High energy asymptotics for eigenvalues of the Schrödinger operator with a matrix potential

Didem Coṣkan ${ }^{1}$ and Sedef Karakiliç ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Dokuz Eylül University, Tinaztepe
Campus, 35160 Buca, Izmir, Turkey

Received May 13, 2010; accepted February 19, 2011

Abstract

We consider a Schrödinger operator with a matrix potential defined in $L_{2}^{m}(Q)$ by the differential expression $L u=-\Delta u+V u$ and the Neumann boundary condition, where Q is a d-dimensional parallelepiped and V a matrix potential, $d \geq 2, m \geq 2$. We obtain the high energy asymptotics of arbitrary order for a rich set of eigenvalues. AMS subject classifications: 35J10, 35P20 Key words: Schrödinger operator, Neumann condition, perturbation, matrix potential

We consider the Schrödinger operator with a matrix potential $V(x)$ which is defined by the differential expression

$$
\begin{equation*}
L=-\Delta+V \tag{1}
\end{equation*}
$$

and the Neumann boundary condition

$$
\begin{equation*}
\left.\frac{\partial \mathbf{\Phi}}{\partial n}\right|_{\partial Q}=0 \tag{2}
\end{equation*}
$$

in $L_{2}^{m}(Q)$, where $Q=\left[0, a_{1}\right] \times\left[0, a_{2}\right] \times \cdots \times\left[0, a_{d}\right], \partial Q$ is the boundary of $Q, m \geq 2$, $d \geq 2, \Delta$ is a diagonal $m \times m$ matrix, its diagonal elements being the scalar Laplace operators, V is the operator of multiplication by a real valued symmetric matrix $V(x)=\left(v_{i j}(x)\right), i, j=1,2, \ldots, m, v_{i j}(x) \in L_{2}(Q), V^{T}(x)=V(x)$. We denote the operator defined by (1) and (2) by $L(V)$, the eigenvalues and the corresponding eigenfunctions of $L(V)$ by Λ_{N} and Ψ_{N}, respectively.

The eigenvalues of the operator $L(0)$ which is defined by (1) when $V(x)=0$ and the boundary condition (2) are $|\gamma|^{2}$ and the corresponding eigenspaces are

$$
E_{\gamma}=\operatorname{span}\left\{\Phi_{\gamma, 1}(x), \Phi_{\gamma, 2}(x), \ldots, \Phi_{\gamma, m}(x)\right\}
$$

where

$$
\begin{aligned}
\gamma \in \frac{\Gamma^{+0}}{2} & =\left\{\left(\frac{n_{1} \pi}{a_{1}}, \frac{n_{2} \pi}{a_{2}} \cdots, \frac{n_{d} \pi}{a_{d}}\right): \quad n_{k} \in Z^{+} \bigcup\{0\}, \quad k=1,2, \ldots, d\right\} \\
\Phi_{\gamma, j}(x) & =\left(0, \ldots, 0, u_{\gamma}(x), 0, \ldots, 0\right), j=1,2, \ldots, m
\end{aligned}
$$

[^0]$$
u_{\gamma}(x)=\cos \frac{n_{1} \pi}{a_{1}} x_{1} \cos \frac{n_{2} \pi}{a_{2}} x_{2} \cdots \cos \frac{n_{d} \pi}{a_{d}} x_{d}
$$
$u_{0}(x)=1$ when $\gamma=(0,0, \ldots, 0)$. We note that the non-zero component $u_{\gamma}(x)$ of $\Phi_{\gamma, j}(x)$ stands in the j th component.

It can be easily calculated that the norm of $u_{\gamma}(x), \gamma=\left(\gamma^{1}, \gamma^{2}, \ldots, \gamma^{d}\right) \in \frac{\Gamma^{+0}}{2}$ in $L_{2}(Q)$ is $\sqrt{\frac{\mu(Q)}{\left|A_{\gamma}\right|}}$, where $\mu(Q)$ is the measure of the d-dimensional parallelepiped Q, $A_{\gamma}=\left\{\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \in \frac{\Gamma}{2}:\left|\alpha_{k}\right|=\left|\gamma^{k}\right|, k=1,2, \ldots, d\right\}$,
$\frac{\Gamma}{2}=\left\{\left(\frac{n_{1} \pi}{a_{1}}, \frac{n_{2} \pi}{a_{2}}, \cdots, \frac{n_{d} \pi}{a_{d}}\right): n_{k} \in Z, k=1,2, \ldots, d\right\}$ and $\left|A_{\gamma}\right|$ is the number of vectors in A_{γ}.

Since $\left\{u_{\gamma}(x)\right\}_{\gamma \in \frac{\Gamma+0}{2}}$ is a complete system in $L_{2}(Q)$, for any $q(x)$ in $L_{2}(Q)$ we have

$$
\begin{equation*}
q(x)=\sum_{\gamma \in \frac{\Gamma+0}{2}} \frac{\left|A_{\gamma}\right|}{\mu(Q)}\left(q, u_{\gamma}\right) u_{\gamma}(x), \tag{3}
\end{equation*}
$$

where (\cdot, \cdot) is the inner product in $L_{2}(Q)$. Using decomposition (3) and the obvious relations

$$
\begin{aligned}
u_{\gamma}(x) & =u_{\alpha}(x), \quad\left(q(x), u_{\gamma}(x)\right)=\left(q(x), u_{\alpha}(x)\right), \quad \forall \alpha \in A_{\gamma} \\
\frac{\Gamma}{2} & =\bigcup_{\gamma \in \frac{\Gamma+0}{2}} A_{\gamma}, \quad\left(q(x), u_{\gamma}(x)\right)=\frac{1}{\left|A_{\gamma}\right|} \sum_{\alpha \in A_{\gamma}}\left(q(x), u_{\alpha}(x)\right)
\end{aligned}
$$

we have

$$
\begin{aligned}
q(x) & =\sum_{\gamma \in \frac{\Gamma+0}{2}} \frac{\left|A_{\gamma}\right|}{\mu(Q)}\left(q(x), u_{\gamma}(x)\right) u_{\gamma}(x) \\
& =\sum_{\gamma \in \frac{\Gamma^{+0}}{2}} \frac{\left|A_{\gamma}\right|}{\mu(Q)} \frac{1}{\left|A_{\gamma}\right|} \sum_{\alpha \in A_{\gamma}}\left(q(x), u_{\alpha}(x)\right) u_{\alpha}(x) \\
& =\sum_{\gamma \in \frac{\Gamma}{2}} \frac{1}{\mu(Q)}\left(q(x), u_{\gamma}(x)\right) u_{\gamma}(x) .
\end{aligned}
$$

Thus one can write

$$
\begin{equation*}
q(x)=\sum_{\gamma \in \frac{\Gamma}{2}} q_{\gamma} u_{\gamma}(x) \tag{4}
\end{equation*}
$$

where $q_{\gamma}=\frac{1}{\mu(Q)}\left(q(x), u_{\gamma}(x)\right)$. Since decompositions (3) and (4) are equivalent, for the sake of simplicity, we use decomposition (4).

So each matrix element $v_{i j}(x) \in L_{2}(Q)$ of the matrix $V(x)$ can be written in its Fourier series expansion

$$
v_{i j}(x)=\sum_{\gamma \in \frac{\Gamma}{2}} v_{i j \gamma} u_{\gamma}(x)
$$

for $i, j=1,2, \ldots, m$ where $v_{i j \gamma}=\frac{\left(v_{i j}, u_{\gamma}\right)}{\mu(Q)}$.

We assume that the Fourier coefficients $v_{i j \gamma}$ of $v_{i j}(x)$ satisfy

$$
\begin{equation*}
\sum_{\gamma \in \frac{\Gamma}{2}}\left|v_{i j \gamma}\right|^{2}\left(1+|\gamma|^{2 l}\right)<\infty \tag{5}
\end{equation*}
$$

for each $i, j=1,2, \ldots, m$, where $l>\frac{(d+20)(d-1)}{2}+d+3$, which implies

$$
\begin{equation*}
v_{i j}(x)=\sum_{\gamma \in \Gamma^{+0}\left(\rho^{\alpha}\right)} v_{i j \gamma} u_{\gamma}(x)+O\left(\rho^{-p \alpha}\right) \tag{6}
\end{equation*}
$$

where $\Gamma^{+0}\left(\rho^{\alpha}\right)=\left\{\gamma \in \frac{\Gamma}{2}: 0 \leq|\gamma|<\rho^{\alpha}\right\}, p=l-d, \alpha<\frac{1}{d+20}, \rho$ is a large parameter and $O\left(\rho^{-p \alpha}\right)$ is a function in $L_{2}(Q)$ with norm of order $\rho^{-p \alpha}$. Furthermore, a assumption (5) implies

$$
\begin{equation*}
M_{i j} \equiv \sum_{\gamma \in \frac{\Gamma}{2}}\left|v_{i j \gamma}\right|<\infty \tag{7}
\end{equation*}
$$

for all $i, j=1,2, \ldots, m$.
Notice that, if a function $q(x)$ is sufficiently smooth $\left(q(x) \in W_{2}^{l}(Q)\right)$ and the support of $\operatorname{grad} q(x)=\left(\frac{\partial q}{\partial x_{1}}, \frac{\partial q}{\partial x_{2}}, \ldots, \frac{\partial q}{\partial x_{d}}\right)$ is contained in the interior of the domain Q, then $q(x)$ satisfies condition (5) (see [7]). There is also another class of functions $q(x)$, such that $q(x) \in W_{2}^{l}(Q)$,

$$
q(x)=\sum_{\gamma^{\prime} \in \Gamma} q_{\gamma^{\prime}} u_{\gamma^{\prime}}(x)
$$

which is periodic with respect to a lattice $\Omega=\left\{\left(m_{1} a_{1}, m_{2} a_{2}, \ldots, m_{d} a_{d}\right): m_{k} \in Z\right.$, $k=1,2, \ldots, d\}$ and thus it also satisfies condition (5).

In this paper and in [3], we study how the eigenvalues $|\gamma|^{2}$ of the unperturbed operator $L(0)$ are affected under perturbation, by using energy as a large parameter. In [3], we obtain the asymptotic formulas for the eigenvalues of the operator $L(V)$ in an arbitrary dimension. In this paper, we improve the proof of the formulas obtained in [3] so that we additionally obtain the high energy asymptotics of arbitrary order for the eigenvalues of the operator $L(V)$ in an arbitrary dimension. This is one of the essential problems related to this operator $L(V)$ that has been studied for a long time.

For the scalar case, $m=1$, a method was first introduced by O. Veliev in [15], [16] and more recently in [17]-[19] to obtain the asymptotic formulas for the eigenvalues of the periodic Schrödinger operator with quasiperiodic boundary conditions. By some other methods, asymptotic formulas for quasiperiodic boundary conditions in two- and three-dimensional cases are obtained in $[4,5,10,11]$ and [6]. When this operator is considered with the Dirichlet boundary condition in a two-dimensional rectangle, the asymptotic formulas for the eigenvalues are obtained in [7]. The asymptotic formulas for the eigenvalues of the Schrödinger operator with Dirichlet or Neumann boundary conditions in an arbitrary dimension are obtained in [1], [8] and [9]. For the matrix case, asymptotic formulas for eigenvalues of the Schrödinger operator with quasiperiodic boundary conditions are obtained in [12].

As in [15]- [19], we divide R^{d} into two domains: resonance and non-resonance domains. In order to define these domains, let us introduce the following sets:

Let $\alpha<\frac{1}{d+20}, \alpha_{k}=3^{k} \alpha, k=1,2, \ldots, d-1$ and

$$
\begin{aligned}
V_{b}\left(\rho^{\alpha_{1}}\right) & \equiv\left\{x \in R^{d}:\left||x|^{2}-|x+b|^{2}\right|<\rho^{\alpha_{1}}\right\} \\
E_{1}\left(\rho^{\alpha_{1}}, p\right) & \equiv \bigcup_{b \in \Gamma\left(p \rho^{\alpha}\right)} V_{b}\left(\rho^{\alpha_{1}}\right) \\
U\left(\rho^{\alpha_{1}}, p\right) & \equiv R^{d} \backslash E_{1}\left(\rho^{\alpha_{1}}, p\right)
\end{aligned}
$$

where $\Gamma\left(p \rho^{\alpha}\right) \equiv\left\{b \in \frac{\Gamma}{2}: 0<|b|<p \rho^{\alpha}\right\}$. The set $U\left(\rho^{\alpha_{1}}, p\right)$ is said to be a nonresonance domain, and the eigenvalue $|\gamma|^{2}$ is called a non-resonance eigenvalue if $\gamma \in U\left(\rho^{\alpha_{1}}, p\right)$. The domains $V_{b}\left(\rho^{\alpha_{1}}\right)$ for all $b \in \Gamma\left(p \rho^{\alpha}\right)$ are called resonance domains, and the eigenvalue $|\gamma|^{2}$ is a resonance eigenvalue if $\gamma \in V_{b}\left(\rho^{\alpha_{1}}\right)$.

In this paper, we obtain the asymptotic formulas of arbitrary order for nonresonance eigenvalues, which is a rich set of eigenvalues in the following sense: The number of non-resonance eigenvalues is essentially greater than the number of resonance eigenvalues. Namely, if $N_{n}(\rho)$ and $N_{r}(\rho)$ denote the number of $\gamma \in U\left(\rho^{\alpha}, p\right) \bigcap(R(2 \rho) \backslash R(\rho))$ and $\gamma \in \underset{b \in \Gamma\left(p \rho^{\alpha}\right)}{\bigcup} V_{b}\left(\rho^{\alpha}\right) \bigcap(R(2 \rho) \backslash R(\rho))$, respectively, then

$$
\begin{equation*}
\frac{N_{r}(\rho)}{N_{n}(\rho)}=O\left(\rho^{(d+1) \alpha-1}\right)=o(1) \tag{8}
\end{equation*}
$$

for $(d+1) \alpha<1$, where $R_{\rho}=\left\{x \in R^{d}:|x|=\rho\right\}$ (see Remark 1 in [1]).
To prove the asymptotic formulas for the eigenvalues Λ_{N}, we use the binding formula

$$
\begin{equation*}
\left(\Lambda_{N}-|\gamma|^{2}\right)<\Psi_{N}, \Phi_{\gamma, j}>=<\Psi_{N}, V \Phi_{\gamma, j}> \tag{9}
\end{equation*}
$$

for the eigenvalue, eigenfunction pairs $\Lambda_{N}, \Psi_{N}(x)$ and $|\gamma|^{2}, \Phi_{\gamma, j}(x)$ of the operators $L(V)$ and $L(0)$, respectively. Formula (9) can be obtained by multiplying the equation $L(V) \Psi_{N}(x)=\Lambda_{N} \Psi_{N}(x)$ by $\Phi_{\gamma, j}(x)$ and by using the facts that $L(0)$ is self-adjoint and $L(0) \Phi_{\gamma, j}(x)=|\gamma|^{2} \Phi_{\gamma, j}(x)$. Here $<\cdot, \cdot>$ denotes the inner product in $L_{2}^{m}(Q)$.

We consider the eigenvalues $|\gamma|^{2}$ of $L(0)$ such that $|\gamma| \sim \rho$, where $|\gamma| \sim \rho$ means that $|\gamma|$ and ρ are asymptotically equal, that is, $c_{1} \rho \leq|\gamma| \leq c_{2} \rho, c_{i}, i=1,2,3, \ldots$ are positive real constants which do not depend on ρ and ρ is a large parameter, $\rho \gg 1$.

Now, we decompose $V(x) \Phi_{\gamma, j}(x)$ with respect to the basis $\left\{\Phi_{\gamma^{\prime}, i}(x)\right\}_{\gamma \prime \in \frac{\Gamma}{2}, i=1,2, \ldots, m}$. By definition of $\Phi_{\gamma, j}(x)$, it is obvious that

$$
\begin{equation*}
V(x) \Phi_{\gamma, j}(x)=\left(v_{1 j}(x) u_{\gamma}(x), \ldots, v_{m j}(x) u_{\gamma}(x)\right) \tag{10}
\end{equation*}
$$

Substituting decomposition (6) of $v_{i j}(x)$ in (10), we get

$$
\begin{aligned}
V(x) \Phi_{\gamma, j}(x)= & \left(\sum_{\gamma \prime \in \Gamma^{+0}\left(\rho^{\alpha}\right)} v_{1 j \gamma^{\prime}} u_{\gamma^{\prime}}(x) u_{\gamma}(x), \ldots, \sum_{\gamma^{\prime} \in \Gamma^{+0}\left(\rho^{\alpha}\right)} v_{m j \gamma^{\prime}} u_{\gamma^{\prime}}(x) u_{\gamma}(x)\right) \\
& +O\left(\rho^{-p \alpha}\right)
\end{aligned}
$$

Since $\gamma \in U\left(\rho^{\alpha_{1}}, p\right), \gamma$ does not belong to the domains $V_{e_{k}}\left(\rho^{\alpha_{1}}\right)$ where $e_{k}=\left(0, \ldots, 0, \frac{\pi}{a_{k}}, 0, \ldots, 0\right)$ for each $k=1,2, \ldots, d$, we may use the following equation

$$
\sum_{\gamma \prime \in \Gamma^{+0}\left(\rho^{\alpha}\right)} v_{i j \gamma^{\prime}} u_{\gamma^{\prime}}(x) u_{\gamma}(x)=\sum_{\gamma^{\prime} \in \Gamma^{+0}\left(\rho^{\alpha}\right)} v_{i j \gamma^{\prime}} u_{\gamma+\gamma^{\prime}}(x)
$$

which is proved in [8] (see equation (18) in [8]), and obtain

$$
\begin{align*}
V(x) \Phi_{\gamma, j}(x) & =\left(\sum_{\gamma^{\prime} \in \Gamma^{+0}\left(\rho^{\alpha}\right)} v_{1 j \gamma^{\prime}} u_{\gamma+\gamma^{\prime}}(x), \ldots, \sum_{\gamma^{\prime} \in \Gamma^{+0}\left(\rho^{\alpha}\right)} v_{m j \gamma^{\prime}} u_{\gamma+\gamma^{\prime}}(x)\right)+O\left(\rho^{-p \alpha}\right) \\
& =\sum_{i=1}^{m} \sum_{\gamma^{\prime} \in \Gamma^{+0}\left(\rho^{\alpha}\right)} v_{i j \gamma^{\prime}} \Phi_{\gamma+\gamma^{\prime}, i}(x)+O\left(\rho^{-p \alpha}\right) \tag{11}
\end{align*}
$$

Expressions (9) and (11) together imply that

$$
\begin{align*}
<\Psi_{N}, \Phi_{\gamma^{\prime}, j}> & =\frac{\left.<\Psi_{N}, V \Phi_{\gamma^{\prime}, j}\right\rangle}{\left(\Lambda_{N}-\left|\gamma^{\prime}\right|^{2}\right)} \\
& =\sum_{i=1}^{m} \sum_{\gamma_{1} \in \Gamma^{+0}\left(\rho^{\alpha}\right)} v_{i j \gamma_{1}} \frac{<\Psi_{N}, \Phi_{\gamma^{\prime}+\gamma_{1}, i}>}{\left(\Lambda_{N}-\left|\gamma^{\prime}\right|^{2}\right)}+O\left(\rho^{-p \alpha}\right) \tag{12}
\end{align*}
$$

for every vector $\gamma^{\prime} \in \frac{\Gamma}{2}$, satisfying the condition

$$
\left|\Lambda_{N}-|\gamma \prime|^{2}\right|>\frac{1}{2} \rho^{\alpha_{1}}
$$

If $\gamma \in U\left(\rho^{\alpha_{1}}, p\right)$ and Λ_{N} satisfies

$$
\begin{equation*}
\left|\Lambda_{N}-|\gamma|^{2}\right|<\frac{1}{2} \rho^{\alpha_{1}} \tag{13}
\end{equation*}
$$

which is called the iterability condition, then

$$
\begin{equation*}
\left|\Lambda_{N}-|\gamma+b|^{2}\right| \geq\left|\left|\Lambda_{N}-|\gamma|^{2}\right|-\left\|\gamma+\left.b\right|^{2}-|\gamma|^{2}\right\|>\frac{1}{2} \rho^{\alpha_{1}}\right. \tag{14}
\end{equation*}
$$

for all $b \in \Gamma^{+0}\left(p \rho^{\alpha}\right)$ with $b \neq 0$.
Let $\gamma \in U\left(\rho^{\alpha_{1}}, p\right)$ with $|\gamma| \sim \rho$. Now, we start the iteration by substituting (11) into the binding formula (9) and obtain

$$
\left(\Lambda_{N}-|\gamma|^{2}\right)<\Psi_{N}, \Phi_{\gamma, j}>=\sum_{i_{1}=1}^{m} \sum_{\gamma_{1} \in \Gamma^{+0}\left(\rho^{\alpha}\right)} v_{i_{1} j \gamma_{1}}<\Psi_{N}, \Phi_{\gamma+\gamma_{1}, i_{1}}>+O\left(\rho^{-p \alpha}\right)
$$

Isolating the terms with the coefficient $\left\langle\Psi_{N}, \Phi_{\gamma, i}\right\rangle$, that is, $\gamma_{1}=0$, for each $i=1,2, \ldots, m$, we get

$$
\begin{aligned}
\left(\Lambda_{N}-|\gamma|^{2}\right)<\Psi_{N}, \Phi_{\gamma, j}>= & \sum_{i=1}^{m} v_{i j 0}<\Psi_{N}, \Phi_{\gamma, i}> \\
& +\sum_{i_{1}=1}^{m} \sum_{\gamma_{1} \in \Gamma^{+0}\left(\rho^{\alpha}\right)} v_{i_{1} j \gamma_{1}}<\Psi_{N}, \Phi_{\gamma+\gamma_{1}, i_{1}}>+O\left(\rho^{-p \alpha}\right) .
\end{aligned}
$$

In the second summation of the above equation, if Λ_{N} satisfies (13), then since $\gamma \in U\left(\rho^{\alpha_{1}}, p\right)$ and $\gamma_{1} \in \Gamma^{+0}\left(\rho^{\alpha}\right)$ with $\gamma_{1} \neq 0$, by (14), we can use (12) replacing γ^{\prime} by $\gamma+\gamma_{1}$ and obtain

$$
\begin{aligned}
\left(\Lambda_{N}-|\gamma|^{2}\right)<\Psi_{N}, \Phi_{\gamma, j}>= & \sum_{i=1}^{m} v_{i j 0}<\Psi_{N}, \Phi_{\gamma, i}> \\
& +\sum_{i_{1}, i_{2}=1}^{m} \sum_{\gamma_{1}, \gamma_{2} \in \Gamma^{+0}\left(\rho^{\alpha}\right)} v_{i_{1} j \gamma_{1}} v_{i_{2} i_{1} \gamma_{2}} \frac{<\Psi_{N}, \Phi_{\gamma+\gamma_{1}+\gamma_{2}, i_{2}}>}{\left(\Lambda_{N}-\left|\gamma+\gamma_{1}\right|^{2}\right)} \\
& +O\left(\rho^{-p \alpha}\right) .
\end{aligned}
$$

Again, in the second summation of the above equation, isolating the terms with the coefficient $<\Psi_{N}, \Phi_{\gamma, i}>$, that is, $\gamma_{1}+\gamma_{2}=0, \gamma_{1} \neq 0$ for each $i=1,2, \ldots, m$, we get

$$
\begin{align*}
& \left(\Lambda_{N}-|\gamma|^{2}\right)<\Psi_{N}, \Phi_{\gamma, j}> \tag{15}\\
& \quad=\sum_{i=1}^{m} v_{i j 0}<\Psi_{N}, \Phi_{\gamma, i}>+\sum_{i_{1}, i=1}^{m} \sum_{\substack{\gamma_{1}, \gamma_{2} \in \Gamma^{+0}\left(\rho^{\alpha}\right) \\
\gamma_{1}+\gamma_{2}=0}} \frac{v_{i_{1} j \gamma_{1}} v_{i i_{1} \gamma_{2}}}{\left(\Lambda_{N}-\left|\gamma+\gamma_{1}\right|^{2}\right)}<\Psi_{N}, \Phi_{\gamma, i}> \\
& \quad+\sum_{i_{1}, i_{2}=15}^{m} \sum_{\gamma_{1}, \gamma_{2} \in \Gamma^{+0}\left(\rho^{\alpha}\right)} \frac{v_{i_{1} j \gamma_{1}} v_{i_{2} i_{1} \gamma_{2}}^{\left(\Lambda_{N}-\left|\gamma+\gamma_{1}\right|^{2}\right)}<\Psi_{N}, \Phi_{\gamma+\gamma_{1}+\gamma_{2}, i_{2}}>+O\left(\rho^{-p \alpha}\right) .}{} .16 \tag{16}
\end{align*}
$$

Writing this equation for $j=1,2, \ldots, m$ and $i=1,2, \ldots, m$, after the first step of the iteration we obtain the following system:

$$
\left[\left(\Lambda_{N}-|\gamma|^{2}\right) I-V_{0}\right] A(N, \gamma)=S^{1} A(N, \gamma)+R^{1}+O\left(\rho^{-p \alpha}\right)
$$

where I is an $m \times m$ identity matrix, $V_{0}=\int_{Q} V(x) d x$, which is again an $m \times m$ matrix, $A(N, \gamma)$ is the $m \times 1$ vector

$$
A(N, \gamma)=\left(<\Psi_{N}, \Phi_{\gamma, 1}>,<\Psi_{N}, \Phi_{\gamma, 2}>, \ldots,<\Psi_{N}, \Phi_{\gamma, m}>\right)
$$

$S^{1}=\left(s_{j i}^{1}\right)$ is an $m \times m$ matrix whose entries are

$$
s_{j i}^{1}=\sum_{i_{1}=1}^{m} \sum_{\substack{\gamma_{1}, \gamma_{2} \in \Gamma^{+0}\left(\rho_{1} \alpha\right) \\ \gamma_{1}+\gamma_{2}=0}} \frac{v_{i_{1} j \gamma_{1}} v_{i i_{1} \gamma_{2}}}{\left(\Lambda_{N}-\left|\gamma+\gamma_{1}\right|^{2}\right)}, \quad j, i=1,2, \ldots, m,
$$

and $R^{1}=\left(r_{j}^{1}\right)$ is the vector whose components are $r_{j}^{1}=\sum_{i_{1}, i_{2}=1}^{m} \sum_{\gamma_{1}, \gamma_{2} \in \Gamma^{+0}\left(\rho^{\alpha}\right)} \frac{v_{i_{1} j \gamma_{1}} v_{i_{2} i_{1} \gamma_{2}}}{\left(\Lambda_{N}-\left|\gamma+\gamma_{1}\right|^{2}\right)}<\Psi_{N}, \Phi_{\gamma+\gamma_{1}+\gamma_{2}, i_{2}}>, \quad j=1,2, \ldots, m$.

Now, we continue to iterate equation (15). In the third summation of equation (15), if Λ_{N} satisfies (13), then since $\gamma \in U\left(\rho^{\alpha_{1}}, p\right)$ and $\gamma_{1}+\gamma_{2} \in \Gamma^{+0}\left(2 \rho^{\alpha}\right)$ with
$\gamma_{1}+\gamma_{2} \neq 0$, by (14) we can use (12) replacing γ^{\prime}, for this time, by $\gamma+\gamma_{1}+\gamma_{2}$ and obtain

$$
\begin{aligned}
& \left(\Lambda_{N}-|\gamma|^{2}\right)<\Psi_{N}, \Phi_{\gamma, j}> \\
& =\sum_{i=1}^{m} v_{i j 0}<\Psi_{N}, \Phi_{\gamma, i}>+\sum_{i_{1}, i=1}^{m} \sum_{\substack{\gamma_{1}, \gamma_{2} \in \Gamma^{+0}\left(\rho^{\alpha}\right) \\
\gamma_{1}+\gamma_{2}=0}} \frac{v_{i_{1} j \gamma_{1}} v_{i i_{1} \gamma_{2}}}{\left(\Lambda_{N}-\left|\gamma+\gamma_{1}\right|^{2}\right)}<\Psi_{N}, \Phi_{\gamma, i}> \\
& +\sum_{\substack{i_{1}, i_{2}, i_{3}=1 \gamma_{3} \in \Gamma^{\prime}+\gamma_{(}\left(\rho^{\alpha}\right)}}^{m} \sum_{\substack{\gamma_{1}, \gamma_{2},\left(\Lambda_{N}-\left|\gamma+\gamma_{1}\right|^{2}\right)\left(\Lambda_{N}-\left|\gamma+\gamma_{1}+\gamma_{2}\right|^{2}\right)} \Psi_{N}, \Phi_{\gamma+\gamma_{1}+\gamma_{2}+\gamma_{3}, i_{3}} \ggg{ }_{i_{1} j \gamma_{1}} v_{i_{2} i_{1} \gamma_{2}} v_{i_{3} i_{2} \gamma_{3}}} \\
& +O\left(\rho^{-p \alpha}\right) \text {. }
\end{aligned}
$$

Isolating the terms with the coefficient $<\Psi_{N}, \Phi_{\gamma, i}>$ for each $i=1,2, \ldots, m$, we get

$$
\begin{aligned}
& \left(\Lambda_{N}-|\gamma|^{2}\right)<\Psi_{N}, \Phi_{\gamma, j}> \\
& =\sum_{i=1}^{m} v_{i j 0}<\Psi_{N}, \Phi_{\gamma, i}>+\sum_{i_{1}, i=1}^{m} \sum_{\substack{\gamma_{1}, \gamma_{2} \in \Gamma^{+0}\left(\rho^{\alpha}\right) \\
\gamma_{1}+\gamma_{2}=0}} \frac{v_{i_{1} j \gamma_{1}} v_{i i_{1} \gamma_{2}}}{\left(\Lambda_{N}-\left|\gamma+\gamma_{1}\right|^{2}\right)}<\Psi_{N}, \Phi_{\gamma, i}> \\
& +\sum_{\substack{i_{1}, i_{2}, i=1 \\
\gamma_{1}, \gamma_{2}, \gamma_{2} \in \Gamma^{+0}\left(\rho_{\alpha} \alpha\right) \\
\gamma_{1}+\gamma_{2}+\gamma_{3}=0}}^{m} \frac{v_{i_{1} j \gamma_{1}} v_{i_{2} i_{1} \gamma_{2}} v_{i i_{2} \gamma_{3}}}{\left(\Lambda_{N}-\left|\gamma+\gamma_{1}\right|^{2}\right)\left(\Lambda_{N}-\left|\gamma+\gamma_{1}+\gamma_{2}\right|^{2}\right)}<\Psi_{N}, \Phi_{\gamma, i}> \\
& +\sum_{\substack{i_{1}, i_{2}, i_{3}=1}}^{m} \sum_{\substack{\gamma_{1}, \gamma_{2},\left(\\
\gamma_{3} \in \Gamma+0\left(\rho^{\alpha}\right)\right.}} \frac{v_{i_{1} j \gamma_{1}} v_{i_{2} i_{1} \gamma_{2}} v_{i_{3} i_{2} \gamma_{3}}}{\left(\Lambda_{N}-\left|\gamma+\gamma_{1}\right|^{2}\right)\left(\Lambda_{N}-\left|\gamma+\gamma_{1}+\gamma_{2}\right|^{2}\right)}<\Psi_{N}, \Phi_{\gamma+\gamma_{1}+\gamma_{2}+\gamma_{3}, i_{3}}> \\
& +O\left(\rho^{-p \alpha}\right) .
\end{aligned}
$$

Again, if we write this equation for $j=1,2, \ldots, m$ and $i=1,2, \ldots, m$, after the second step of the iteration we obtain the following system:

$$
\left[\left(\Lambda_{N}-|\gamma|^{2}\right) I-V_{0}\right] A(N, \gamma)=\left(S^{1}+S^{2}\right) A(N, \gamma)+R^{2}+O\left(\rho^{-p \alpha}\right)
$$

where this time $S^{2}=\left(s_{j i}^{2}\right)$ is an $m \times m$ matrix whose entries are

$$
s_{j i}^{2}=\sum_{\substack{i_{1}, i_{2}=1}}^{m} \sum_{\substack{\gamma_{1}, \gamma_{2}, \gamma_{3} \in++0(\rho \alpha) \\ \gamma_{1}+\gamma_{2}+\gamma_{3}=0}} \frac{v_{i_{1} j \gamma_{1}} v_{i_{2} i_{1} \gamma_{2}} v_{i i_{2} \gamma_{3}}}{\left(\Lambda_{N}-\left|\gamma+\gamma_{1}\right|^{2}\right)\left(\Lambda_{N}-\left|\gamma+\gamma_{1}+\gamma_{2}\right|^{2}\right)},
$$

$j, i=1,2, \ldots, m$ and $R^{2}=\left(r_{j}^{2}\right)$ is an $m \times 1$ vector whose components are
$r_{j}^{2}=\sum_{\substack{i_{1}, i_{2}, i_{3}=1}}^{m} \sum_{\substack{\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Gamma^{+}+\left(\rho^{\alpha}\right)}} \frac{v_{i_{1} j \gamma_{1}} v_{i_{2} i_{1} \gamma_{2}} v_{i_{3} i_{2} \gamma_{3}}}{\left(\Lambda_{N}-\left|\gamma+\gamma_{1}\right|^{2}\right)\left(\Lambda_{N}-\left|\gamma+\gamma_{1}+\gamma_{2}\right|^{2}\right)}<\Psi_{N}, \Phi_{\gamma+\gamma_{1}+\gamma_{2}+\gamma_{3}, i_{3}}>$, $j=1,2, \ldots, m$.

If we continue to iterate in this manner after the p_{1} st step where $p_{1}=\left[\frac{p+1}{2}\right]$ and [.] is the integer function, we obtain the following system:

$$
\begin{equation*}
\left[\left(\Lambda_{N}-|\gamma|^{2}\right) I-V_{0}\right] A(N, \gamma)=\left(\sum_{k=1}^{p_{1}} S^{k}\right) A(N, \gamma)+R^{p_{1}}+O\left(\rho^{-p \alpha}\right) \tag{17}
\end{equation*}
$$

where

$$
\begin{aligned}
& S^{k}\left(\Lambda_{N}\right)=\left(s_{j i}^{k}\left(\Lambda_{N}\right)\right), \quad k=1,2, \ldots, p_{1}, \quad j, i=1,2, \ldots, m,
\end{aligned}
$$

$$
\begin{aligned}
& R^{p_{1}}=\left(r_{j}^{p_{1}}\right), \quad j=1,2, \ldots, m,
\end{aligned}
$$

and

$$
r_{j}^{p_{1}}=\sum_{\substack{i_{1}, i_{2}, \ldots, 1 \\ i_{p_{1}+1}=1}}^{m} \sum_{\substack{\gamma_{p_{1}+1, \gamma_{2}, \ldots \prime \prime} \in \Gamma^{\prime}+0 \\\left(\rho^{\alpha}\right)}} \frac{v_{i_{1} j \gamma_{1}} \ldots v_{i_{p_{1}+1} i_{p_{1}} \gamma_{p_{1}+1}}<\Psi_{N}, \Phi_{\gamma+\gamma_{1}+\cdots+\gamma_{p_{1}+1}, i_{p_{1}+1}}>}{\left(\Lambda_{N}-\left|\gamma+\gamma_{1}\right|^{2}\right) \ldots\left(\Lambda_{N}-\left|\gamma+\gamma_{1}+\cdots+\gamma_{p_{1}}\right|^{2}\right)} . \text { (19) }
$$

If Λ_{N} satisfies (13), then since $\gamma \in U\left(\rho^{\alpha_{1}}, p\right)$ and $\gamma_{1}+\gamma_{2}+\cdots+\gamma_{k} \in \Gamma^{+0}\left(k \rho^{\alpha}\right)$ with $\gamma_{1}+\gamma_{2}+\cdots+\gamma_{k} \neq 0$, by (14) and (7),

$$
\begin{aligned}
& \left|s_{j i}^{k}\left(\Lambda_{N}\right)\right| \\
& \quad \leq \sum_{i_{1}, i_{2}, \ldots, i_{k}=1}^{m} \sum_{\substack{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k+1} \in \Gamma^{+0}\left(\rho^{\alpha}\right) \\
\gamma_{2}+\gamma_{2}+\ldots+\gamma_{k+1}=0}}^{m} \frac{\left|v_{i_{1} j \gamma_{1} \mid}\right|\left|v_{i_{2} i_{1} \gamma_{2}}\right|\left|v_{i_{3} i_{2} \gamma_{3}}\right| \ldots\left|v_{i i_{k} \gamma_{k+1}}\right|}{\left|\left(\Lambda_{N}-\left|\gamma+\gamma_{1}\right|^{2}\right)\right| \ldots\left|\left(\Lambda_{N}-\left|\gamma+\gamma_{1}+\cdots+\gamma_{k}\right|^{2}\right)\right|} \\
& \quad \leq \frac{1}{\left(2 \rho^{\alpha_{1}}\right)^{k}} \sum_{i_{1}, i_{2}, \ldots, i_{k}=1}^{m} M_{i_{1} j} M_{i_{2} i_{1}} \ldots M_{i i_{k}},
\end{aligned}
$$

for each $k=1,2, \ldots, p_{1}, i, j=1,2, \ldots, m$. Thus

$$
\begin{equation*}
S^{k}\left(\Lambda_{N}\right)=O\left(\rho^{-k \alpha_{1}}\right), \quad \forall k=1,2, \ldots, p_{1} \quad \Rightarrow \quad \sum_{k=1}^{p_{1}} S^{k}=O\left(\rho^{-\alpha_{1}}\right) \tag{20}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
\left|r_{j}^{p_{1}}\right| & \leq \sum_{\substack{i_{1}, i_{2}, \ldots, i_{p_{1}+1}=1}}^{m} \sum_{\substack{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p_{1}+1} \in \Gamma^{+}\left(\rho_{\alpha}\right)}} \frac{\left|v_{i_{1} j \gamma_{1}}\right| \ldots\left|v_{i_{p_{1}+1} i_{p_{1}} \gamma_{p_{1}+1}}\right|<\Psi_{N}, \Phi_{\gamma+\gamma_{1}+\cdots+\gamma_{p_{1}+1}, i_{p_{1}+1}}>\mid}{\left|\left(\Lambda_{N}-\left|\gamma+\gamma_{1}\right|^{2}\right)\right| \ldots\left|\left(\Lambda_{N}-\left|\gamma+\gamma_{1}+\cdots+\gamma_{p_{1}}\right|^{2}\right)\right|} \\
& \leq \frac{1}{\left(2 \rho^{\alpha_{1}}\right)^{p_{1}}} \sum_{i_{1}, i_{2}, \ldots, i_{p_{1}+1}=1} M_{i_{1} j} M_{i_{2} i_{1} \ldots M_{i_{p_{1}+1} i_{p_{1}}}},
\end{aligned}
$$

that is,

$$
\begin{equation*}
R^{p_{1}}=O\left(\rho^{-p_{1} \alpha_{1}}\right) . \tag{21}
\end{equation*}
$$

Note that, in order to obtain (20), we have only used the assumption that Λ_{N} satisfies (13), that is, $\Lambda_{N} \in J$ where $J=\left[|\gamma|^{2}-\frac{1}{2} \rho^{\alpha_{1}},|\gamma|^{2}+\frac{1}{2} \rho^{\alpha_{1}}\right]$. Hence we may write

$$
\begin{equation*}
\sum_{k=1}^{p_{1}} S^{k}(a)=O\left(\rho^{-\alpha_{1}}\right), \quad \forall a \in J \tag{22}
\end{equation*}
$$

Similarly, (17) holds for $\Lambda_{N} \in J$.
Note that, since we have chosen $p_{1}=\left[\frac{p+1}{2}\right]$, we have the obvious inequalities

$$
\begin{equation*}
p_{1} \geq \frac{p}{2}, \quad p_{1} \alpha_{1}>p \alpha, \quad p>\frac{(d+20)(d-1)}{2} \tag{23}
\end{equation*}
$$

by definitions of α, α_{1}, l and p.
For any Λ_{N} and $a \in J$, using (21) and inequalities (23) in (17), we have

$$
\begin{equation*}
\left[D\left(\Lambda_{N}, \gamma\right)-S\left(a, p_{1}\right)\right] A(N, \gamma)=O\left(\rho^{-p \alpha}\right) \tag{24}
\end{equation*}
$$

where $D\left(\Lambda_{N}, \gamma\right) \equiv\left(\Lambda_{N}-|\gamma|^{2}\right) I-V_{0}, S\left(a, p_{1}\right) \equiv \sum_{k=1}^{p_{1}} S^{k}(a)$. We note that since V is symmetric, V_{0} and $S\left(a, p_{1}\right)$ are symmetric real valued matrices, hence $D\left(\Lambda_{N}, \gamma\right)-S\left(a, p_{1}\right)$ is a symmetric real valued matrix.

We denote the eigenvalues of V_{0}, counted with multiplicity, and the corresponding orthonormal eigenvectors by $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{m}$ and $\omega_{1}, \omega_{2}, \ldots, \omega_{m}$, respectively. Thus

$$
V_{0} \omega_{i}=\lambda_{i} \omega_{i}, \quad \omega_{i} \cdot \omega_{j}=\delta_{i j}
$$

where "." denotes the inner product in R^{m}.
We let $\beta_{i} \equiv \beta_{i}\left(\Lambda_{N}, \gamma, a\right)$ denote an eigenvalue of the matrix $D\left(\Lambda_{N}, \gamma\right)-S\left(a, p_{1}\right)$ and $f_{i} \equiv f_{i}\left(\Lambda_{N}, \gamma, a\right)$ its corresponding normalized eigenvector. That is,

$$
\begin{equation*}
\left[D\left(\Lambda_{N}, \gamma\right)-S\left(a, p_{1}\right)\right] f_{i}=\beta_{i} f_{i} \tag{25}
\end{equation*}
$$

where $f_{i} \cdot f_{j}=\delta_{i j}, i, j=1,2, \ldots, m$.
Lemma 1. Let $|\gamma|^{2}$ be a non-resonance eigenvalue of the operator $L(0)$ with $|\gamma| \sim \rho$.
(a) Let β_{i} be an eigenvalue of the matrix $D\left(\Lambda_{N}, \gamma\right)-S\left(a, p_{1}\right)$ and $f_{i}=\left(f_{i_{1}}, \ldots, f_{i_{m}}\right)$ its corresponding normalized eigenvector. Then there exists an integer $N \equiv N_{i}$ such that Λ_{N} satisfies (13) and

$$
\begin{equation*}
\left|A(N, \gamma) \cdot f_{i}\right|>c_{3} \rho \frac{-(d-1)}{2} \tag{26}
\end{equation*}
$$

(b) Let Λ_{N} be an eigenvalue of the operator $L(V)$ satisfying inequality (13). Then there exists an eigenfunction $\Phi_{\gamma, i}(x)$ of the operator $L(0)$ such that

$$
\begin{equation*}
\left|<\Phi_{\gamma, i}, \Psi_{N}>\right|>c_{4} \rho^{\frac{-(d-1)}{2}} \tag{27}
\end{equation*}
$$

holds.
Proof. (a): We use a result from perturbation theory which states that the N th eigenvalue of the operator $L(V)$ lies in the M-neighborhood of the N th eigenvalue of the operator $L(0)$. Let the N th eigenvalues of $L(V)$ and $L(0)$ be Λ_{N} and $|\gamma|^{2}$, respectively. Then there is an integer N such that $\left|\Lambda_{N}-|\gamma|^{2}\right|<\frac{1}{2} \rho^{\alpha_{1}}$.

On the other hand, since $L(V)$ is a self adjoint operator, the eigenfunctions $\left\{\Psi_{N}(x)\right\}_{N=1}^{\infty}$ of $L(V)$ form an orthonormal basis for $L_{2}^{m}(Q)$. By Parseval's relation, we have

$$
\begin{align*}
\left\|\sum_{j=1}^{m} f_{i j} \Phi_{\gamma, j}\right\|^{2}= & \sum_{N:\left|\Lambda_{N}-|\gamma|^{2}\right|<\frac{1}{2} \rho^{\alpha_{1}}}\left|<\sum_{j=1}^{m} f_{i j} \Phi_{\gamma, j}, \Psi_{N}>\right|^{2} \\
& +\sum_{N:\left|\Lambda_{N}-|\gamma|^{2}\right| \geq \frac{1}{2} \rho^{\alpha_{1}}}\left|<\sum_{j=1}^{m} f_{i j} \Phi_{\gamma, j}, \Psi_{N}>\right|^{2} \tag{28}
\end{align*}
$$

Now, we estimate the last expression in (28). By using the Cauchy-Schwarz inequality and (9), we get

$$
\begin{aligned}
& \sum_{N:\left|\Lambda_{N}-|\gamma|^{2}\right| \geq \frac{1}{2} \rho^{\alpha_{1}}}\left|<\sum_{j=1}^{m} f_{i j} \Phi_{\gamma, j}, \Psi_{N}>\right|^{2} \\
&= \sum_{N:\left|\Lambda_{N}-|\gamma|^{2}\right| \geq \frac{1}{2} \rho^{\alpha_{1}}}\left|\sum_{j=1}^{m} f_{i j}<\Phi_{\gamma, j}, \Psi_{N}>\right|^{2} \\
& \leq \sum_{N:\left|\Lambda_{N}-|\gamma|^{2}\right| \geq \frac{1}{2} \rho^{\alpha_{1}}}\left[\sum_{j=1}^{m}\left|f_{i j}\right|^{2} \sum_{j=1}^{m}\left|<\Psi_{N}, \Phi_{\gamma, j}>\right|^{2}\right] \\
& \sum_{N:\left|\Lambda_{N}-|\gamma|^{2}\right| \geq \frac{1}{2} \rho^{\alpha_{1}}} \sum_{j=1}^{m} \frac{\left|<\Psi_{N}, V \Phi_{\gamma, j}>\right|^{2}}{\left|\Lambda_{N}-|\gamma|^{2}\right|^{2}} \\
& \leq\left(\frac{1}{2} \rho^{\alpha_{1}}\right)^{-2} \sum_{N:\left|\Lambda_{N}-|\gamma|^{2}\right| \geq \frac{1}{2} \rho^{\alpha_{1}}} \sum_{j=1}^{m}\left|<\Psi_{N}, V \Phi_{\gamma, j}>\right|^{2} \\
& \leq\left(\frac{1}{2} \rho^{\alpha_{1}}\right)^{-2} \sum_{j=1}^{m}\left\|V \Phi_{\gamma, j}\right\|^{2}
\end{aligned}
$$

from which together with (7) we obtain

$$
\sum_{N:\left|\Lambda_{N}-|\gamma|^{2}\right| \geq \frac{1}{2} \rho^{\alpha_{1}}}\left|<\sum_{j=1}^{m} f_{i j} \Phi_{\gamma, j}, \Psi_{N}>\right|^{2}=O\left(\rho^{-2 \alpha_{1}}\right)
$$

It follows from the last equation and (28) that

$$
\begin{align*}
\sum_{N:\left|\Lambda_{N}-|\gamma|^{2}\right|<\frac{1}{2} \rho^{\alpha_{1}}}\left|<\sum_{j=1}^{m} f_{i j} \Phi_{\gamma, j}, \Psi_{N}>\right|^{2} & =\sum_{\substack{N:\left|\Lambda_{N}-|\gamma|^{2}\right|<\frac{1}{2} \rho^{\alpha_{1}}}}\left|A(N, \gamma) \cdot f_{i}\right|^{2} \\
& =1-O\left(\rho^{-2 \alpha_{1}}\right) . \tag{29}
\end{align*}
$$

On the other hand, if $a \sim \rho$, then the number of $\gamma \in \frac{\Gamma}{2}$ satisfying $\|\left.\gamma\right|^{2}-a^{2} \mid<1$ is less than $c_{5} \rho^{d-1}$. Therefore, the number of eigenvalues of $L(0)$ lying in $\left(a^{2}-1, a^{2}+1\right)$ is less than $c_{6} \rho^{d-1}$. By this result and the result of perturbation theory, the number
of eigenvalues Λ_{N} of $L(V)$ in the interval $\left[|\gamma|^{2}-\frac{1}{2} \rho^{\alpha_{1}},|\gamma|^{2}+\frac{1}{2} \rho^{\alpha_{1}}\right]$ is less than $c_{7} \rho^{d-1}$. Thus

$$
\begin{equation*}
1-O\left(\rho^{-2 \alpha_{1}}\right)=\sum_{N:\left|\Lambda_{N}-|\gamma|^{2}\right|<\frac{1}{2} \rho^{\alpha_{1}}}\left|A(N, \gamma) \cdot f_{i}\right|^{2}<c_{7} \rho^{d-1}\left|A(N, \gamma) \cdot f_{i}\right|^{2} \tag{30}
\end{equation*}
$$

from which we get (26).
(b): Since $L(0)$ is a self adjoint operator, the set of eigenfunctions

$$
\left\{\Phi_{\gamma, i}(x)\right\}_{\gamma \in \frac{\Gamma}{2}, i=1,2, \ldots, m}
$$

of $L(0)$ forms an orthonormal basis for $L_{2}^{m}(Q)$. By Parseval's relation, we have

$$
\begin{align*}
\left\|\Psi_{N}\right\|^{2}= & \sum_{\gamma:\left|\Lambda_{N}-|\gamma|^{2}\right|<\frac{1}{2} \rho^{\alpha_{1}}} \sum_{i=1}^{m}\left|<\Psi_{N}, \Phi_{\gamma, i}>\right|^{2} \\
& +\sum_{\gamma:\left|\Lambda_{N}-|\gamma|^{2}\right| \geq \frac{1}{2} \rho^{\alpha_{1}}} \sum_{i=1}^{m}\left|<\Psi_{N}, \Phi_{\gamma, i}>\right|^{2} . \tag{31}
\end{align*}
$$

We estimate the last expression in (31). Hence for a fixed $i=1,2, \ldots, m$, using (9) together with (7) we get

$$
\begin{align*}
& \sum_{\gamma:\left|\Lambda_{N}-|\gamma|^{2}\right| \geq \frac{1}{2} \rho^{\alpha_{1}}} \sum_{i=1}^{m}\left|<\Psi_{N}, \Phi_{\gamma, i}>\right|^{2} \\
= & \sum_{\gamma:\left|\Lambda_{N}-|\gamma|^{2}\right| \geq \frac{1}{2} \rho^{\alpha_{1}}} \sum_{i=1}^{m} \frac{\left|<\Psi_{N}, V \Phi_{\gamma, i}>\right|^{2}}{\left|\Lambda_{N}-|\gamma|^{2}\right|^{2}} \\
\leq & \leq\left(\frac{1}{2} \rho^{\alpha_{1}}\right)^{-2} \sum_{\gamma:\left|\Lambda_{N}-|\gamma|^{2}\right| \geq \frac{1}{2} \rho^{\alpha_{1}}} \sum_{i=1}^{m}\left|<V \Psi_{N}, \Phi_{\gamma, i}>\right|^{2} \\
\leq & \left(\frac{1}{2} \rho^{\alpha_{1}}\right)^{-2}\left\|V \Psi_{N}\right\|^{2} \tag{32}
\end{align*}
$$

that is,

$$
\sum_{\gamma:\left|\Lambda_{N}-|\gamma|^{2}\right| \geq \frac{1}{2} \rho^{\alpha_{1}}} \sum_{i=1}^{m}\left|<\Psi_{N}, \Phi_{\gamma, i}>\right|^{2}=O\left(\rho^{-2 \alpha_{1}}\right)
$$

From the last equality and (31) we obtain

$$
\sum_{\gamma:\left|\Lambda_{N}-|\gamma|^{2}\right|<\frac{1}{2} \rho^{\alpha_{1}}} \sum_{i=1}^{m}\left|<\Psi_{N}, \Phi_{\gamma, i}>\right|^{2}=1-O\left(\rho^{-2 \alpha_{1}}\right)
$$

Arguing as in the proof of part(a) we get

$$
1-O\left(\rho^{-2 \alpha_{1}}\right)=\sum_{\gamma:\left|\Lambda_{N}-|\gamma|^{2}\right|<\frac{1}{2} \rho^{\alpha_{1}}} \sum_{i=1}^{m}\left|<\Psi_{N}, \Phi_{\gamma, i}>\left.\right|^{2} \leq c_{8} \rho^{d-1}\right|<\Psi_{N}, \Phi_{\gamma, i}>\left.\right|^{2}
$$

from which (27) follows.

Theorem 1. Let $|\gamma|^{2}$ be a non-resonance eigenvalue of the operator $L(0)$ with $|\gamma| \sim \rho$.
(a) For each eigenvalue λ_{i} of the matrix V_{0}, there exists an eigenvalue Λ_{N} of the operator $L(V)$ satisfying

$$
\begin{equation*}
\Lambda_{N}=|\gamma|^{2}+\lambda_{i}+O\left(\rho^{-\alpha_{1}}\right) \tag{33}
\end{equation*}
$$

(b) For each eigenvalue Λ_{N} of the operator $L(V)$ satisfying (13), there exists an eigenvalue λ_{i} of the matrix V_{0} satisfying (33).

Proof. (a): By Lemma(1a), there exists an eigenvalue Λ_{N} of the operator $L(V)$ satisfying (13), that is, $\Lambda_{N} \in J$ and (26) hold. Thus we consider equation (24) for $a=\Lambda_{N}$, that is,

$$
\left[D\left(\Lambda_{N}, \gamma\right)-S\left(\Lambda_{N}, p_{1}\right)\right] A(N, \gamma)=O\left(\rho^{-p \alpha}\right)
$$

Let β_{i} be an eigenvalue of the matrix $D\left(\Lambda_{N}, \gamma\right)-S\left(\Lambda_{N}, p_{1}\right)$ and f_{i} its corresponding normalized eigenvector. Multiplying both sides of the above equation by f_{i}, we obtain

$$
\beta_{i}\left[A(N, \gamma) \cdot f_{i}\right]=O\left(\rho^{-p \alpha}\right) .
$$

Using inequality (26) in the above equation, we get

$$
\begin{equation*}
\beta_{i}=O\left(\rho^{-\left(p-\frac{d-1}{2 \alpha}\right) \alpha}\right) \tag{34}
\end{equation*}
$$

Since $D\left(\Lambda_{N}, \gamma\right)$ and $S\left(\Lambda_{N}, p_{1}\right)$ are symmetric real valued matrices, by a well known result in matrix theory (see $[13]),\left|\beta_{i}-\left(\Lambda_{N}-|\gamma|^{2}-\lambda_{i}\right)\right| \leq\left\|S\left(\Lambda_{N}, p_{1}\right)\right\|$, which together with (22) implies that

$$
\begin{equation*}
\beta_{i}=\Lambda_{N}-|\gamma|^{2}-\lambda_{i}+O\left(\rho^{-\alpha_{1}}\right) \tag{35}
\end{equation*}
$$

Hence, choosing $p>\frac{d-1}{2 \alpha}+1$ and using (35) and (34), we get the result.
(b): By Lemma(1b), there exists $\Phi_{\gamma, i}(x)$ satisfying (27) from which we have

$$
\begin{equation*}
\|A(N, \gamma)\|>c_{9} \rho^{\frac{-(d-1)}{2}} \tag{36}
\end{equation*}
$$

Now, we consider equation (24) for these (N, γ) pairs:

$$
\left[\left(\Lambda_{N}-|\gamma|^{2}\right) I-V_{0}\right] A(N, \gamma)=S\left(\Lambda_{N}, p_{1}\right) A(N, \gamma)+O\left(\rho^{-p \alpha}\right)
$$

Applying $\frac{1}{\|A(N, \gamma)\|}\left[\left(\Lambda_{N}-|\gamma|^{2}\right) I-V_{0}\right]^{-1}$ to both sides of the above equation, taking the norm of both sides, and using (36), we obtain
$1 \leq\left\|\left[\left(\Lambda_{N}-|\gamma|^{2}\right) I-V_{0}\right]^{-1}\right\|\left\|\sum_{k=1}^{p_{1}} S^{k}\right\|+\left\|\left[\left(\Lambda_{N}-|\gamma|^{2}\right) I-V_{0}\right]^{-1}\right\|\left[O\left(\rho^{-\left(p \alpha-\frac{(d-1)}{2}\right)}\right]\right.$.
By estimation (20), we get

$$
1 \leq \max _{i=1,2, \ldots, m} \frac{1}{\left|\Lambda_{N}-|\gamma|^{2}-\lambda_{i}\right|}\left[O\left(\rho^{-\alpha_{1}}\right)+O\left(\rho^{-\left(p \alpha-\frac{d-1}{2}\right)}\right)\right]
$$

Choosing $p>\frac{d-1}{2 \alpha}+1$, we obtain

$$
\min _{i=1,2, \ldots, m}\left|\Lambda_{N}-|\gamma|^{2}-\lambda_{i}\right| \leq c_{10} \rho^{-\alpha_{1}}
$$

where the minimum is taken over all eigenvalues of the matrix V_{0} from which we obtain the result.

Now, we define the following $m \times m$ matrices:

$$
\begin{equation*}
F_{0}=0, \quad F_{1}=S^{1}\left(\mu_{\gamma, s}\right), \quad F_{j}=S\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|, j\right), \quad j \geq 2 \tag{37}
\end{equation*}
$$

where $\mu_{\gamma, s} \equiv|\gamma|^{2}+\lambda_{s}$. Then we have

$$
\begin{equation*}
\left\|F_{j}\right\|=O\left(\rho^{-\alpha_{1}}\right) \tag{38}
\end{equation*}
$$

for all $j=1,2, \ldots, p-c, c=\left[\frac{d-1}{2 \alpha}\right]+1$. Indeed, since $F_{0}=0,\left\|F_{0}\right\|=0$ and if we assume that $\left\|F_{j-1}\right\|=O\left(\rho^{-\alpha_{1}}\right)$, then since $\mu_{\gamma, s}+\left\|F_{j-1}\right\| \in J$, by (22), we have $\left\|F_{j}\right\|=O\left(\rho^{-\alpha_{1}}\right)$.

By (38), we have $\mu_{\gamma, s}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right) \in J$. Thus substituting $a \equiv \mu_{\gamma, s}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right)$ into $S\left(a, p_{1}\right)$ in (24), we get

$$
\begin{equation*}
\left[D\left(\Lambda_{N}, \gamma\right)-S\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right), p_{1}\right)\right] A(N, \gamma)=O\left(\rho^{-p \alpha}\right) \tag{39}
\end{equation*}
$$

Adding and subtracting the term $F_{j} A(N, \gamma)=S\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|, j\right) A(N, \gamma)$ into the left-hand side of equation (39), we obtain

$$
\begin{equation*}
\left[D\left(\Lambda_{N}, \gamma\right)-F_{j}\right] A(N, \gamma)-E_{j} A(N, \gamma)=O\left(\rho^{-p \alpha}\right) \tag{40}
\end{equation*}
$$

where

$$
\begin{aligned}
E_{j}= & {\left[S\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right), j\right)-S\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|, j\right)\right] } \\
& +\left(\sum_{k=j+1}^{p_{1}} S^{k}\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right)\right)\right)
\end{aligned}
$$

By (20), we have

$$
\begin{equation*}
\sum_{k=j+1}^{p_{1}} S^{k}\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right)\right)=O\left(\rho^{-(j+1) \alpha_{1}}\right) \tag{41}
\end{equation*}
$$

If we prove that

$$
\begin{equation*}
\left\|S\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right), j\right)-S\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|, j\right)\right\|=O\left(\rho^{-(j+1) \alpha_{1}}\right) \tag{42}
\end{equation*}
$$

then it follows from (41) and (42) that

$$
\begin{equation*}
\left\|E_{j}\right\|=O\left(\rho^{-(j+1) \alpha_{1}}\right) \tag{43}
\end{equation*}
$$

Now, we prove (42). Since $\mu_{\gamma, s}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right) \in J$ and $\mu_{\gamma, s}+\left\|F_{j-1}\right\| \in J$ satisfy (13), by (14), we have

$$
\begin{align*}
\left|\mu_{\gamma, s}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right)-\left|\gamma+\gamma_{1}+\cdots+\gamma_{t}\right|^{2}\right| & >\frac{1}{2} \rho^{\alpha_{1}} \\
\left|\mu_{\gamma, s}+\left\|F_{j-1}\right\|-\left|\gamma+\gamma_{1}+\cdots+\gamma_{t}\right|^{2}\right| & >\frac{1}{2} \rho^{\alpha_{1}} \tag{44}
\end{align*}
$$

for all $\gamma_{t} \in \Gamma\left(\rho^{\alpha}\right)$ and $t=1,2, \ldots, p_{1}$. By its definition, $S(a, j) \equiv \sum_{k=1}^{j} S^{k}(a)$. Thus we first calculate the order of the first term of the summation in (42). To do this, we consider each entry of this term, and use (44) and (7):

$$
\begin{aligned}
& \left|s_{l i}^{1}\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right)\right)-s_{l i}^{1}\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|\right)\right| \\
& \quad \leq \sum_{i_{1}=1}^{m} \sum_{\substack{\gamma_{1}, \gamma_{2} \in \Gamma^{+0}\left(\rho^{\alpha}\right) \\
\gamma_{1}+\gamma_{2}=0}}\left|v_{i_{1} l \gamma_{1}}\right|\left|v_{i i_{1} \gamma_{2}}\right| O\left(\rho^{-j \alpha_{1}}\right) \\
& \quad \times \frac{1}{\left|\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right)-\left|\gamma+\gamma_{1}\right|^{2}\right)\right|\left|\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|-\left|\gamma+\gamma_{1}\right|^{2}\right)\right|} \\
& \quad \leq c_{11} \rho^{-(j+2) \alpha_{1}},
\end{aligned}
$$

for each $l, i=1,2, \ldots, m$ which implies

$$
\left\|S^{1}\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right)\right)-S^{1}\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|\right)\right\|=O\left(\rho^{-(j+2) \alpha_{1}}\right)
$$

If we consider each entry of the second term of the summation in (42), then again by (44) and (7) we see

$$
\begin{aligned}
& \left|s_{l i}^{2}\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right)\right)-s_{l i}^{2}\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|\right)\right| \\
& \quad \leq \sum_{i_{1}, i_{2}=1}^{m} \sum_{\substack{\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Gamma^{+0}\left(\rho_{1}^{\alpha \alpha}\right) \\
\gamma_{1}+\gamma_{2}+\gamma_{3}=0}}\left|v_{i_{1} l \gamma_{1}}\right|\left|v_{i_{2} i_{1} \gamma_{2}}\right|\left|v_{i i_{2} \gamma_{3}}\right| O\left(\rho^{-j \alpha_{1}}\right) \\
& \quad \times\left\{\frac{1}{\left|\left(a^{\prime}+O\left(\rho^{-j \alpha_{1}}\right)-\left|\gamma+\gamma_{1}\right|^{2}\right)\left(a^{\prime}+O\left(\rho^{-j \alpha_{1}}\right)-\left|\gamma+\gamma_{1}+\gamma_{2}\right|^{2}\right)\left(a^{\prime}-\left|\gamma+\gamma_{1}+\gamma_{2}\right|^{2}\right)\right|}\right. \\
& \left.\quad+\frac{1}{\left|\left(a^{\prime}+O\left(\rho^{-j \alpha_{1}}\right)-\left|\gamma+\gamma_{1}\right|^{2}\right)\left(a^{\prime}-\left|\gamma+\gamma_{1}\right|^{2}\right)\left(a^{\prime}+O\left(\rho^{-j \alpha_{1}}\right)-\left|\gamma+\gamma_{1}+\gamma_{2}\right|^{2}\right)\right|}\right\} \\
& \quad \leq c_{12} \rho^{-(j+3) \alpha_{1}},
\end{aligned}
$$

for each $l, i=1,2, \ldots, m$, where we use the notation $a^{\prime} \equiv \mu_{\gamma, s}+\left\|F_{j-1}\right\|$ for the sake of simplicity, which implies

$$
\left\|S^{2}\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right)\right)-S^{2}\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|\right)\right\|=O\left(\rho^{-(j+3) \alpha_{1}}\right)
$$

Therefore, by direct calculations, it can be easily seen that

$$
\left\|S^{k}\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right)\right)-S^{k}\left(\mu_{\gamma, s}+\left\|F_{j-1}\right\|\right)\right\|=O\left(\rho^{-(j+k+1) \alpha_{1}}\right)
$$

from which we obtain (42).

Theorem 2. Let $|\gamma|^{2}$ be a non-resonance eigenvalue of the operator $L(0)$ with $|\gamma| \sim \rho$.
(a) For any eigenvalue $\lambda_{i}, i=1,2, \ldots, m$ of the matrix V_{0}, there exits an eigenvalue Λ_{N} of the operator $L(V)$ satisfying the following formula:

$$
\begin{equation*}
\Lambda_{N}=\mu_{\gamma, i}+\left\|F_{k-1}\right\|+O\left(\rho^{-k \alpha_{1}}\right) \tag{45}
\end{equation*}
$$

where $\mu_{\gamma, i}=|\gamma|^{2}+\lambda_{i}, F_{k-1}$ is given by (37), $k=1,2, \ldots, p-c$.
(b) For any eigenvalue Λ_{N} of the operator $L(V)$ satisfying (13), there is an eigenvalue λ_{i} of the matrix V_{0} satisfying (45).

Proof. (a): By Lemma(1a), there exist Λ_{N} and $\Psi_{N}(x)$ satisfying (13) and (26), respectively. We prove the theorem by induction. For $k=1$, we obtain the result by Theorem(1a).
Now, assume that for $k=j-1$ formula (45) is true, that is,

$$
\begin{equation*}
\Lambda_{N}=\mu_{\gamma, i}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right) \tag{46}
\end{equation*}
$$

Let β_{i} be an eigenvalue of the matrix $D\left(\Lambda_{N}, \gamma\right)-S\left(\mu_{\gamma, i}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right), p_{1}\right)$. If we multiply both sides of equation (39) by its corresponding normalized eigenvector f_{i}, and use (26), then we obtain

$$
\begin{equation*}
\beta_{i}=O\left(\rho^{-(p-c) \alpha}\right) \tag{47}
\end{equation*}
$$

On the other hand, the matrix $D\left(\Lambda_{N}, \gamma\right)-S\left(\mu_{\gamma, i}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right), p_{1}\right)$ in (39) is decomposed as follows

$$
D\left(\Lambda_{N}, \gamma\right)-S\left(\mu_{\gamma, i}+\left\|F_{j-1}\right\|+O\left(\rho^{-j \alpha_{1}}\right), p_{1}\right)=D\left(\Lambda_{N}, \gamma\right)-F_{j}-E_{j}
$$

Thus, by (43), (47) and a well known result in matrix theory,

$$
\left|\beta_{i}-\left(\Lambda_{N}-\mu_{\gamma, i}\right)\right| \leq\left\|F_{j}\right\|+O\left(\rho^{-(j+1) \alpha_{1}}\right)
$$

where $1 \leq j+1 \leq p-c$, we get the proof of (45).
(b): Again we prove this part of the theorem by induction. For $j=1$, we obtain the result by Theorem (1b).
Now, assume that for $k=j-1$ formula (45) is true. To prove (45) for $k=j$, we use equation (40). By using the definition of the matrix $D\left(\Lambda_{N}, \gamma\right)$ and (40), we have

$$
\left[\left(\Lambda_{N}-|\gamma|^{2}\right) I-D_{j}\right] A(N, \gamma)=E_{j} A(N, \gamma)+O\left(\rho^{-p \alpha}\right)
$$

where $D_{j}=V_{0}+F_{j}$. Applying $\frac{1}{\|A(N, \gamma)\|}\left[\left(\Lambda_{N}-|\gamma|^{2}\right) I-D_{j}\right]^{-1}$ to both sides of the above equation, taking the norm of both sides, and using estimations (36) and (43), we obtain

$$
\begin{aligned}
1 & \leq\left\|\left[\left(\Lambda_{N}-|\gamma|^{2}\right) I-D_{j}\right]^{-1}\right\|\left[O\left(\rho^{-(j+1) \alpha_{1}}\right]+\left\|\left[\left(\Lambda_{N}-|\gamma|^{2}\right) I-D_{j}\right]^{-1}\right\|\left[O\left(\rho^{-(p-c) \alpha}\right)\right]\right. \\
& \leq \max _{i=1,2, \ldots, m} \frac{1}{\left|\Lambda_{N}-|\gamma|^{2}-\widetilde{\lambda}_{i}(j)\right|}\left[O\left(\rho^{-(j+1) \alpha_{1}}\right)\right]
\end{aligned}
$$

or

$$
\min _{i=1,2, \ldots, m}\left|\Lambda_{N}-|\gamma|^{2}-\widetilde{\lambda}_{i}(j)\right| \leq c_{13} \rho^{-(j+1) \alpha_{1}}
$$

where the minimum is taken over all eigenvalues $\widetilde{\lambda}_{i}(j)$ of the matrix $D_{j}, 1 \leq j+$ $1_{\tilde{\sim}} \leq p-c$. By the last inequality and the well known result in matrix theory, $\left|\widetilde{\lambda}_{i}(j)-\lambda_{i}\right| \leq\left\|F_{j}\right\|$, we obtain the result.

Acknowledgement

The authors are very grateful to Prof. O. A. Veliev for his valuable discussions. Also they would like to thank the referees for their helpful suggestions.

References

[1] Ṣ. Atilgan, S. Karakiliç, O. A. Veliev, Asymptotic Formulas for the Eigenvalues of the Schrödinger Operator, Turkish J. Math. 26(2002), 215-227.
[2] F. A. Berezin, M. A. Shubin, The Schrödinger Equation, Kluwer Academic Publishers, Dordrecht, 1991.
[3] D. Coṣkan, S. Karakiliç, On the Spectral Properties of the Schrödinger Operator with a Matrix Potential, Adv. Stud. Contemp. Math. 19(2009), 249-259.
[4] J. Feldman, H. Knoerrer, E. Trubowitz, The Perturbatively Stable Spectrum of the Periodic Schrödinger Operator. Invent. Math. 100(1990), 259-300.
[5] J. Feldman, H. Knoerrer, E. Trubowitz, The Perturbatively Unstable Spectrum of the Periodic Schrödinger Operator, Comment. Math. Helv. 66(1991), 557-579.
[6] L. T. Friedlanger, On the Spectrum for the Periodic Problem for the Schrödinger Operator, Comm. Partial Differential Equations 15(1990), 1631-1647.
[7] O. H. Hald, J. R. McLaughlin, Inverse Nodal Problems: Finding the Potential from Nodal Lines, Mem. Amer. Math. Soc. 119(1996), 1-148.
[8] S. Karakiliç, Ş. Atilgan, O. A. Veliev, Asymptotic Formulas for the Eigenvalues of the Schrödinger Operator with Dirichlet and Neumann Boundary Conditions, Rep. Math. Phys. 55(2005), 221-239.
[9] S. Karakiliç, O. A. Veliev, Ş. Atilgan, Asymptotic Formulas for the Resonance Eigenvalues of the Schrödinger Operator, Turkish J. Math. 29(2005), 323-347.
[10] Y. Karpeshina, Perturbation Theory for the Schrödinger Operator with a Non-smooth Periodic Potential, Math. USSR-Sb 71(1992), 701-723.
[11] Y. Karpeshina, Perturbation Series for the Schrödinger Operator with a Periodic Potential near Planes of Diffraction, Comm. Anal. Geom. 4(1996), 339-413.
[12] Y. Karpeshina, On the Spectral Properties of Periodic Polyharmonic Matrix Operators, Indian Acad. Sci. (Math. Sci.) 112(2002), 117-130.
[13] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1980.
[14] M. Reed, B. Simon, Methods of Modern Mathematical Physics vol. IV, Academic Press, New York, 1978.
[15] O. A. Veliev, Asimptotic Formulas for the Eigenvalues of the Periodic Schrödinger Operator and the Bethe-Sommerfeld Conjecture, Funktsional Anal. i Prilozhen 21(1987), 1-15.
[16] O. A. Veliev, The Spectrum of Multidimensional Periodic Operators, Funktsional Anal. i Prilozhen 49(1988), 17-34.
[17] O. A. Veliev, Asymptotic Formulae for the Bloch Eigenvalues Near Planes of Diffraction, Rep. Math. Phys. 58(2006), 445-464.
[18] O. A. Veliev, Perturbation Theory for the Periodic Multidimensional Schrödinger Operator and the Bethe-Sommerfeld Conjecture, Int. J. Contemp. Math. Sci. 2(2007), 19-87.
[19] O. A. Veliev, On the Constructive Determination of Spectral Invariants of the Periodic Schrödinger Operator with Smooth Potentials, J. Phys. A 41(2008).

[^0]: *Corresponding author. Email addresses: didem.coskan@deu.edu.tr (D. Coṣkan), sedef.erim@deu.edu.tr (S. Karakiliç)
 http://www.mathos.hr/mc

