c \cdot(a \cdot a b) c & \stackrel{(1)}{=}(a \cdot a b) c \stackrel{(17)}{=} a(a \cdot c d) \cdot c \stackrel{(11)}{=} a(a c \cdot a d) \cdot c \stackrel{(11)}{=}(a \cdot a c)(a \cdot a d) \cdot c \\
& \stackrel{(12)}{=}(a \cdot a c) c \cdot(a \cdot a d) c \stackrel{(3)}{=} c a \cdot(a \cdot a d) c \stackrel{(2)}{=} c(a \cdot a d) \cdot a c \\
& \stackrel{(11)}{=}(c a)(c a \cdot c d) \cdot a c \stackrel{(17)}{=}(c a)(c a \cdot b) \cdot a c \stackrel{(12)}{=}(c a)(c b \cdot a b) \cdot a c \\
& \stackrel{(2)}{=}(c \cdot c b)(a \cdot a b) \cdot a c \stackrel{(2)}{=}(c \cdot c b) a \cdot(a \cdot a b) c,
\end{aligned}
$$

so identity (15) follows. For each $a, b, c \in Q$ there is an element $e \in Q$ such that

$$
\begin{equation*}
a e=b, \tag{18}
\end{equation*}
$$

and then there follows

$$
\begin{aligned}
(a \cdot b c) c & \stackrel{(18)}{=} a(a e \cdot c) \cdot c \stackrel{(12)}{=} a(a c \cdot e c) \cdot c \stackrel{(11)}{=}(a \cdot a c)(a \cdot e c) \cdot c \stackrel{(12)}{=}(a \cdot a c) c \cdot(a \cdot e c) c \\
& \stackrel{(3)}{=} c a \cdot(a \cdot e c) c \stackrel{(11)}{=} c a \cdot(a e \cdot a c) c \stackrel{(18)}{=} c a \cdot(b \cdot a c) c \stackrel{(12)}{=} c a \cdot(b c)(a c \cdot c) \\
& \stackrel{(2)}{=}(c \cdot b c) \cdot a(a c \cdot c) \stackrel{(14)}{=}(c \cdot b c)(c a \cdot a) \stackrel{(2)}{=}(c \cdot c a)(b c \cdot a) \stackrel{(12)}{=}(c \cdot c a)(b a \cdot c a) \\
& \stackrel{(12)}{=}(c \cdot b a) \cdot c a \stackrel{(11)}{=} c(b a \cdot a),
\end{aligned}
$$

thus identity (16) holds.

3. Affine-regular heptagon

From now on let (Q, \cdot) be any ARH-quasigroup. The elements of the set Q are said to be points.

Theorem 2. In the cyclical order of seven equalities $a_{i} a_{i+1}=a_{i+3} a_{i+2}(i=1,2,3,4$, $5,6,7)$, where the indexes are taken modulo 7 from the set $\{1,2,3,4,5,6,7\}$, each four consecutive equalities imply the remaining three equalities.
Proof. It is sufficient to prove that from equalities

$$
\begin{align*}
& a_{1} a_{2}=a_{4} a_{3} \tag{19}\\
& a_{2} a_{3}=a_{5} a_{4} \tag{20}\\
& a_{3} a_{4}=a_{6} a_{5} \tag{21}\\
& a_{4} a_{5}=a_{7} a_{6} \tag{22}
\end{align*}
$$

follows the equality

$$
\begin{equation*}
a_{5} a_{6}=a_{1} a_{7} \tag{23}
\end{equation*}
$$

Firstly, let us prove that equalities (19) and (20) imply the equality

$$
\begin{equation*}
a_{3} \cdot a_{3} a_{4}=a_{1} a_{5} \tag{24}
\end{equation*}
$$

and then (with the substitution $i \rightarrow i+2$) in the same way from (21) and (22) follows the equality

$$
\begin{equation*}
a_{5} \cdot a_{5} a_{6}=a_{3} a_{7} . \tag{25}
\end{equation*}
$$

Indeed, we get successively

$$
\begin{aligned}
\left(a_{3} \cdot a_{3} a_{4}\right) a_{2} & \stackrel{(15)}{=}\left(a_{2} \cdot a_{2} a_{4}\right) a_{3} \stackrel{(12)}{=} a_{2} a_{3} \cdot\left(a_{2} a_{3} \cdot a_{4} a_{3}\right) \\
& \stackrel{(1)}{=}\left(a_{2} a_{3} \cdot a_{2} a_{3}\right) \cdot\left(a_{2} a_{3} \cdot a_{2} a_{3}\right)\left(a_{4} a_{3}\right) \\
& \stackrel{(20)}{=}\left(a_{5} a_{4} \cdot a_{2} a_{3}\right) \cdot\left(a_{5} a_{4} \cdot a_{2} a_{3}\right)\left(a_{4} a_{3}\right) \\
& \stackrel{(2)}{=}\left(a_{5} a_{2} \cdot a_{4} a_{3}\right) \cdot\left(a_{5} a_{2} \cdot a_{4} a_{3}\right)\left(a_{4} a_{3}\right) \\
& \stackrel{(19)}{=}\left(a_{5} a_{2} \cdot a_{1} a_{2}\right) \cdot\left(a_{5} a_{2} \cdot a_{1} a_{2}\right)\left(a_{1} a_{2}\right) \stackrel{(12)}{=}\left(a_{5} a_{1} \cdot a_{2}\right) \cdot\left(a_{5} a_{1} \cdot a_{1}\right) a_{2} \\
& \stackrel{(12)}{=}\left(a_{5} a_{1}\right)\left(a_{5} a_{1} \cdot a_{1}\right) \cdot a_{2} \stackrel{(12)}{=}\left(a_{5} \cdot a_{5} a_{1}\right) a_{1} \cdot a_{2} \stackrel{(3)}{=} a_{1} a_{5} \cdot a_{2},
\end{aligned}
$$

wherefrom follows equality (24). Then we also prove equality (23), which follows from

$$
\begin{aligned}
a_{5} a_{6} \cdot a_{5} & \stackrel{(1)}{=}\left(a_{5} a_{6} \cdot a_{5}\right)\left(a_{5} a_{6} \cdot a_{5}\right) \stackrel{(10)}{=}\left(a_{5} \cdot a_{6} a_{5}\right)\left(a_{5} a_{6} \cdot a_{5}\right) \stackrel{(21)}{=}\left(a_{5} \cdot a_{3} a_{4}\right) \cdot\left(a_{5} a_{6} \cdot a_{5}\right) \\
& \stackrel{(2)}{=}\left(a_{5} \cdot a_{5} a_{6}\right)\left(a_{3} a_{4} \cdot a_{5}\right) \stackrel{(25)}{=} a_{3} a_{7} \cdot\left(a_{3} a_{4} \cdot a_{5}\right) \stackrel{(2)}{=}\left(a_{3} \cdot a_{3} a_{4}\right) \cdot a_{7} a_{5} \\
& \stackrel{(24)}{=} a_{1} a_{5} \cdot a_{7} a_{5} \stackrel{(12)}{=} a_{1} a_{7} \cdot a_{5} .
\end{aligned}
$$

We shall say that ($a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}$) is an affine-regular heptagon with the vertices $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}$ and it is denoted by $\operatorname{ARH}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right)$ if any four adjacent equalities, and then also all seven, out of seven equalities $a_{i} a_{i+1}=$ $a_{i+3} a_{i+2}(i=1,2,3,4,5,6,7)$ hold (Figure 3).

The possibility of introducing the concept of the affine-regular heptagon into this quasigroup justifies naming it an ARH-quasigroup.

Corollary 1. If $\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}, i_{7}\right)$ is any cyclic permutation of $(1,2,3,4,5,6,7)$ or of $(7,6,5,4,3,2,1)$, then from $\operatorname{ARH}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right)$ follows ARH ($a_{i_{1}}$, $\left.a_{i_{2}}, a_{i_{3}}, a_{i_{4}}, a_{i_{5}}, a_{i_{6}}, a_{i_{7}}\right)$.
Corollary 2. An affine-regular heptagon is uniquely determined by any three adjacent vertices of its vertices.
Proof. If e.g. a_{1}, a_{2}, a_{3} are the given vertices, then the vertices $a_{4}, a_{5}, a_{6}, a_{7}$ are given by the identities (19) - (22), respectively.

Figure 3:

Theorem 3. An affine-regular heptagon is uniquely determined by any three of its vertices.

Proof. By means of the statement of Corollary 2 it is necessary to prove three more statements which, by means of cyclical permutation, can lead to the proofs of statements (i), (ii) and (iii) out of the following proofs:
(i) The vertices a_{1}, a_{2}, a_{4} determine the vertex a_{3} uniquely. This statement is obvious from (19).
(ii) The vertices a_{1}, a_{2}, a_{5} determine the vertex a_{3} uniquely. In fact, let a_{3} be the point such that $a_{5} a_{1} \cdot a_{2}=a_{2} a_{3}$, and then let a_{4} be the point such that $a_{1} a_{2}=a_{4} a_{3}$. It is necessary to prove that equality $a_{2} a_{3}=a_{5} a_{4}$ holds. Here is the proof of this fact:

$$
a_{2} a_{3} \cdot a_{2} a_{3} \stackrel{(1)}{=} a_{2} a_{3}=a_{5} a_{1} \cdot a_{2} \stackrel{(12)}{=} a_{5} a_{2} \cdot a_{1} a_{2}=a_{5} a_{2} \cdot a_{4} a_{3} \stackrel{(2)}{=} a_{5} a_{4} \cdot a_{2} a_{3}
$$

(iii) The vertices a_{1}, a_{3}, a_{5} determine the vertex a_{4} uniquely. In fact, let a_{4} be the point such that $a_{3} \cdot a_{3} a_{4}=a_{1} a_{5}$, and then let a_{2} be the point so that $a_{2} a_{3}=a_{5} a_{4}$. It is necessary to prove the equality $a_{1} a_{2}=a_{4} a_{3}$. This equality follows from this conclusion:

$$
\begin{aligned}
a_{1} a_{2} \cdot a_{5} a_{3} & \stackrel{(2)}{=} a_{1} a_{5} \cdot a_{2} a_{3}=\left(a_{3} \cdot a_{3} a_{4}\right) \cdot a_{5} a_{4} \stackrel{(11)}{=}\left(a_{3} \cdot a_{3} a_{4}\right) a_{5} \cdot\left(a_{3} \cdot a_{3} a_{4}\right) a_{4} \\
& \stackrel{(3)}{=}\left(a_{3} \cdot a_{3} a_{4}\right) a_{5} \cdot a_{4} a_{3} \stackrel{(2)}{=}\left(a_{3} \cdot a_{3} a_{4}\right) a_{4} \cdot a_{5} a_{3} \stackrel{(3)}{=} a_{4} a_{3} \cdot a_{5} a_{3} .
\end{aligned}
$$

Let us examine more precisely those points, which can be explicitly expressed by means of the vertices of the affine-regular heptagon $\operatorname{ARH}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right)$. Let us always take the indexes modulo 7 from the set $\{1,2,3,4,5,6,7\}$. The same products of the adjacent vertices from the definition of an affine-regular heptagon will be labelled so that

$$
\begin{equation*}
a_{i+2} a_{i+3}=b_{i}=a_{i-2} a_{i-3} \tag{26}
\end{equation*}
$$

(Figures 3 and 4). Besides that, let us state

$$
\begin{equation*}
b_{i, i+3}=a_{i} a_{i+3}, \quad b_{i, i-3}=a_{i} a_{i-3} \tag{27}
\end{equation*}
$$

(Figure 4).
Equality (24) can be written in the form $a_{3} b_{1}=b_{15}$, and then according to Corollary 1, general equalities

$$
\begin{align*}
b_{i, i-3} & =a_{i+2} b_{i}=a_{i+2} \cdot a_{i+2} a_{i+3}, \tag{28}\\
b_{i, i+3} & =a_{i-2} b_{i}=a_{i-2} \cdot a_{i-2} a_{i-3} \tag{29}
\end{align*}
$$

are valid. Since by substituting $i \rightarrow-i$ equality (24) implies the equality $a_{4} \cdot a_{4} a_{3}=$ $a_{6} a_{2}$, i.e. the equality $b_{62}=a_{4} b_{6}$, then we get
$b_{63} b_{7} \stackrel{(27),(26)}{=} a_{6} a_{3} \cdot a_{2} a_{3} \stackrel{(12)}{=} a_{6} a_{2} \cdot a_{3}=b_{62} a_{3}=a_{4} b_{6} \cdot a_{3} \stackrel{(26)}{=}\left(a_{4} \cdot a_{4} a_{3}\right) a_{3} \stackrel{(3)}{=} a_{3} a_{4} \stackrel{(26)}{=} b_{1}$,
what implies general equalities

$$
\begin{align*}
b_{i-2, i+1} a_{i+2}=b_{i}, & b_{i+2, i-1} a_{i-2}=b_{i}, \tag{30}\\
b_{i-2, i+2} b_{i-1}=b_{i}, & b_{i+2, i-2} b_{i+1}=b_{i} . \tag{31}
\end{align*}
$$

Figure 4:
Further, we get

$$
\begin{aligned}
b_{52} a_{2} \cdot b_{6} & \stackrel{(26)}{=} b_{52} a_{2} \cdot a_{1} a_{2} \stackrel{(12)}{=} b_{52} a_{1} \cdot a_{2} \stackrel{(30)}{=} b_{3} a_{2} \stackrel{(26)}{=} a_{1} a_{7} \cdot a_{2} \stackrel{(12)}{=} a_{1} a_{2} \cdot a_{7} a_{2} \\
& \stackrel{(26)}{=} a_{4} a_{3} \cdot a_{7} a_{2} \stackrel{(2)}{=} a_{4} a_{7} \cdot a_{3} a_{2} \stackrel{(27),(26)}{=} b_{47} \cdot a_{7} a_{1} \stackrel{(11)}{=} b_{47} a_{7} \cdot b_{47} a_{1} \\
& \stackrel{(30)}{=} b_{47} a_{7} \cdot b_{6}
\end{aligned}
$$

so the equality $b_{52} a_{2}=b_{47} a_{7}$ follows. The obtained equal products are labelled by c_{1} in Figure 4. In general, we get equalities

$$
\begin{equation*}
b_{i-3, i+1} a_{i+1}=c_{i}=b_{i+3, i-1} a_{i-1} \tag{32}
\end{equation*}
$$

which define the points c_{i} in Figure 4. Because of (27), equalities (32) can be written in the form

$$
\begin{equation*}
a_{i-3} a_{i+1} \cdot a_{i+1}=c_{i}=a_{i+3} a_{i-1} \cdot a_{i-1} \tag{33}
\end{equation*}
$$

Now we get

$$
a_{5} c_{1} \stackrel{(33)}{=} a_{5}\left(a_{5} a_{2} \cdot a_{2}\right) \stackrel{(14)}{=} a_{2} a_{5} \cdot a_{5} \stackrel{(33)}{=} c_{6}
$$

and generally the equalities

$$
\begin{equation*}
a_{i-3} c_{i}=c_{i-2}, \quad a_{i+3} c_{i}=c_{i+2} \tag{34}
\end{equation*}
$$

are valid. Besides that, we get

$$
b_{25} c_{6} \stackrel{(27),(33)}{=} a_{2} a_{5} \cdot\left(a_{2} a_{5} \cdot a_{5}\right) \stackrel{(12)}{=}\left(a_{2} \cdot a_{2} a_{5}\right) a_{5} \stackrel{(3)}{=} a_{5} a_{2} \stackrel{(27)}{=} b_{52}
$$

i.e. the equalities

$$
\begin{equation*}
b_{i, i+3} c_{i-3}=b_{i+3, i}, \quad b_{i, i-3} c_{i+3}=b_{i-3, i} \tag{35}
\end{equation*}
$$

hold. As it follows

$$
\begin{aligned}
b_{6} c_{1} & \stackrel{(26),(33)}{=} a_{4} a_{3} \cdot\left(a_{4} a_{7} \cdot a_{7}\right) \stackrel{(2)}{=}\left(a_{4} \cdot a_{4} a_{7}\right) \cdot a_{3} a_{7} \stackrel{(12)}{=}\left(a_{4} \cdot a_{3} a_{7}\right)\left(a_{4} a_{7} \cdot a_{3} a_{7}\right) \\
& \stackrel{(12)}{=}\left(a_{4} \cdot a_{3} a_{7}\right)\left(a_{4} a_{3} \cdot a_{7}\right) \stackrel{(26)}{=}\left(a_{4} \cdot a_{3} a_{7}\right)\left(a_{1} a_{2} \cdot a_{7}\right) \stackrel{(12)}{=}\left(a_{4} \cdot a_{3} a_{7}\right)\left(a_{1} a_{7} \cdot a_{2} a_{7}\right) \\
& \stackrel{(2)}{=}\left(a_{4} \cdot a_{1} a_{7}\right)\left(a_{3} a_{7} \cdot a_{2} a_{7}\right) \stackrel{(12)}{=}\left(a_{4} \cdot a_{1} a_{7}\right)\left(a_{3} a_{2} \cdot a_{7}\right) \stackrel{(26)}{=}\left(a_{4} \cdot a_{1} a_{7}\right)\left(a_{7} a_{1} \cdot a_{7}\right) \\
& \stackrel{(10)}{=}\left(a_{4} \cdot a_{1} a_{7}\right)\left(a_{7} \cdot a_{1} a_{7}\right) \stackrel{(12)}{=} a_{4} a_{7} \cdot a_{1} a_{7} \stackrel{(26)}{=} a_{4} a_{7} \cdot a_{5} a_{6} \stackrel{(2)}{=} a_{4} a_{5} \cdot a_{7} a_{6} \\
& \stackrel{(26)}{=} b_{2} b_{2} \stackrel{(1)}{=} b_{2},
\end{aligned}
$$

so the general equalities hold

$$
\begin{equation*}
b_{i-2} c_{i}=b_{i+1}, \quad b_{i+2} c_{i}=b_{i-1} \tag{36}
\end{equation*}
$$

Further, we get

$$
\begin{align*}
a_{2} \cdot a_{5} a_{1} & \stackrel{(27)}{=} a_{2} b_{51} \stackrel{(29)}{=} a_{2}\left(a_{3} \cdot a_{3} a_{2}\right) \stackrel{(11)}{=} a_{2} a_{3} \cdot\left(a_{2} \cdot a_{3} a_{2}\right) \\
& \stackrel{(10)}{=} a_{2} a_{3} \cdot\left(a_{2} a_{3} \cdot a_{2}\right) \stackrel{(2)}{=}\left(a_{2} \cdot a_{2} a_{3}\right) \cdot a_{3} a_{2} \stackrel{(28)}{=} b_{74} \cdot a_{3} a_{2} \\
& \stackrel{(27),(26)}{=} a_{7} a_{4} \cdot a_{7} a_{1} \stackrel{(11)}{=} a_{7} \cdot a_{4} a_{1} \stackrel{(27)}{=} a_{7} b_{41}, \tag{37}
\end{align*}
$$

and, as in Figure 4, the obtained equal products will be designated by d_{1}. Generally, we have equalities

$$
\begin{equation*}
a_{i+1} \cdot a_{i-3} a_{i}=a_{i+1} b_{i-3, i}=d_{i}=a_{i-1} b_{i+3, i}=a_{i-1} \cdot a_{i+3} a_{i} \tag{38}
\end{equation*}
$$

which define the points d_{i} in Figure 4. For these points some interesting relations
also hold. So, we get

$$
\begin{aligned}
d_{1} b_{51} & =a_{2} b_{51} \cdot b_{51} \stackrel{(29)}{=} a_{2}\left(a_{3} \cdot a_{3} a_{2}\right) \cdot\left(a_{3} \cdot a_{3} a_{2}\right) \stackrel{(2)}{=} a_{2} a_{3} \cdot\left(a_{3} \cdot a_{3} a_{2}\right)\left(a_{3} a_{2}\right) \\
& \stackrel{(11)}{=} a_{2} a_{3} \cdot a_{3}\left(a_{3} a_{2} \cdot a_{2}\right) \stackrel{(14)}{=} a_{2} a_{3} \cdot\left(a_{2} a_{3} \cdot a_{3}\right) \stackrel{(12)}{=}\left(a_{2} \cdot a_{2} a_{3}\right) a_{3} \stackrel{(3)}{=} a_{3} a_{2} \stackrel{(26)}{=} b_{5} \\
d_{1} b_{5} & =a_{2}\left(a_{3} \cdot a_{3} a_{2}\right) \cdot a_{3} a_{2} \stackrel{(2)}{=} a_{2} a_{3} \cdot\left(a_{3} \cdot a_{3} a_{2}\right) a_{2} \stackrel{(3)}{=} a_{2} a_{3} \cdot a_{2} a_{3} \stackrel{(1)}{=} a_{2} a_{3} \stackrel{(26)}{=} b_{7} \\
d_{1} a_{2} & =a_{2}\left(a_{3} \cdot a_{3} a_{2}\right) \cdot a_{2} \stackrel{(10)}{=} a_{2} \cdot\left(a_{3} \cdot a_{3} a_{2}\right) a_{2} \stackrel{(3)}{=} a_{2} \cdot a_{2} a_{3} \stackrel{(28)}{=} b_{74} \\
d_{1} a_{3} & =a_{2}\left(a_{3} \cdot a_{3} a_{2}\right) \cdot a_{3} \stackrel{(12)}{=} a_{2} a_{3} \cdot\left(a_{3} \cdot a_{3} a_{2}\right) a_{3} \stackrel{(3)}{=}\left(a_{3} \cdot a_{3} a_{2}\right) a_{2} \cdot\left(a_{3} \cdot a_{3} a_{2}\right) a_{3} \\
& \stackrel{(11)}{=}\left(a_{3} \cdot a_{3} a_{2}\right) \cdot a_{2} a_{3} \stackrel{(2)}{=} a_{3} a_{2} \cdot\left(a_{3} a_{2} \cdot a_{3}\right) \stackrel{(10)}{=} a_{3} a_{2} \cdot\left(a_{3} \cdot a_{2} a_{3}\right) \\
& \stackrel{(11)}{=} a_{3}\left(a_{2} \cdot a_{2} a_{3}\right) \stackrel{(28)}{=} a_{3} b_{74} \stackrel{(38)}{=} d_{4}, \\
d_{1} b_{62} & =a_{2} b_{51} \cdot b_{62} \stackrel{(27)}{=} a_{2} b_{51} \cdot a_{6} a_{2} \stackrel{(2)}{=} a_{2} a_{6} \cdot b_{51} a_{2} \stackrel{(30)}{=} a_{2} a_{6} \cdot b_{7} \stackrel{(26)}{=} a_{2} a_{6} \cdot a_{2} a_{3} \\
& \stackrel{(11)}{=} a_{2} \cdot a_{6} a_{3} \stackrel{(27)}{=} a_{2} b_{63} \stackrel{(38)}{=} d_{3},
\end{aligned}
$$

and the following general equalities

$$
\begin{align*}
d_{i} b_{i-3, i} & =b_{i-3}, & d_{i} b_{i+3, i} & =b_{i+3}, \tag{39}\\
d_{i} b_{i-3} & =b_{i-1}, & d_{i} b_{i+3} & =b_{i+1}, \tag{40}\\
d_{i} a_{i+1} & =b_{i-1, i+3}, & d_{i} a_{i-1} & =b_{i+1, i-3}, \tag{41}\\
d_{i} a_{i+2} & =d_{i+3}, & d_{i} a_{i-2} & =d_{i-3}, \tag{42}\\
d_{i} b_{i-2, i+1} & =d_{i+2}, & d_{i} b_{i+2, i-1} & =d_{i-2} \tag{43}
\end{align*}
$$

hold. In (37), the equality $d_{1}=b_{74} \cdot a_{3} a_{2}$ holds, which, because of (26), gets the form $b_{74} b_{5}=d_{1}$, thus the general equalities

$$
\begin{equation*}
b_{i-1, i+3} b_{i-3}=d_{i}, \quad b_{i+1, i-3} b_{i+3}=d_{i} \tag{44}
\end{equation*}
$$

hold. For the points $a_{i}, b_{i}, c_{i}, d_{i}$ the following equalities

$$
\begin{equation*}
a_{i} c_{i}=b_{i}, \quad d_{i} a_{i}=b_{i} \tag{45}
\end{equation*}
$$

also hold because, e.g., we get

$$
\begin{aligned}
& a_{1} c_{1} \stackrel{(33)}{=} a_{1}\left(a_{5} a_{2} \cdot a_{2}\right) \stackrel{(11)}{=}\left(a_{1} a_{5} \cdot a_{1} a_{2}\right) \cdot a_{1} a_{2} \stackrel{(27),(26)}{=} b_{15} b_{6} \cdot b_{6} \stackrel{(44)}{=} d_{2} b_{6} \stackrel{(40)}{=} b_{1} \\
& d_{1} a_{1} \stackrel{(37)}{=} a_{2}\left(a_{3} \cdot a_{3} a_{2}\right) \cdot a_{1} \stackrel{(12)}{=} a_{2} a_{1} \cdot\left(a_{3} \cdot a_{3} a_{2}\right) a_{1} \stackrel{(3),(15)}{=}\left(a_{1} \cdot a_{1} a_{2}\right) a_{2} \cdot\left(a_{1} \cdot a_{1} a_{2}\right) a_{3} \\
& \quad \stackrel{(11)}{=}\left(a_{1} \cdot a_{1} a_{2}\right) \cdot a_{2} a_{3} \stackrel{(28),(26)}{=} b_{63} b_{7} \stackrel{(31)}{=} b_{1}
\end{aligned}
$$

We have proved the following theorem.
Theorem 4. If the statement $\operatorname{ARH}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right)$ holds, then there are the points $b_{i}, b_{i, i+3}, b_{i, i-3}, c_{i}, d_{i}$ so that equalities (26)-(36) and (38)-(45) hold, where the indexes are taken modulo 7 from the set $\{1,2,3,4,5,6,7\}$.

Numerous proofs in this article use the properties of cancellation and solvability in a quasigroup (Q, \cdot), so it is interesting to observe one direct proof, in which only properties (1)-(3) and (10)-(16) of a groupoid (Q, \cdot) are used explicitly. We shall prove that equality $a_{6} a_{7}=a_{2} a_{1}$ follows from equalities

$$
a_{1} a_{2}=a_{4} a_{3}, \quad a_{2} a_{3}=a_{5} a_{4}, \quad a_{3} a_{4}=a_{6} a_{5}, \quad a_{4} a_{5}=a_{7} a_{6}
$$

We get successively

$$
\begin{aligned}
a_{6} a_{7} & \stackrel{(13)}{=} a_{7} a_{6} \cdot\left(a_{7} a_{6} \cdot a_{6}\right)=a_{4} a_{5} \cdot\left(a_{4} a_{5} \cdot a_{6}\right) \stackrel{(2)}{=}\left(a_{4} \cdot a_{4} a_{5}\right) \cdot a_{5} a_{6} \\
& \stackrel{(13)}{=}\left(a_{4} \cdot a_{4} a_{5}\right) \cdot\left(a_{6} a_{5}\right)\left(a_{6} a_{5} \cdot a_{5}\right)=\left(a_{4} \cdot a_{4} a_{5}\right) \cdot\left(a_{3} a_{4}\right)\left(a_{3} a_{4} \cdot a_{5}\right) \\
& \stackrel{(2)}{=}\left(a_{4} \cdot a_{4} a_{5}\right) \cdot\left(a_{3} \cdot a_{3} a_{4}\right)\left(a_{4} a_{5}\right) \stackrel{(12)}{=} a_{4}\left(a_{3} \cdot a_{3} a_{4}\right) \cdot a_{4} a_{5} \\
& \stackrel{(13)}{=} a_{4}\left(a_{3} \cdot a_{3} a_{4}\right) \cdot\left(a_{5} a_{4}\right)\left(a_{5} a_{4} \cdot a_{4}\right)=a_{4}\left(a_{3} \cdot a_{3} a_{4}\right) \cdot\left(a_{2} a_{3}\right)\left(a_{2} a_{3} \cdot a_{4}\right) \\
& \stackrel{(11)}{=}\left(a_{4} a_{3}\right)\left(a_{4} \cdot a_{3} a_{4}\right) \cdot\left(a_{2} a_{3}\right)\left(a_{2} a_{3} \cdot a_{4}\right) \stackrel{(2)}{=}\left(a_{4} a_{3} \cdot a_{2} a_{3}\right) \cdot\left(a_{4} \cdot a_{3} a_{4}\right)\left(a_{2} a_{3} \cdot a_{4}\right) \\
& \stackrel{(10)}{=}\left(a_{4} a_{3} \cdot a_{2} a_{3}\right) \cdot\left(a_{4} a_{3} \cdot a_{4}\right)\left(a_{2} a_{3} \cdot a_{4}\right)=\left(a_{1} a_{2} \cdot a_{2} a_{3}\right) \cdot\left(a_{1} a_{2} \cdot a_{4}\right)\left(a_{2} a_{3} \cdot a_{4}\right) \\
& \stackrel{(12)}{=}\left(a_{1} a_{2} \cdot a_{2} a_{3}\right) \cdot\left(a_{1} a_{2} \cdot a_{2} a_{3}\right) a_{4} \stackrel{(2)}{=}\left(a_{1} a_{2}\right)\left(a_{1} a_{2} \cdot a_{2} a_{3}\right) \cdot\left(a_{2} a_{3} \cdot a_{4}\right) \\
& \stackrel{(12)}{=}\left(a_{1} a_{2}\right)\left(a_{1} a_{2} \cdot a_{2} a_{3}\right) \cdot\left(a_{2} a_{4} \cdot a_{3} a_{4}\right) \\
& \stackrel{(13)}{=}\left(a_{1} a_{2}\right)\left(a_{1} a_{2} \cdot a_{2} a_{3}\right) \cdot\left[a_{2} a_{4} \cdot\left(a_{4} a_{3}\right)\left(a_{4} a_{3} \cdot a_{3}\right)\right] \\
& =\left(a_{1} a_{2}\right)\left(a_{1} a_{2} \cdot a_{2} a_{3}\right) \cdot\left[a_{2} a_{4} \cdot\left(a_{1} a_{2}\right)\left(a_{1} a_{2} \cdot a_{3}\right)\right] \\
& \stackrel{(2)}{=}\left(a_{1} a_{2} \cdot a_{2} a_{4}\right)\left[\left(a_{1} a_{2} \cdot a_{2} a_{3}\right) \cdot\left(a_{1} a_{2}\right)\left(a_{1} a_{2} \cdot a_{3}\right)\right] \\
& \stackrel{(11)}{=}\left(a_{1} a_{2} \cdot a_{2} a_{4}\right)\left[a_{1} a_{2} \cdot\left(a_{2} a_{3}\right)\left(a_{1} a_{2} \cdot a_{3}\right)\right] \stackrel{(11)}{=} a_{1} a_{2} \cdot\left[a_{2} a_{4} \cdot\left(a_{2} a_{3}\right)\left(a_{1} a_{2} \cdot a_{3}\right)\right] \\
& \stackrel{(12)}{=} a_{1} a_{2} \cdot\left[a_{2} a_{4} \cdot\left(a_{2} \cdot a_{1} a_{2}\right) a_{3}\right] \stackrel{(2)}{=} a_{1} a_{2} \cdot\left[a_{2}\left(a_{2} \cdot a_{1} a_{2}\right) \cdot a_{4} a_{3}\right] \\
& =a_{1} a_{2} \cdot\left[a_{2}\left(a_{2} \cdot a_{1} a_{2}\right) \cdot a_{1} a_{2}\right] \stackrel{(10)}{=} a_{1} a_{2} \cdot\left[a_{2}\left(a_{2} a_{1} \cdot a_{2}\right) \cdot a_{1} a_{2}\right] \\
& \stackrel{(10)}{=} a_{1} a_{2} \cdot\left[\left(a_{2} \cdot a_{2} a_{1}\right) a_{2} \cdot a_{1} a_{2}\right] \stackrel{(12)}{=} a_{1} a_{2} \cdot\left[\left(a_{2} \cdot a_{2} a_{1}\right) a_{1} \cdot a_{2}\right] \\
& \stackrel{(3)}{=} a_{1} a_{2} \cdot\left(a_{1} a_{2} \cdot a_{2}\right) \stackrel{(13)}{=} a_{2} a_{1} \cdot
\end{aligned}
$$

By means of labels from Theorem 4 the following theorem can be proved.

Theorem 5. If the statement $\operatorname{ARH}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right)$ holds, then the statements $\operatorname{ARH}\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}\right), \operatorname{ARH}\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}\right), \operatorname{ARH}\left(d_{1}, d_{2}, d_{3}, d_{4}\right.$, $\left.d_{5}, d_{6}, d_{7}\right), A R H\left(b_{14}, b_{25}, b_{36}, b_{47}, b_{51}, b_{62}, b_{73}\right), A R H\left(b_{15}, b_{26}, b_{37}, b_{41}, b_{52}, b_{63}, b_{74}\right)$ hold (Figure 4).

Proof. It can be proved that for each i from the set $\{1,2,3,4,5,6,7\}$ the following
equalities hold

$$
\begin{aligned}
& b_{i} b_{i+1} \stackrel{(26)}{=} a_{i+5} a_{i+4} \cdot a_{i+6} a_{i+5} \stackrel{(2)}{=} a_{i+5} a_{i+6} \cdot a_{i+4} a_{i+5} \stackrel{(26)}{=} b_{i+3} b_{i+2} \\
& c_{i} c_{i+1} \stackrel{(33)}{=}\left(a_{i+3} a_{i-1} \cdot a_{i-1}\right)\left(a_{i+4} a_{i} \cdot a_{i}\right) \stackrel{(2)}{=}\left(a_{i+3} a_{i-1} \cdot a_{i+4} a_{i}\right) \cdot a_{i-1} a_{i} \\
& \stackrel{(2)}{=}\left(a_{i+3} a_{i+4} \cdot a_{i-1} a_{i}\right) \cdot a_{i-1} a_{i} \stackrel{(26)}{=}\left(a_{i+6} a_{i+5} \cdot a_{i+2} a_{i+1}\right) \cdot a_{i+2} a_{i+1} \\
& \stackrel{(2)}{=}\left(a_{i+6} a_{i+2} \cdot a_{i+5} a_{i+1}\right) \cdot a_{i+2} a_{i+1} \\
& \stackrel{(2)}{=}\left(a_{i+6} a_{i+2} \cdot a_{i+2}\right)\left(a_{i+5} a_{i+1} \cdot a_{i+1}\right) \\
& \stackrel{(33)}{=} c_{i+3} c_{i+2} \\
& \stackrel{(38)}{=}\left(a_{i+1} \cdot a_{i+4} a_{i}\right)\left(a_{i+2} \cdot a_{i+5} a_{i+1}\right) \stackrel{(2)}{=} a_{i+1} a_{i+2} \cdot\left(a_{i+4} a_{i} \cdot a_{i+5} a_{i+1}\right) \\
& \stackrel{(2)}{=} a_{i+1} a_{i+2} \cdot\left(a_{i+4} a_{i+5} \cdot a_{i} a_{i+1}\right) \stackrel{(26)}{=} a_{i+4} a_{i+3} \cdot\left(a_{i} a_{i+6} \cdot a_{i+3} a_{i+2}\right) \\
&\left.d_{i} d_{i+1}\right) \\
& \stackrel{(2)}{=} a_{i+4} a_{i+3} \cdot\left(a_{i} a_{i+3} \cdot a_{i+6} a_{i+2}\right) \stackrel{(2)}{=}\left(a_{i+4} \cdot a_{i} a_{i+3}\right)\left(a_{i+3} \cdot a_{i+6} a_{i+2}\right) \\
& b_{i, i+3} b_{i+1, i+4} \stackrel{(38)}{=} d_{i+3} d_{i+2} \\
& \stackrel{(27)}{=} a_{i} a_{i+3} \cdot a_{i+1} a_{i+4} \stackrel{(2)}{=} a_{i+3} a_{i+6} \cdot a_{i+2} a_{i+1} \cdot a_{i+3} a_{i+4} \stackrel{(27)}{=} b_{i+3, i+6} b_{i+2, i+5} \\
& \\
& \stackrel{(27)}{=} a_{i+3} a_{i+2} \cdot a_{i+6} a_{i+5} \\
& \stackrel{(2)}{=} a_{i+3} a_{i} \cdot a_{i+2} a_{i-1} \stackrel{(27)}{=} b_{i+3, i} b_{i+2, i-1}
\end{aligned}
$$

where the indexes are taken modulo 7 from the set $\{1,2,3,4,5,6,7\}$, so the assertions of the theorem are proved.

Acknowledgement

The authors would like to thank the referee for very useful suggestions.

References

[1] V. Volenec, Admissible identitities in complex IM-quasigroups I., Rad Jugoslav. Akad. Znan. Umjetn. 413(1985), 61-85.
[2] V. Volenec, Admissible identitities in complex IM-quasigroups II., Rad Jugoslav. Akad. Znan. Umjetn. 421(1986), 45-78.

[^0]: *Corresponding author. Email addresses: volenec@math.hr (V.Volenec), zkolar@mathos.hr (Z. Kolar-Begović), rkolar@ufos.hr (R. Kolar-Šuper)
 http://www.mathos.hr/mc
 © 2011 Department of Mathematics, University of Osijek

