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Abstract. We consider a Schrödinger operator with a matrix potential defined in Lm
2 (Q)

by the differential expression Lu = −∆u + V u and the Neumann boundary condition,
where Q is a d-dimensional parallelepiped and V a matrix potential, d ≥ 2, m ≥ 2. We
obtain the high energy asymptotics of arbitrary order for a rich set of eigenvalues.
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We consider the Schrödinger operator with a matrix potential V (x) which is
defined by the differential expression

L = −∆ + V (1)

and the Neumann boundary condition

∂Φ
∂n

|∂Q= 0 (2)

in Lm
2 (Q), where Q = [0, a1]× [0, a2]×· · ·× [0, ad], ∂Q is the boundary of Q, m ≥ 2,

d ≥ 2, ∆ is a diagonal m×m matrix, its diagonal elements being the scalar Laplace
operators, V is the operator of multiplication by a real valued symmetric matrix
V (x) = (vij(x)), i, j = 1, 2, . . . , m, vij(x) ∈ L2(Q), V T (x) = V (x). We denote the
operator defined by (1) and (2) by L(V ), the eigenvalues and the corresponding
eigenfunctions of L(V ) by ΛN and ΨN , respectively.

The eigenvalues of the operator L(0) which is defined by (1) when V (x) = 0 and
the boundary condition (2) are | γ |2 and the corresponding eigenspaces are

Eγ = span{Φγ,1(x), Φγ,2(x), . . . , Φγ,m(x)},

where

γ ∈ Γ+0

2
= {(n1π

a1
,
n2π

a2
· · · ,

ndπ

ad
) : nk ∈ Z+

⋃
{0}, k = 1, 2, . . . , d},

Φγ,j(x) = (0, . . . , 0, uγ(x), 0, . . . , 0), j = 1, 2, . . . ,m,
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uγ(x) = cosn1π
a1

x1cos
n2π
a2

x2 · · · cosndπ
ad

xd,

u0(x) = 1 when γ = (0, 0, . . . , 0). We note that the non-zero component uγ(x) of
Φγ,j(x) stands in the jth component.

It can be easily calculated that the norm of uγ(x), γ = (γ1, γ2, . . . , γd) ∈ Γ+0

2 in

L2(Q) is
√

µ(Q)
|Aγ | , where µ(Q) is the measure of the d-dimensional parallelepiped Q,

Aγ = {α = (α1, α2, . . . , αd) ∈ Γ
2 :| αk |=| γk |, k = 1, 2, . . . , d},

Γ
2 = {(n1π

a1
, n2π

a2
, · · · , ndπ

ad
) : nk ∈ Z, k = 1, 2, . . . , d} and | Aγ | is the number of

vectors in Aγ .
Since {uγ(x)}

γ∈Γ+0
2

is a complete system in L2(Q), for any q(x) in L2(Q) we
have

q(x) =
∑

γ∈Γ+0
2

| Aγ |
µ(Q)

(q, uγ)uγ(x), (3)

where (·, ·) is the inner product in L2(Q). Using decomposition (3) and the obvious
relations

uγ(x) = uα(x), (q(x), uγ(x)) = (q(x), uα(x)), ∀α ∈ Aγ ,

Γ
2

=
⋃

γ∈Γ+0
2

Aγ , (q(x), uγ(x)) =
1

| Aγ |
∑

α∈Aγ

(q(x), uα(x)),

we have

q(x) =
∑

γ∈Γ+0
2

| Aγ |
µ(Q)

(q(x), uγ(x))uγ(x)

=
∑

γ∈Γ+0
2

| Aγ |
µ(Q)

1
| Aγ |

∑

α∈Aγ

(q(x), uα(x))uα(x)

=
∑

γ∈Γ
2

1
µ(Q)

(q(x), uγ(x))uγ(x).

Thus one can write
q(x) =

∑

γ∈Γ
2

qγuγ(x), (4)

where qγ = 1
µ(Q) (q(x), uγ(x)). Since decompositions (3) and (4) are equivalent, for

the sake of simplicity, we use decomposition (4).
So each matrix element vij(x) ∈ L2(Q) of the matrix V (x) can be written in its

Fourier series expansion

vij(x) =
∑

γ∈Γ
2

vijγuγ(x)

for i, j = 1, 2, . . . , m where vijγ = (vij ,uγ)
µ(Q) .



A Schrödinger operator with a matrix potential 553

We assume that the Fourier coefficients vijγ of vij(x) satisfy

∑

γ∈Γ
2

| vijγ |2 (1+ | γ |2l) < ∞ (5)

for each i, j = 1, 2, . . . , m, where l > (d+20)(d−1)
2 + d + 3, which implies

vij(x) =
∑

γ∈Γ+0(ρα)

vijγuγ(x) + O(ρ−pα), (6)

where Γ+0(ρα) = {γ ∈ Γ
2 : 0 ≤| γ |< ρα}, p = l−d, α < 1

d+20 , ρ is a large parameter
and O(ρ−pα) is a function in L2(Q) with norm of order ρ−pα. Furthermore, a
assumption (5) implies

Mij ≡
∑

γ∈Γ
2

| vijγ |< ∞ (7)

for all i, j = 1, 2, . . . ,m.
Notice that, if a function q(x) is sufficiently smooth (q(x) ∈ W l

2(Q)) and the
support of gradq(x) = ( ∂q

∂x1
, ∂q

∂x2
, . . . , ∂q

∂xd
) is contained in the interior of the domain

Q, then q(x) satisfies condition (5) ( see [7]). There is also another class of functions
q(x), such that q(x) ∈ W l

2(Q),

q(x) =
∑

γ′∈Γ

qγ′uγ′ (x),

which is periodic with respect to a lattice Ω = {(m1a1,m2a2, . . . , mdad) : mk ∈ Z,
k = 1, 2, . . . , d} and thus it also satisfies condition (5).

In this paper and in [3], we study how the eigenvalues | γ |2 of the unperturbed
operator L(0) are affected under perturbation, by using energy as a large parameter.
In [3], we obtain the asymptotic formulas for the eigenvalues of the operator L(V ) in
an arbitrary dimension. In this paper, we improve the proof of the formulas obtained
in [3] so that we additionally obtain the high energy asymptotics of arbitrary order
for the eigenvalues of the operator L(V ) in an arbitrary dimension. This is one of
the essential problems related to this operator L(V ) that has been studied for a long
time.

For the scalar case, m = 1, a method was first introduced by O. Veliev in [15], [16]
and more recently in [17]-[19] to obtain the asymptotic formulas for the eigenvalues
of the periodic Schrödinger operator with quasiperiodic boundary conditions. By
some other methods, asymptotic formulas for quasiperiodic boundary conditions in
two- and three-dimensional cases are obtained in [4, 5, 10, 11] and [6]. When this
operator is considered with the Dirichlet boundary condition in a two-dimensional
rectangle, the asymptotic formulas for the eigenvalues are obtained in [7]. The
asymptotic formulas for the eigenvalues of the Schrödinger operator with Dirichlet
or Neumann boundary conditions in an arbitrary dimension are obtained in [1], [8]
and [9]. For the matrix case, asymptotic formulas for eigenvalues of the Schrödinger
operator with quasiperiodic boundary conditions are obtained in [12].
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As in [15]- [19], we divide Rd into two domains: resonance and non-resonance
domains. In order to define these domains, let us introduce the following sets:

Let α < 1
d+20 , αk = 3kα, k = 1, 2, . . . , d− 1 and

Vb(ρα1) ≡ {x ∈ Rd : || x |2 − | x + b |2|< ρα1},
E1(ρα1 , p) ≡

⋃

b∈Γ(pρα)

Vb(ρα1),

U(ρα1 , p) ≡ Rd \ E1(ρα1 , p),

where Γ(pρα) ≡ {b ∈ Γ
2 : 0 <| b |< pρα}. The set U(ρα1 , p) is said to be a non-

resonance domain, and the eigenvalue | γ |2 is called a non-resonance eigenvalue if
γ ∈ U(ρα1 , p). The domains Vb(ρα1) for all b ∈ Γ(pρα) are called resonance domains,
and the eigenvalue | γ |2 is a resonance eigenvalue if γ ∈ Vb(ρα1).

In this paper, we obtain the asymptotic formulas of arbitrary order for non-
resonance eigenvalues, which is a rich set of eigenvalues in the following sense: The
number of non-resonance eigenvalues is essentially greater than the number of
resonance eigenvalues. Namely, if Nn(ρ) and Nr(ρ) denote the number of
γ ∈ U(ρα, p)

⋂
(R(2ρ) \R(ρ)) and γ ∈ ⋃

b∈Γ(pρα)

Vb(ρα)
⋂

(R(2ρ) \R(ρ)), respectively,

then
Nr(ρ)
Nn(ρ)

= O(ρ(d+1)α−1) = o(1) (8)

for (d + 1)α < 1, where Rρ = {x ∈ Rd :| x |= ρ} (see Remark 1 in [1]).
To prove the asymptotic formulas for the eigenvalues ΛN , we use the binding

formula
(ΛN− | γ |2) < ΨN ,Φγ,j >=< ΨN , V Φγ,j > (9)

for the eigenvalue, eigenfunction pairs ΛN , ΨN (x) and | γ |2, Φγ,j(x) of the opera-
tors L(V ) and L(0), respectively. Formula (9) can be obtained by multiplying the
equation L(V )ΨN (x) = ΛNΨN (x) by Φγ,j(x) and by using the facts that L(0) is
self-adjoint and L(0)Φγ,j(x) =| γ |2 Φγ,j(x). Here < ·, · > denotes the inner product
in Lm

2 (Q).
We consider the eigenvalues | γ |2 of L(0) such that | γ |∼ ρ, where | γ |∼ ρ means

that | γ | and ρ are asymptotically equal, that is, c1ρ ≤| γ |≤ c2ρ, ci, i = 1, 2, 3, . . .
are positive real constants which do not depend on ρ and ρ is a large parameter,
ρ À 1.

Now, we decompose V (x)Φγ,j(x) with respect to the basis {Φγ′,i(x)}γ′∈Γ
2 ,i=1,2,...,m.

By definition of Φγ,j(x), it is obvious that

V (x)Φγ,j(x) = (v1j(x)uγ(x), . . . , vmj(x)uγ(x)). (10)

Substituting decomposition (6) of vij(x) in (10), we get

V (x)Φγ,j(x) = (
∑

γ′∈Γ+0(ρα)

v1jγ′uγ′(x)uγ(x), . . . ,
∑

γ′∈Γ+0(ρα)

vmjγ′uγ′(x)uγ(x))

+O(ρ−pα).
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Since γ ∈ U(ρα1 , p), γ does not belong to the domains Vek
(ρα1) where

ek = (0, . . . , 0, π
ak

, 0, . . . , 0) for each k = 1, 2, . . . , d, we may use the following equation
∑

γ′∈Γ+0(ρα)

vijγ′uγ′(x)uγ(x) =
∑

γ′∈Γ+0(ρα)

vijγ′uγ+γ′(x)

which is proved in [8] (see equation (18) in [8]), and obtain

V (x)Φγ,j(x) = (
∑

γ′∈Γ+0(ρα)

v1jγ′uγ+γ′(x), . . . ,
∑

γ′∈Γ+0(ρα)

vmjγ′uγ+γ′(x)) + O(ρ−pα)

=
m∑

i=1

∑

γ′∈Γ+0(ρα)

vijγ′Φγ+γ′,i(x) + O(ρ−pα). (11)

Expressions (9) and (11) together imply that

< ΨN ,Φγ′,j > =
< ΨN , V Φγ′,j >

(ΛN− | γ′ |2)

=
m∑

i=1

∑

γ1∈Γ+0(ρα)

vijγ1

< ΨN , Φγ′+γ1,i >

(ΛN− | γ′ |2) + O(ρ−pα) (12)

for every vector γ′ ∈ Γ
2 , satisfying the condition

| ΛN− | γ′ |2|> 1
2
ρα1 .

If γ ∈ U(ρα1 , p) and ΛN satisfies

| ΛN− | γ |2|< 1
2
ρα1 , (13)

which is called the iterability condition, then

| ΛN− | γ + b |2|≥|| ΛN− | γ |2| − || γ + b |2 − | γ |2||> 1
2
ρα1 , (14)

for all b ∈ Γ+0(pρα) with b 6= 0.
Let γ ∈ U(ρα1 , p) with | γ |∼ ρ. Now, we start the iteration by substituting (11)

into the binding formula (9) and obtain

(ΛN− | γ |2) < ΨN , Φγ,j >=
m∑

i1=1

∑

γ1∈Γ+0(ρα)

vi1jγ1 < ΨN , Φγ+γ1,i1 > +O(ρ−pα).

Isolating the terms with the coefficient < ΨN ,Φγ,i >, that is, γ1 = 0, for each
i = 1, 2, . . . , m, we get

(ΛN− | γ |2) < ΨN , Φγ,j > =
m∑

i=1

vij0 < ΨN ,Φγ,i >

+
m∑

i1=1

∑

γ1∈Γ+0(ρα)

vi1jγ1 < ΨN ,Φγ+γ1,i1 > +O(ρ−pα).
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In the second summation of the above equation, if ΛN satisfies (13), then since
γ ∈ U(ρα1 , p) and γ1 ∈ Γ+0(ρα) with γ1 6= 0, by (14), we can use (12) replacing γ′
by γ + γ1 and obtain

(ΛN− | γ |2) < ΨN ,Φγ,j > =
m∑

i=1

vij0 < ΨN , Φγ,i >

+
m∑

i1,i2=1

∑

γ1,γ2∈Γ+0(ρα)

vi1jγ1vi2i1γ2

< ΨN ,Φγ+γ1+γ2,i2 >

(ΛN− | γ + γ1 |2)
+O(ρ−pα).

Again, in the second summation of the above equation, isolating the terms with
the coefficient < ΨN , Φγ,i >, that is, γ1 + γ2 = 0, γ1 6= 0 for each i = 1, 2, . . . , m, we
get

(ΛN− | γ |2) < ΨN , Φγ,j > (15)

=
m∑

i=1

vij0 < ΨN , Φγ,i > +
m∑

i1,i=1

∑

γ1,γ2∈Γ+0(ρα)
γ1+γ2=0

vi1jγ1vii1γ2

(ΛN− | γ + γ1 |2) < ΨN ,Φγ,i >

+
m∑

i1,i2=1

∑

γ1,γ2∈Γ+0(ρα)

vi1jγ1vi2i1γ2

(ΛN− | γ + γ1 |2) < ΨN ,Φγ+γ1+γ2,i2 > +O(ρ−pα). (16)

Writing this equation for j = 1, 2, . . . , m and i = 1, 2, . . . , m, after the first step
of the iteration we obtain the following system:

[(ΛN− | γ |2)I − V0]A(N, γ) = S1A(N, γ) + R1 + O(ρ−pα),

where I is an m × m identity matrix, V0 =
∫
Q

V (x)dx, which is again an m × m

matrix, A(N, γ) is the m× 1 vector

A(N, γ) = (< ΨN ,Φγ,1 >,< ΨN ,Φγ,2 >, . . . , < ΨN , Φγ,m >),

S1 = (s1
ji) is an m×m matrix whose entries are

s1
ji =

m∑

i1=1

∑

γ1,γ2∈Γ+0(ρα)
γ1+γ2=0

vi1jγ1vii1γ2

(ΛN− | γ + γ1 |2) , j, i = 1, 2, . . . ,m,

and R1 = (r1
j ) is the vector whose components are

r1
j =

m∑

i1,i2=1

∑

γ1,γ2∈Γ+0(ρα)

vi1jγ1vi2i1γ2

(ΛN− | γ + γ1 |2) < ΨN , Φγ+γ1+γ2,i2 >, j = 1, 2, . . . , m.

Now, we continue to iterate equation (15). In the third summation of equation
(15), if ΛN satisfies (13), then since γ ∈ U(ρα1 , p) and γ1 + γ2 ∈ Γ+0(2ρα) with
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γ1 + γ2 6= 0, by (14) we can use (12) replacing γ′, for this time, by γ + γ1 + γ2 and
obtain

(ΛN− | γ |2) < ΨN , Φγ,j >

=
m∑

i=1

vij0 < ΨN ,Φγ,i > +
m∑

i1,i=1

∑

γ1,γ2∈Γ+0(ρα)
γ1+γ2=0

vi1jγ1vii1γ2

(ΛN− | γ + γ1 |2) < ΨN , Φγ,i >

+
m∑

i1,i2,
i3=1

∑
γ1,γ2,

γ3∈Γ+0(ρα)

vi1jγ1vi2i1γ2vi3i2γ3

(ΛN− | γ + γ1 |2)(ΛN− | γ + γ1 + γ2 |2) <ΨN ,Φγ+γ1+γ2+γ3,i3>

+O(ρ−pα).

Isolating the terms with the coefficient < ΨN , Φγ,i > for each i = 1, 2, . . . ,m, we get

(ΛN− | γ |2) < ΨN , Φγ,j >

=
m∑

i=1

vij0 < ΨN ,Φγ,i > +
m∑

i1,i=1

∑

γ1,γ2∈Γ+0(ρα)
γ1+γ2=0

vi1jγ1vii1γ2

(ΛN− | γ + γ1 |2) < ΨN , Φγ,i >

+
m∑

i1,i2,i=1

∑

γ1,γ2,γ3∈Γ+0(ρα)
γ1+γ2+γ3=0

vi1jγ1vi2i1γ2vii2γ3

(ΛN− | γ + γ1 |2)(ΛN− | γ + γ1 + γ2 |2) <ΨN ,Φγ,i >

+
m∑

i1,i2,
i3=1

∑
γ1,γ2,

γ3∈Γ+0(ρα)

vi1jγ1vi2i1γ2vi3i2γ3

(ΛN− | γ + γ1 |2)(ΛN− | γ + γ1 + γ2 |2) <ΨN ,Φγ+γ1+γ2+γ3,i3>

+O(ρ−pα).

Again, if we write this equation for j = 1, 2, . . . ,m and i = 1, 2, . . . , m, after the
second step of the iteration we obtain the following system:

[(ΛN− | γ |2)I − V0]A(N, γ) = (S1 + S2)A(N, γ) + R2 + O(ρ−pα),

where this time S2 = (s2
ji) is an m×m matrix whose entries are

s2
ji =

m∑

i1,i2=1

∑

γ1,γ2,γ3∈Γ+0(ρα)
γ1+γ2+γ3=0

vi1jγ1vi2i1γ2vii2γ3

(ΛN− | γ + γ1 |2)(ΛN− | γ + γ1 + γ2 |2) ,

j, i = 1, 2, . . . , m and R2 = (r2
j ) is an m× 1 vector whose components are

r2
j =

m∑
i1,i2,
i3=1

∑
γ1,γ2,

γ3∈Γ+0(ρα)

vi1jγ1vi2i1γ2vi3i2γ3

(ΛN− | γ + γ1 |2)(ΛN− | γ + γ1 + γ2 |2) <ΨN ,Φγ+γ1+γ2+γ3,i3>,

j = 1, 2, . . . , m.
If we continue to iterate in this manner after the p1st step where p1 = [p+1

2 ] and
[·] is the integer function, we obtain the following system:

[(ΛN− | γ |2)I − V0]A(N, γ) = (
p1∑

k=1

Sk)A(N, γ) + Rp1 + O(ρ−pα), (17)
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where

Sk(ΛN ) = (sk
ji(ΛN )), k = 1, 2, . . . , p1, j, i = 1, 2, . . . , m, (18)

sk
ji(ΛN ) =

m∑
i1,i2,...,

ik=1

∑

γ1,γ2,...,γk+1∈Γ+0(ρα)
γ1+γ2+···+γk+1=0

vi1jγ1vi2i1γ2 . . . viikγk+1

(ΛN−| γ + γ1 |2) . . . (ΛN− |γ + γ1 + · · ·+ γk |2) ,

Rp1 = (rp1
j ), j = 1, 2, . . . , m,

and

rp1
j =

m∑
i1,i2,...,
ip1+1=1

∑
γ1,γ2,...,

γp1+1∈Γ+0(ρα)

vi1jγ1 . . . vip1+1ip1γp1+1 < ΨN , Φγ+γ1+···+γp1+1,ip1+1 >

(ΛN− | γ + γ1 |2) . . . (ΛN− | γ + γ1 + · · ·+ γp1 |2)
.(19)

If ΛN satisfies (13), then since γ ∈ U(ρα1 , p) and γ1 + γ2 + · · ·+ γk ∈ Γ+0(kρα)
with γ1 + γ2 + · · ·+ γk 6= 0, by (14) and (7),

|sk
ji(ΛN )|

≤
m∑

i1,i2,...,ik=1

∑

γ1,γ2,...,γk+1∈Γ+0(ρα)
γ1+γ2+···+γk+1=0

|vi1jγ1 ||vi2i1γ2 ||vi3i2γ3 | . . . |viikγk+1 |
|(ΛN−|γ + γ1 |2)| . . . |(ΛN−|γ + γ1 +· · ·+ γk |2)|

≤ 1
(2ρα1)k

m∑

i1,i2,...,ik=1

Mi1jMi2i1 . . . Miik
,

for each k = 1, 2, . . . , p1, i, j = 1, 2, . . . ,m. Thus

Sk(ΛN ) = O(ρ−kα1), ∀k = 1, 2, . . . , p1 ⇒
p1∑

k=1

Sk = O(ρ−α1). (20)

Similarly,

|rp1
j | ≤

m∑
i1,i2,...,
ip1+1=1

∑
γ1,γ2,...,

γp1+1∈Γ+0(ρα)

|vi1jγ1 | . . . |vip1+1ip1γp1+1 || < ΨN , Φγ+γ1+···+γp1+1,ip1+1 > |
|(ΛN− | γ + γ1 |2)| . . . |(ΛN− | γ + γ1 + · · ·+ γp1 |2)|

≤ 1
(2ρα1)p1

m∑

i1,i2,...,ip1+1=1

Mi1jMi2i1 . . . Mip1+1ip1
,

that is,
Rp1 = O(ρ−p1α1). (21)

Note that, in order to obtain (20), we have only used the assumption that ΛN

satisfies (13), that is, ΛN ∈ J where J = [|γ|2 − 1
2ρα1 , |γ|2 + 1

2ρα1 ]. Hence we may
write

p1∑

k=1

Sk(a) = O(ρ−α1), ∀a ∈ J. (22)
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Similarly, (17) holds for ΛN ∈ J .
Note that, since we have chosen p1 = [p+1

2 ], we have the obvious inequalities

p1 ≥ p

2
, p1α1 > pα, p >

(d + 20)(d− 1)
2

(23)

by definitions of α, α1, l and p.
For any ΛN and a ∈ J , using (21) and inequalities (23) in (17), we have

[D(ΛN , γ)− S(a, p1)]A(N, γ) = O(ρ−pα), (24)

where D(ΛN , γ) ≡ (ΛN − |γ|2)I − V0, S(a, p1) ≡
p1∑

k=1

Sk(a). We note that since V is

symmetric, V0 and S(a, p1) are symmetric real valued matrices, hence
D(ΛN , γ)− S(a, p1) is a symmetric real valued matrix.

We denote the eigenvalues of V0, counted with multiplicity, and the corresponding
orthonormal eigenvectors by λ1 ≤ λ2 ≤ · · · ≤ λm and ω1, ω2, . . . , ωm, respectively.
Thus

V0ωi = λiωi, ωi · ωj = δij ,

where ” · ” denotes the inner product in Rm.
We let βi ≡ βi(ΛN , γ, a) denote an eigenvalue of the matrix D(ΛN , γ)− S(a, p1)

and fi ≡ fi(ΛN , γ, a) its corresponding normalized eigenvector. That is,

[D(ΛN , γ)− S(a, p1)]fi = βifi, (25)

where fi · fj = δij , i, j = 1, 2, . . . , m.

Lemma 1. Let | γ |2 be a non-resonance eigenvalue of the operator L(0) with
| γ |∼ ρ.

(a) Let βi be an eigenvalue of the matrix D(ΛN , γ)−S(a, p1) and fi =(fi1 , . . . , fim)
its corresponding normalized eigenvector. Then there exists an integer N ≡ Ni such
that ΛN satisfies (13) and

| A(N, γ) · fi |> c3ρ
−(d−1)

2 . (26)

(b) Let ΛN be an eigenvalue of the operator L(V ) satisfying inequality (13). Then
there exists an eigenfunction Φγ,i(x) of the operator L(0) such that

|< Φγ,i, ΨN >|> c4ρ
−(d−1)

2 (27)

holds.

Proof. (a): We use a result from perturbation theory which states that the Nth
eigenvalue of the operator L(V ) lies in the M-neighborhood of the Nth eigenvalue
of the operator L(0). Let the Nth eigenvalues of L(V ) and L(0) be ΛN and | γ |2,
respectively. Then there is an integer N such that | ΛN− | γ |2|< 1

2ρα1 .
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On the other hand, since L(V ) is a self adjoint operator, the eigenfunctions
{ΨN (x)}∞N=1 of L(V ) form an orthonormal basis for Lm

2 (Q). By Parseval’s relation,
we have

‖
m∑

j=1

fijΦγ,j ‖2 =
∑

N :|ΛN−|γ|2|< 1
2 ρα1

|<
m∑

j=1

fijΦγ,j ,ΨN >|2

+
∑

N :|ΛN−|γ|2|≥ 1
2 ρα1

|<
m∑

j=1

fijΦγ,j , ΨN >|2 . (28)

Now, we estimate the last expression in (28). By using the Cauchy-Schwarz
inequality and (9), we get

∑

N :|ΛN−|γ|2|≥ 1
2 ρα1

|<
m∑

j=1

fijΦγ,j , ΨN >|2

=
∑

N :|ΛN−|γ|2|≥ 1
2 ρα1

|
m∑

j=1

fij < Φγ,j , ΨN >|2

≤
∑

N :|ΛN−|γ|2|≥ 1
2 ρα1

[
m∑

j=1

| fij |2
m∑

j=1

|< ΨN , Φγ,j >|2]

∑

N :|ΛN−|γ|2|≥ 1
2 ρα1

m∑

j=1

|< ΨN , V Φγ,j >|2
| ΛN− | γ |2|2

≤ (
1
2
ρα1)−2

∑

N :|ΛN−|γ|2|≥ 1
2 ρα1

m∑

j=1

|< ΨN , V Φγ,j >|2

≤ (
1
2
ρα1)−2

m∑

j=1

‖ V Φγ,j ‖2

from which together with (7) we obtain

∑

N :|ΛN−|γ|2|≥ 1
2 ρα1

|<
m∑

j=1

fijΦγ,j , ΨN >|2= O(ρ−2α1).

It follows from the last equation and (28) that

∑

N :|ΛN−|γ|2|< 1
2 ρα1

|<
m∑

j=1

fijΦγ,j ,ΨN >|2 =
∑

N :|ΛN−|γ|2|< 1
2 ρα1

| A(N, γ) · fi |2

= 1−O(ρ−2α1). (29)

On the other hand, if a ∼ ρ, then the number of γ ∈ Γ
2 satisfying || γ |2 −a2 |< 1 is

less than c5ρ
d−1. Therefore, the number of eigenvalues of L(0) lying in (a2−1, a2+1)

is less than c6ρ
d−1. By this result and the result of perturbation theory, the number
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of eigenvalues ΛN of L(V ) in the interval [| γ |2 − 1
2ρα1 , | γ |2 + 1

2ρα1 ] is less than
c7ρ

d−1. Thus

1−O(ρ−2α1) =
∑

N :|ΛN−|γ|2|< 1
2 ρα1

| A(N, γ) · fi |2< c7ρ
d−1 | A(N, γ) · fi |2 (30)

from which we get (26).
(b): Since L(0) is a self adjoint operator, the set of eigenfunctions

{Φγ,i(x)}γ∈Γ
2 ,i=1,2,...,m

of L(0) forms an orthonormal basis for Lm
2 (Q). By Parseval’s relation, we have

‖ ΨN ‖2 =
∑

γ:|ΛN−|γ|2|< 1
2 ρα1

m∑

i=1

|< ΨN , Φγ,i >|2

+
∑

γ:|ΛN−|γ|2|≥ 1
2 ρα1

m∑

i=1

|< ΨN ,Φγ,i >|2 . (31)

We estimate the last expression in (31). Hence for a fixed i = 1, 2, . . . , m, using (9)
together with (7) we get

∑

γ:|ΛN−|γ|2|≥ 1
2 ρα1

m∑

i=1

|< ΨN , Φγ,i >|2

=
∑

γ:|ΛN−|γ|2|≥ 1
2 ρα1

m∑

i=1

|< ΨN , V Φγ,i >|2
| ΛN− | γ |2|2

≤ (
1
2
ρα1)−2

∑

γ:|ΛN−|γ|2|≥ 1
2 ρα1

m∑

i=1

|< V ΨN , Φγ,i >|2

≤ (
1
2
ρα1)−2 ‖ V ΨN ‖2, (32)

that is,

∑

γ:|ΛN−|γ|2|≥ 1
2 ρα1

m∑

i=1

|< ΨN , Φγ,i >|2= O(ρ−2α1).

From the last equality and (31) we obtain

∑

γ:|ΛN−|γ|2|< 1
2 ρα1

m∑

i=1

|< ΨN , Φγ,i >|2= 1−O(ρ−2α1).

Arguing as in the proof of part(a) we get

1−O(ρ−2α1) =
∑

γ:|ΛN−|γ|2|< 1
2 ρα1

m∑

i=1

|< ΨN ,Φγ,i >|2≤ c8ρ
d−1 |< ΨN , Φγ,i >|2

from which (27) follows.
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Theorem 1. Let | γ |2 be a non-resonance eigenvalue of the operator L(0) with
| γ |∼ ρ.

(a) For each eigenvalue λi of the matrix V0, there exists an eigenvalue ΛN of the
operator L(V ) satisfying

ΛN =| γ |2 +λi + O(ρ−α1). (33)

(b) For each eigenvalue ΛN of the operator L(V ) satisfying (13), there exists an
eigenvalue λi of the matrix V0 satisfying (33).

Proof. (a): By Lemma(1a), there exists an eigenvalue ΛN of the operator L(V )
satisfying (13), that is, ΛN ∈ J and (26) hold. Thus we consider equation (24) for
a = ΛN , that is,

[D(ΛN , γ)− S(ΛN , p1)]A(N, γ) = O(ρ−pα).

Let βi be an eigenvalue of the matrix D(ΛN , γ)−S(ΛN , p1) and fi its corresponding
normalized eigenvector. Multiplying both sides of the above equation by fi, we
obtain

βi[A(N, γ) · fi] = O(ρ−pα).

Using inequality (26) in the above equation, we get

βi = O(ρ−(p− d−1
2α )α). (34)

Since D(ΛN , γ) and S(ΛN , p1) are symmetric real valued matrices, by a well known
result in matrix theory (see [13]), |βi − (ΛN− | γ |2 −λi)| ≤ ‖S(ΛN , p1)‖, which
together with (22) implies that

βi = ΛN− | γ |2 −λi + O(ρ−α1). (35)

Hence, choosing p > d−1
2α + 1 and using (35) and (34), we get the result.

(b): By Lemma(1b), there exists Φγ,i(x) satisfying (27) from which we have

‖A(N, γ)‖ > c9ρ
−(d−1)

2 . (36)

Now, we consider equation (24) for these (N, γ) pairs:

[(ΛN− | γ |2)I − V0]A(N, γ) = S(ΛN , p1)A(N, γ) + O(ρ−pα).

Applying 1
‖A(N,γ)‖ [(ΛN− | γ |2)I−V0]−1 to both sides of the above equation, taking

the norm of both sides, and using (36), we obtain

1 ≤ ‖[(ΛN− | γ |2)I − V0]−1‖‖
p1∑

k=1

Sk‖+ ‖[(ΛN− | γ |2)I − V0]−1‖[O(ρ−(pα− (d−1)
2 )].

By estimation (20), we get

1 ≤ max
i=1,2,...,m

1
|ΛN− | γ |2 −λi| [O(ρ−α1) + O(ρ−(pα− d−1

2 ))].
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Choosing p > d−1
2α + 1, we obtain

min
i=1,2,...,m

|ΛN− | γ |2 −λi| ≤ c10ρ
−α1 ,

where the minimum is taken over all eigenvalues of the matrix V0 from which we
obtain the result.

Now, we define the following m×m matrices:

F0 = 0, F1 = S1(µγ,s), Fj = S(µγ,s + ‖Fj−1‖, j), j ≥ 2, (37)

where µγ,s ≡| γ |2 +λs. Then we have

‖Fj‖ = O(ρ−α1) (38)

for all j = 1, 2, . . . , p − c, c = [d−1
2α ] + 1. Indeed, since F0 = 0, ‖F0‖ = 0 and if

we assume that ‖Fj−1‖ = O(ρ−α1), then since µγ,s + ‖Fj−1‖ ∈ J , by (22), we have
‖Fj‖ = O(ρ−α1).

By (38), we have µγ,s + ‖Fj−1‖+ O(ρ−jα1) ∈ J . Thus substituting
a ≡ µγ,s + ‖Fj−1‖+ O(ρ−jα1) into S(a, p1) in (24), we get

[D(ΛN , γ)− S(µγ,s + ‖Fj−1‖+ O(ρ−jα1), p1)]A(N, γ) = O(ρ−pα). (39)

Adding and subtracting the term FjA(N, γ) = S(µγ,s + ‖Fj−1‖, j)A(N, γ) into the
left-hand side of equation (39), we obtain

[D(ΛN , γ)− Fj ]A(N, γ)− EjA(N, γ) = O(ρ−pα), (40)

where

Ej = [S(µγ,s + ‖Fj−1‖+ O(ρ−jα1), j)− S(µγ,s + ‖Fj−1‖, j)]

+(
p1∑

k=j+1

Sk(µγ,s + ‖Fj−1‖+ O(ρ−jα1))).

By (20), we have

p1∑

k=j+1

Sk(µγ,s + ‖Fj−1‖+ O(ρ−jα1)) = O(ρ−(j+1)α1). (41)

If we prove that

‖S(µγ,s + ‖Fj−1‖+ O(ρ−jα1), j)− S(µγ,s + ‖Fj−1‖, j)‖ = O(ρ−(j+1)α1), (42)

then it follows from (41) and (42) that

‖Ej‖ = O(ρ−(j+1)α1). (43)
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Now, we prove (42). Since µγ,s + ‖Fj−1‖ + O(ρ−jα1) ∈ J and µγ,s + ‖Fj−1‖ ∈ J
satisfy (13), by (14), we have

|µγ,s + ‖Fj−1‖+ O(ρ−jα1)− | γ + γ1 + · · ·+ γt |2 | > 1
2
ρα1 ,

|µγ,s + ‖Fj−1‖− | γ + γ1 + · · ·+ γt |2 | > 1
2
ρα1 , (44)

for all γt ∈ Γ(ρα) and t = 1, 2, . . . , p1. By its definition, S(a, j) ≡
j∑

k=1

Sk(a). Thus

we first calculate the order of the first term of the summation in (42). To do this,
we consider each entry of this term, and use (44) and (7):

|s1
li(µγ,s + ‖Fj−1‖+ O(ρ−jα1))− s1

li(µγ,s + ‖Fj−1‖)|

≤
m∑

i1=1

∑

γ1,γ2∈Γ+0(ρα)
γ1+γ2=0

|vi1lγ1 ||vii1γ2 |O(ρ−jα1)

× 1
|(µγ,s + ‖Fj−1‖+ O(ρ−jα1)− | γ + γ1 |2)||(µγ,s + ‖Fj−1‖− | γ + γ1 |2)|

≤ c11ρ
−(j+2)α1 ,

for each l, i = 1, 2, . . . ,m which implies

‖S1(µγ,s + ‖Fj−1‖+ O(ρ−jα1))− S1(µγ,s + ‖Fj−1‖)‖ = O(ρ−(j+2)α1).

If we consider each entry of the second term of the summation in (42), then again
by (44) and (7) we see

|s2
li(µγ,s + ‖Fj−1‖+ O(ρ−jα1))− s2

li(µγ,s + ‖Fj−1‖)|

≤
m∑

i1,i2=1

∑

γ1,γ2,γ3∈Γ+0(ρα)
γ1+γ2+γ3=0

|vi1lγ1 ||vi2i1γ2 ||vii2γ3 |O(ρ−jα1)

×{ 1
|(a′+O(ρ−jα1)−| γ+γ1 |2)(a′+O(ρ−jα1)−| γ+γ1+γ2 |2)(a′−| γ+γ1+γ2 |2)|

+
1

|(a′+O(ρ−jα1)−| γ + γ1 |2)(a′−| γ + γ1 |2)(a′ + O(ρ−jα1)− | γ + γ1 + γ2 |2)| }

≤ c12ρ
−(j+3)α1 ,

for each l, i = 1, 2, . . . ,m, where we use the notation a′ ≡ µγ,s + ‖Fj−1‖ for the sake
of simplicity, which implies

‖S2(µγ,s + ‖Fj−1‖+ O(ρ−jα1))− S2(µγ,s + ‖Fj−1‖)‖ = O(ρ−(j+3)α1).

Therefore, by direct calculations, it can be easily seen that

‖Sk(µγ,s + ‖Fj−1‖+ O(ρ−jα1))− Sk(µγ,s + ‖Fj−1‖)‖ = O(ρ−(j+k+1)α1)

from which we obtain (42).
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Theorem 2. Let | γ |2 be a non-resonance eigenvalue of the operator L(0) with
| γ |∼ ρ.

(a) For any eigenvalue λi, i = 1, 2, . . . , m of the matrix V0, there exits an eigen-
value ΛN of the operator L(V ) satisfying the following formula:

ΛN = µγ,i + ‖Fk−1‖+ O(ρ−kα1), (45)

where µγ,i = |γ|2 + λi, Fk−1 is given by (37), k = 1, 2, . . . , p− c.
(b) For any eigenvalue ΛN of the operator L(V ) satisfying (13), there is an

eigenvalue λi of the matrix V0 satisfying (45).

Proof. (a): By Lemma(1a), there exist ΛN and ΨN (x) satisfying (13) and (26),
respectively. We prove the theorem by induction. For k = 1, we obtain the result
by Theorem(1a).
Now, assume that for k = j − 1 formula (45) is true, that is,

ΛN = µγ,i + ‖Fj−1‖+ O(ρ−jα1). (46)

Let βi be an eigenvalue of the matrix D(ΛN , γ)−S(µγ,i +‖Fj−1‖+O(ρ−jα1), p1). If
we multiply both sides of equation (39) by its corresponding normalized eigenvector
fi, and use (26), then we obtain

βi = O(ρ−(p−c)α). (47)

On the other hand, the matrix D(ΛN , γ)− S(µγ,i + ‖Fj−1‖+ O(ρ−jα1), p1) in (39)
is decomposed as follows

D(ΛN , γ)− S(µγ,i + ‖Fj−1‖+ O(ρ−jα1), p1) = D(ΛN , γ)− Fj − Ej .

Thus, by (43), (47) and a well known result in matrix theory,

|βi − (ΛN − µγ,i)| ≤ ‖Fj‖+ O(ρ−(j+1)α1),

where 1 ≤ j + 1 ≤ p− c, we get the proof of (45).
(b): Again we prove this part of the theorem by induction. For j = 1, we

obtain the result by Theorem (1b).
Now, assume that for k = j− 1 formula (45) is true. To prove (45) for k = j, we use
equation (40). By using the definition of the matrix D(ΛN , γ) and (40), we have

[(ΛN− | γ |2)I −Dj ]A(N, γ) = EjA(N, γ) + O(ρ−pα),

where Dj = V0 + Fj . Applying
1

‖A(N, γ)‖ [(ΛN− | γ |2)I −Dj ]−1 to both sides of

the above equation, taking the norm of both sides, and using estimations (36) and
(43), we obtain

1 ≤ ‖[(ΛN− | γ |2)I−Dj ]−1‖[O(ρ−(j+1)α1 ] + ‖[(ΛN− | γ |2)I−Dj ]−1‖[O(ρ−(p−c)α)]

≤ max
i=1,2,...,m

1

|ΛN− | γ |2 −λ̃i(j)|
[O(ρ−(j+1)α1)],
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or
min

i=1,2,...,m
| ΛN− | γ |2 −λ̃i(j) |≤ c13ρ

−(j+1)α1 ,

where the minimum is taken over all eigenvalues λ̃i(j) of the matrix Dj , 1 ≤ j +
1 ≤ p − c. By the last inequality and the well known result in matrix theory,
|λ̃i(j)− λi| ≤ ‖Fj‖, we obtain the result.
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