Pullback diagram of Hilbert C*-modules

MARYAM AMYARI^{1,*}AND MAHNAZ CHAKOSHI¹

¹ Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad 91735, Iran

Received May 24, 2010; accepted February 9, 2011

Abstract. In this paper, we generalize the construction of a pullback diagram in the framework of Hilbert C^* -modules and investigate some conditions under which a diagram of Hilbert C^* -modules is pullback.

AMS subject classifications: 46L08, 46L05, 46C50

Key words: C^* -algebra, Hilbert C^* -module, morphism, linking algebra, pullback diagram

1. Introduction

G. K. Pedersen [8] introduced the notion of a pullback diagram in the category of C^* algebras and investigated some properties of these diagrams. The pullback diagrams are stable under tensoring with a fixed algebra and stable under crossed products with a fixed group. The relations between the theory of extensions of Hilbert C^* modules and pullback diagrams of Hilbert C^* -modules were investigated in [3]. In this paper, we generalize the construction of a pullback diagram in the framework of Hilbert C^* -modules and investigate some conditions under which a diagram of Hilbert C^* -modules is pullback.

A pre-Hilbert module over a C^* -algebra \mathcal{A} is a complex linear space X which is an algebraic right \mathcal{A} -module, $\lambda(xa) = (\lambda x)a = x(\lambda a)$ and equipped with an \mathcal{A} -valued inner product $\langle ., . \rangle : X \times X \to \mathcal{A}$ satisfying the following properties:

- (i) $\langle x, x \rangle \ge 0$, and $\langle x, x \rangle = 0$ if and only if x = 0;
- (ii) $\langle x, y + \lambda z \rangle = \langle x, y \rangle + \lambda \langle x, z \rangle;$
- (iii) $\langle x, ya \rangle = \langle x, y \rangle a;$
- (iv) $\langle y, x \rangle = \langle x, y \rangle^*$; for all $x, y, z \in X$, $\lambda \in \mathbb{C}$, $a \in \mathcal{A}$.

A pre-Hilbert \mathcal{A} -module X is called a (right) Hilbert \mathcal{A} -module if it is complete with respect to the norm $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$, where the latter norm denotes that of C^* -algebra \mathcal{A} . Left Hilbert \mathcal{A} -modules are defined in a similar way.

It is a full Hilbert \mathcal{A} -module if the ideal $I = span\{\langle x, y \rangle : x, y \in X\}$ is dense in \mathcal{A} . For example, every C^* -algebra \mathcal{A} is a Hilbert \mathcal{A} -module with respect to the inner

http://www.mathos.hr/mc

©2011 Department of Mathematics, University of Osijek

^{*}Corresponding author. *Email addresses:* amyari@mshdiau.ac.ir (M. Amyari), m-chakoshi@mshdiau.ac.ir (M. Chakoshi)

product $\langle x, y \rangle = x^*y$. If X and Y are Hilbert \mathcal{A} -modules, the mapping $T: X \to Y$ is called adjointable if there exists a mapping $T^*: Y \to X$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$. The set of all adjointable mappings from X to Y is denoted by $\mathcal{B}(X,Y)$. For $x \in X$ and $y \in Y$ we also define the operator $\theta_{y,x}: X \to Y$ by $\theta_{y,x}(z) = y \langle x, z \rangle$ for all $z \in X$. In fact, $\theta_{y,x} \in \mathcal{B}(X,Y)$ with $(\theta_{y,x})^* = \theta_{x,y}$, and $\mathcal{B}(X)$ is a C^* -algebra with respect to the operator norm. The closure of the span of $\{\theta_{y,x}: x, y \in X\}$ in $\mathcal{B}(X)$ is denoted by K(X), and elements of this set will be called "compact" operators. The basic theory of Hilbert C^* -modules can be found in [4, 5, 10]. Throughout the paper X and Y denote Hilbert C^* -modules over C^* -algebras \mathcal{A} and \mathcal{B} , respectively. We study some conditions under which the diagram of Hilbert C^* -modules are pullback. We follow the terminology and notation of [1, 2, 3].

Definition 1. Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a morphism of C^* -algebras. A mapping $\Phi : X \to Y$ is said to be a φ -morphism of Hilbert C^* -modules if $\langle \Phi(x), \Phi(y) \rangle = \varphi(\langle x, y \rangle)$ for all x, y in X.

Using polarization identity, one can conclude that Φ is a φ -morphism if and only if $\langle \Phi(x), \Phi(x) \rangle = \varphi(\langle x, x \rangle)$ for each $x \in X$. It is easy to see that each φ morphism is necessarily a linear operator and a module mapping in the sense that $\Phi(xa) = \Phi(x)\varphi(a)$ for all $x \in X, a \in \mathcal{A}$.

Theorem 1 (see [1, Corollary 2.13]). Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a surjective morphism of C^* -algebras and let $\Phi : X \to Y$ be a surjective φ -morphism. Then there exists a morphism of C^* -algebras $\Phi^+ : B(X) \to B(Y)$ satisfying $\Phi^+(\theta_{x,y}) = \theta_{\Phi(x),\Phi(y)}$ for $x, y \in X$ and $\Phi^+(K(X)) = K(Y)$.

If X is a right Hilbert \mathcal{A} -module, then X is a left Hilbert K(X)-module with respect to the natural left action T.x = T(x) and the inner product $[x, y] = \theta_{x,y}$, (see [9, Lemma 2.30]). By Theorem 1, $[\Phi(x), \Phi(y)] = \theta_{\Phi(x), \Phi(y)} = \Phi^+(\theta_{x,y}) = \Phi^+([x, y])$.

It is well known that $B(\mathcal{A}, X)$ is a Hilbert $B(\mathcal{A})$ -module under the $B(\mathcal{A})$ -valued inner product $\langle r_1, r_2 \rangle = r_1^* r_2$ such that the resulting norm coincides with the operator norm on $B(\mathcal{A}, X)$. Each $x \in X$ induces the mappings $r_x \in B(\mathcal{A}, X)$ and $l_x \in B(X, \mathcal{A})$ given by $r_x(a) = xa$ and $l_x(y) = \langle x, y \rangle$ such that $l_x^* = r_x$. The mapping $x \to l_x$ is an isometric conjugate linear isomorphism of X into $K(X, \mathcal{A})$ and $x \to r_x$ is an isometric linear isomorphism of X to $K(\mathcal{A}, X)$. Furthermore, every $a \in \mathcal{A}$ induces the mapping $T_a \in K(\mathcal{A})$ given by $T_a(b) = ab$ and the mapping $a \to T_a$ is an isomorphism of the C^* -algebra \mathcal{A} into $K(\mathcal{A})$.

The linking algebra $\mathcal{L}(X)$ may be formally defined as the matrix algebra of the form

$$\mathcal{L}(X) = \begin{bmatrix} K(\mathcal{A}) & K(X,\mathcal{A}) \\ K(\mathcal{A},X) & K(X) \end{bmatrix} = \left\{ \begin{bmatrix} T_a & l_x \\ r_y & T \end{bmatrix} : a \in \mathcal{A}, x, y \in X, T \in K(X) \right\}.$$

See [9, Lemma 2.32 and Corollary 3.21]. Observe that $\mathcal{L}(X)$ is the C^* -algebra of all compact operators acting on $\mathcal{A} \oplus X$. We aim to describe morphisms of Hilbert C^* -modules in terms of the corresponding linking algebras. If X and Y are full, then every surjective φ -morphism $\Phi : X \to Y$ induces a morphism of the linking algebras $\rho_{\varphi,\Phi} : \mathcal{L}(X) \to \mathcal{L}(Y)$ given by

Pullback diagram of Hilbert C^* -modules

$$\rho_{\varphi,\Phi}\left(\begin{bmatrix}T_a \ l_y\\r_x \ T\end{bmatrix}\right) = \begin{bmatrix}T_{\varphi(a)} \ l_{\Phi(y)}\\r_{\Phi(x)} \ \Phi^+(T)\end{bmatrix}.$$

Conversely, if $\rho : \mathcal{L}(X) \to \mathcal{L}(Y)$ is a morphism of linking algebras such that $\rho(K(\mathcal{A})) \subseteq K(\mathcal{B})$ and $\rho(K(X)) \subseteq K(Y)$, then there exist a morphism of C^* -algebras $\varphi : \mathcal{A} \to \mathcal{B}$ and a φ -morphism $\Phi : X \to Y$ such that $\rho = \rho_{\varphi, \Phi}$, cf. [1, Theorem 2.15].

Using the fact that $\theta_{\Phi_2(x_2),\Phi_1(x_1)}\Phi_1 = \Phi_2\theta_{x_2,x_1}$ and by [3, Theorem 3.15] it is easy to prove the following theorem.

Theorem 2. Let X_1, X_2 be full Hilbert \mathcal{A} -modules and Y_1, Y_2 full Hilbert \mathcal{B} -modules. Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a morphism of C^* -algebras and let $\Phi_1 : X_1 \to Y_1, \Phi_2 : X_2 \to Y_2$ be surjective φ -morphisms of Hilbert C^* -modules. Then the following diagram commutes.

$$\begin{array}{ccc} X_1 & \stackrel{\Phi_1}{\longrightarrow} & Y_1 \\ & & \downarrow^{\theta_{x_2,x_1}} & \downarrow^{\theta_{\Phi_2(x_2),\Phi_1(x_1)}} \\ X_2 & \stackrel{\Phi_2}{\longrightarrow} & Y_2 \end{array}$$

2. Pullback constructions in Hilbert C*-modules

In this section we want to show under what condition the diagram of Hilbert C^* -modules in Theorem 2 is pullback.

Lemma 1 (see [3, Lemma 2.1]). Let $\Psi_2 : Y_1 \to Y_2$ and $\Phi_2 : X_2 \to Y_2$ be morphisms of Hilbert C^{*}-modules. Let $\varphi_1 : \mathcal{A} \to \mathcal{C}$ and $\varphi_2 : \mathcal{B} \to \mathcal{C}$ denote the corresponding morphisms of underlying C^{*}-algebras. Denote by $X_2 \oplus_{Y_2} Y_1$ the set $\{(x_2, y_1) \in X_2 \oplus Y_1 : \Phi_2(x_2) = \Psi_2(y_1)\}$. Then $X_2 \oplus_{Y_2} Y_1$ is a Hilbert C^{*}-module (with operations inherited from a Hilbert $\mathcal{A} \oplus \mathcal{B}$ -module $X_2 \oplus Y_1$) over the restricted direct sum $\mathcal{A} \oplus_{\mathcal{C}} \mathcal{B}$.

Definition 2. A commutative diagram of Hilbert C^* -modules

$$\begin{array}{ccc} X_1 & \stackrel{\Phi_1}{\longrightarrow} & Y_1 \\ & & \downarrow^{\Psi_1} & & \downarrow^{\Psi_2} \\ X_2 & \stackrel{\Phi_2}{\longrightarrow} & Y_2 \end{array}$$

is pullback if $Ker\Phi_1 \bigcap Ker\Psi_1 = \{0\}$ and for every other pair of morphisms $\mu_1 : X \to Y_1$ and $\mu_2 : X \to X_2$ from a full Hilbert C^* -module X that satisfy condition $\Psi_2\mu_1 = \Phi_2\mu_2$, there exists a unique morphism $\mu : X \to X_1$ such that $\mu_1 = \Phi_1\mu$ and $\mu_2 = \Psi_1\mu$.

It follows that X_1 is isomorphic to $X_2 \oplus_{Y_2} Y_1$.

Theorem 3. A commutative diagram of full Hilbert C^* -modules X_1 and X_2 and arbitrary Hilbert C^* -modules Y_1 and Y_2 , in which the corresponding map φ_1 to Φ_1 is surjective,

$$\begin{array}{cccc} X_1 & \stackrel{\Phi_1}{\longrightarrow} & Y_1 \\ & \downarrow \Psi_1 & & \downarrow \Psi_2 \\ & X_2 & \stackrel{\Phi_2}{\longrightarrow} & Y_2 \end{array}$$

is pullback if and only if the following conditions hold:

- (i) $Ker\Phi_1 \cap Ker\Psi_1 = \{0\},\$
- (*ii*) $\Psi_2^{-1}(\Phi_2(X_2)) = \Phi_1(X_1),$
- (*iii*) $\Psi_1(Ker\Phi_1) = Ker\Phi_2$.

Proof. Suppose the diagram above is a pullback. Then there exists a unique isomorphism $\Phi: X_1 \to X_2 \oplus_{Y_2} Y_1$ defined by $\Phi(x_1) = (\Psi_1(x_1), \Phi_1(x_1))$.

Conditions (i) and (ii) are clearly satisfied. To prove (iii) let $x_2 \in \Psi_1(Ker\Phi_1)$. Then there is $x_1 \in Ker\Phi_1$ such that $x_2 = \Psi_1(x_1)$. But $\Phi_2(x_2) = \Phi_2(\Psi_1(x_1)) = \Psi_2(\Phi_1(x_1)) = 0$, thus $x_2 \in Ker\Phi_2$. Conversely, let $x_2 \in Ker\Phi_2$, and consider $(x_2, 0)$ in $X_2 \oplus_{Y_2} Y_1$. Since Φ is surjective, then there exists $x_1 \in X_1$ such that $\Phi(x_1) = (x_2, 0)$, i.e. $\Psi_1(x_1) = x_2$ and $\Phi_1(x_1) = 0$. Thus $x_2 \in \Psi_1(Ker\Phi_1)$.

Conversely, suppose that the three conditions above are satisfied and X_1, X_2 are full Hilbert C^* -modules over \mathcal{A}_1 and \mathcal{A}_2 and Y_1, Y_2 be Hilbert C^* -modules over \mathcal{B}_1 and \mathcal{B}_2 , respectively. Consider the corresponding diagram of underlying C^* algebras. Clearly Ψ_1, Ψ_2 are ψ_1, ψ_2 -morphisms and Φ_1, Φ_2 are φ_1, φ_2 -morphisms of their corresponding Hilbert C^* -modules.

$$\begin{array}{ccc} \mathcal{A}_1 & \stackrel{\varphi_1}{\longrightarrow} & \mathcal{B}_1 \\ & \downarrow^{\psi_1} & \downarrow^{\psi_2} \\ \mathcal{A}_2 & \stackrel{\varphi_2}{\longrightarrow} & \mathcal{B}_2 \end{array}$$

We shall show that the above three conditions hold for the diagram of underlying C^* -algebras. The diagram of C^* -algebras is commutative, since the diagram of their Hilbert modules is commutative.

(I) Let $a_1 \in Ker\varphi_1 \cap Ker\psi_1$. Then $\varphi_1(a_1) = 0$ and $\psi_1(a_1) = 0$. Let $x_1 \in X_1$ be arbitrary. Then $x_1a_1 \in X_1$, and $\langle \Phi_1(x_1a_1), \Phi_1(x_1a_1) \rangle = \varphi_1(\langle x_1a_1, x_1a_1 \rangle) = \varphi_1(a_1^*\langle x_1, x_1 \rangle a_1) = \varphi_1(a_1^*)\varphi_1(\langle x_1, x_1 \rangle)\varphi_1(a_1) = 0$. Hence $\|\langle \Phi_1(x_1a_1), \Phi_1(x_1a_1) \rangle\| = \|\Phi_1(x_1a_1)\|^2 = 0$. Thus $x_1a_1 \in Ker\Phi_1$. Similarly, $x_1a_1 \in Ker\Psi_1$. Hence $x_1a_1 = 0$ for all $x_1 \in X_1$. By [6, Theorem 2.1] we have $a_1 = 0$.

(II) By condition (ii), we have $\Psi_2(\Phi_1(X_1)) \subseteq \Phi_2(X_2)$. Since X_1 and X_2 are full, then $\varphi_2(\mathcal{A}_2) = \varphi_2(\langle X_2, X_2 \rangle) = \langle \Phi_2(X_2), \Phi_2(X_2) \rangle \supseteq \langle \Psi_2(\Phi_1(X_1)), \Psi_2(\Phi_1(X_1)) \rangle = \psi_2 \langle \Phi_1(X_1), \Phi_1(X_1) \rangle = \psi_2 \varphi_1(\langle X_1, X_1 \rangle) = \psi_2 \varphi_1(\mathcal{A}_1)$. Hence $\psi_2^{-1}(\varphi_2(\mathcal{A}_2)) \supseteq \varphi_1(\mathcal{A}_1)$. Since φ_1 is surjective, $\psi_2^{-1}(\varphi_2(\mathcal{A}_2)) \subseteq \mathcal{B}_1 = \varphi_1(\mathcal{A}_1)$.

572

(III) Since X_2 is a full Hilbert \mathcal{A}_2 -module, by [1, Proposition 1.3 and 2.3], Ker Φ_2 is a full Hilbert Ker φ_2 -module. Therefore, $Ker\varphi_2 = \langle Ker\Phi_2, Ker\Phi_2 \rangle = \langle \Psi_1(Ker\Phi_1), \Psi_1(Ker\Phi_1) \rangle = \psi_1 \langle Ker\Phi_1, Ker\Phi_1 \rangle = \psi_1(Ker\varphi_1)$.

By [8, Proposition 3.1], the above diagram of C^* -algebras is pullback. So that $\varphi : \mathcal{A}_1 \to \mathcal{A}_2 \oplus_{\mathcal{B}_2} \mathcal{B}_1$ defined by $\varphi(a_1) = (\psi_1(a_1), \varphi_1(a_1))$ is an isomorphism.

Define $\Phi: X_1 \to X_2 \oplus_{Y_2} Y_1$ by $\Phi(x_1) = (\Psi_1(x_1), \Phi_1(x_1))$. By condition (i), Φ is injective. Let $(x_2, y_1) \in X_2 \oplus_{Y_2} Y_1$, since $\Phi_2(x_2) = \Psi_2(y_1)$, $y_1 \in \Psi_2^{-1}(\Phi_2(X_2)) = \Phi_1(X_1)$. Thus $y_1 = \Phi_1(x_1)$ for some $x_1 \in X_1$. Hence $0 = \Psi_2(y_1 - \Phi_1(x_1)) = \Psi_2(y_1) - \Psi_2\Phi_1(x_1) = \Phi_2(x_2 - \Psi_1(x_1))$. This means that $x_2 - \Psi_1(x_1) \in Ker\Phi_2 = \Psi_1(Ker\Phi_1)$. Therefore there is $x'_1 \in Ker\Phi_1$ such that $x_2 - \Psi_1(x_1) = \Psi_1(x'_1)$, whence $x_2 = \Psi_1(x_1 + x'_1)$. On the other hand, $\Phi(x_1 + x'_1) = (\Psi_1(x_1 + x'_1), \Phi_1(x_1 + x'_1)) = (x_2, \Phi_1(x_1)) = (x_2, y_1)$. So Φ is surjective. Since

$$\begin{aligned} \langle \Phi(x_1), \Phi(x_1) \rangle &= \langle (\Psi_1(x_1), \Phi_1(x_1)), (\Psi_1(x_1), \Phi_1(x_1)) \rangle \\ &= (\langle \Psi_1(x_1), \Psi_1(x_1) \rangle, \langle \Phi_1(x_1), \Phi_1(x_1) \rangle) \\ &= (\psi_1\langle x_1, x_1 \rangle, \varphi_1\langle x_1, x_1 \rangle) = \varphi\langle x_1, x_1 \rangle, \end{aligned}$$

 Φ is a φ -morphism. By [3, Proposition 2.3], the diagram of Hilbert C^* -modules is pullback.

Corollary 1. Let X_1, X_2, Y_1 and Y_2 be full Hilbert C^* -modules with surjective φ morphisms Φ_1 and Φ_2 and linking morphisms $\theta_{x_2,x_1}, \theta_{\Phi_2(x_2),\Phi_1(x_1)}$. If θ_{x_2,x_1} is an isometry and $\varphi : \mathcal{A} \to \mathcal{B}$ is injective, then the following left diagram is pullback.

$$\begin{array}{cccc} X_1 & \stackrel{\Phi_1}{\longrightarrow} & Y_1 & & \mathcal{A} & \stackrel{\varphi}{\longrightarrow} & \mathcal{B} \\ & & \downarrow^{\theta_{x_2,x_1}} & \downarrow^{\theta_{\Phi_2(x_2),\Phi_1(x_1)}} & & & \downarrow^I & \downarrow^I \\ & X_2 & \stackrel{\Phi_2}{\longrightarrow} & Y_2 & & \mathcal{A} & \stackrel{\varphi}{\longrightarrow} & \mathcal{B} \end{array}$$

Proof. First we show that θ_{x_2,x_1} is a *I*-morphism. Since θ_{x_2,x_1} is an isometry, then for $z \in X$, $a \in \mathcal{A}$, we have

$$\begin{aligned} \|\langle \theta_{x_2,x_1}(z), \theta_{x_2,x_1}(z) \rangle^{\frac{1}{2}} a \|^2 &= \|a^* \langle \theta_{x_2,x_1}(z), \theta_{x_2,x_1}(z) \rangle a \| = \|\langle \theta_{x_2,x_1}(za), \theta_{x_2,x_1}(za) \rangle \| \\ &= \|\theta_{x_2,x_1}(za)\|^2 = \|za\|^2 = \|I\langle za, za \rangle\| = \|I\langle z, z \rangle^{\frac{1}{2}} a \|^2. \end{aligned}$$

By [4, Lemma 3.4] $\langle \theta_{x_2,x_1}(z), \theta_{x_2,x_1}(z) \rangle = I \langle z, z \rangle$.

Similarly, we can show that $\theta_{\Phi_2(x_2),\Phi_1(x_1)}$ is an isometry. Hence it is an *I*-morphism.

Let $y_1 \in Y_1$, then there is $x'_1 \in X_1$ such that $\Phi_1(x'_1) = y_1$. So

$$\begin{aligned} \|\theta_{\Phi_2(x_2),\Phi_1(x_1)}(y_1)\| &= \|\theta_{\Phi_2(x_2),\Phi_1(x_1)}(\Phi_1(x_1'))\| = \|\Phi_2(x_2)\langle \Phi_1(x_1),\Phi_1(x_1')\rangle\| \\ &= \|\Phi_2(x_2)\varphi\langle x_1,x_1'\rangle\| = \|\Phi_2(x_2\langle x_1,x_1'\rangle\| = \|\Phi_2(\theta_{x_2,x_1}(x_1'))\| \\ &= \|\theta_{x_2,x_1}(x_1')\| = \|x_1'\| = \|\Phi_1(x_1')\| = \|y_1\|. \end{aligned}$$

Note that the φ - morphisms Φ_1 and Φ_2 are contractions and φ is injective, then Φ_1 and Φ_2 are isometries.

- By Theorem 2, the left diagram above is commutative.
- (i) Since φ is injective, Φ_1 is injective, so $Ker\Phi_1 \cap Ker\theta_{x_2,x_1} = \{0\}$.

(ii) Since *I* is injective, the *I*-morphism $\theta_{\Phi_2(x_2),\Phi_1(x_1)}$ is injective. So $\theta_{\Phi_2(x_2),\Phi_1(x_1)}^{-1}$ is surjective. By our assumption, the φ -morphisms Φ_1 and Φ_2 are surjective, so $\theta_{\Phi_2(x_2),\Phi_1(x_1)}^{-1}(\Phi_2(X_2)) = \theta_{\Phi_2(x_2),\Phi_1(x_1)}^{-1}(Y_2) = Y_1 = \Phi_1(X_1).$

(iii) If x'_2 is in $\theta_{x_2,x_1}(Ker\Phi_1)$, then $x'_2 = x_2\langle x_1, x'_1 \rangle$ for some $x'_1 \in Ker\Phi_1$. Thus $\Phi_2(x'_2) = \Phi_2(x_2\langle x_1, x'_1 \rangle) = \Phi_2(x_2)\varphi\langle x_1, x'_1 \rangle) = \Phi_2(x_2)\langle \Phi_1(x_1), \Phi_1(x'_1) \rangle = 0$, i.e. $\theta_{x_2,x_1}(Ker\Phi_1) \subseteq Ker\Phi_2$. Conversely, for $x'_2 \in Ker\Phi_2$, we have $\Phi_2(x'_2) = 0 = \Phi_2(x_2)\langle \Phi_1(x_1), \Phi_1(x'_1) \rangle = \Phi_2(x_2\langle x_1, x'_1 \rangle) = \Phi_2(\theta_{x_2,x_1}(x'_1))$, for some $x'_1 \in Ker\Phi_1$. Since φ is injective, Φ_1 and Φ_2 are injective. Thus $x'_2 = \theta_{x_2,x_1}(x'_1)$. Therefore $x'_2 \in \theta_{x_2,x_1}(Ker\Phi_1)$, i.e. $Ker\Phi_2 \subseteq \theta_{x_2,x_1}(Ker\Phi_1)$.

Corollary 2. Suppose that

$$\begin{array}{ccc} X_1 & \stackrel{\Phi_1}{\longrightarrow} & Y_1 \\ & \downarrow \Psi_1 & & \downarrow \Psi_2 \\ X_2 & \stackrel{\Phi_2}{\longrightarrow} & Y_2 \end{array}$$

is a pullback diagram of full Hilbert C^* -modules in which all morphisms are surjective. Then the following diagrams of compact operators and linking algebras are pullback.

Proof. The left diagram is clearly commutative.

Since the diagram of Hilbert modules is pullback, there exists a unique isomorphism $\sigma_1 : X_1 \to X_2 \oplus_{Y_2} Y_1$ defined by $\sigma_1(x_1) = (\Psi_1(x_1), \Phi_1(x_1))$. We show that $\sigma_2 : K(X_1) \to K(X_2) \oplus_{K(Y_2)} K(Y_1)$ defined by $\sigma_2(\theta_{x_1,x_1'}) = (\Psi_1^+(\theta_{x_1,x_1'}), \Phi_1^+(\theta_{x_1,x_1'})) = (\theta_{\Psi_1(x_1),\Psi_1(x_1')}, \theta_{\Phi_1(x_1),\Phi_1(x_1')})$ is an isomorphism.

Suppose $\sigma_2(\theta_{x_1,x_1'}) = 0$, i.e. for each $z \in X_1$ we have $\theta_{\Phi_1(x_1),\Phi_1(x_1')}(\Phi_1(z)) = 0$, then $\Phi_1(x_1)\langle\Phi_1(x_1'),\Phi_1(z)\rangle = \Phi_1(x_1\langle x_1',z\rangle) = \Phi_1(\theta_{x_1,x_1'}(z)) = 0$, so $\theta_{x_1,x_1'}(z) \in Ker\Phi_1$. Also $\theta_{\Psi_1(x_1),\Psi_1(x_1')}(\Psi_1(z)) = 0$. We have $\Psi_1(\theta_{x_1,x_1'}(z)) = 0$, so $\theta_{x_1,x_1'}(z) \in Ker\Psi_1$. Therefore $\theta_{x_1,x_1'}(z) \in Ker\Phi_1 \cap Ker\Psi_1 = \{0\}$, this means σ_2 is injective.

To prove the surjectivity, take an arbitrary $(\theta_{x_2,x'_2}, \theta_{y_1,y'_1})$ in $K(X_2) \oplus_{K(Y_2)} K(Y_1)$. Since σ_1 is surjective, for all (x_2, y_1) and (x'_2, y'_1) in $X_2 \oplus_{Y_2} Y_1$ there are $x_1, x'_1 \in X_1$ such that $\sigma_1(x_1) = (\Psi_1(x_1), \Phi_1(x_1)) = (x_2, y_1)$ and $\sigma_1(x'_1) = (\Psi_1(x'_1), \Phi_1(x'_1)) = (x'_2, y'_1)$. Consequently, $\sigma_2(\theta_{x_1,x'_1}) = (\theta_{\Psi_1(x_1),\Psi_1(x'_1)}, \theta_{\Phi_1(x_1),\Phi_1(x'_1)}) = (\theta_{x_2,x'_2}, \theta_{y_1,y'_1})$.

The first diagram and the corresponding diagram of underlying C^* -algebras are pullback, hence there are unique isomorphisms $\gamma_1 : \mathcal{A}_1 \to \mathcal{A}_2 \oplus_{\mathcal{B}_2} \mathcal{B}_1$ and $\gamma_2 : X_1 \to X_2 \oplus_{\mathcal{Y}_2} Y_1$ defined by $\gamma_1(a_1) = (\psi_1(a_1), \varphi_1(a_1))$ and $\gamma_2(x_1) = (\Psi_1(x_1), \Phi_1(x_1))$,

574

respectively. We obtain a new diagram using the induced morphisms

$$\begin{array}{c} \mathcal{A}_1 \oplus X_1 & \xrightarrow{\varphi_1 \oplus \Phi_1} & \mathcal{B}_1 \oplus Y_1 \\ & \downarrow \psi_1 \oplus \Psi_1 & \qquad \qquad \downarrow \psi_2 \oplus \Psi_2 \\ \mathcal{A}_2 \oplus X_2 & \xrightarrow{\varphi_2 \oplus \Phi_2} & \mathcal{B}_2 \oplus Y_2 \end{array}$$

Clearly, the map $\gamma : \mathcal{A}_1 \oplus X_1 \to (\mathcal{A}_2 \oplus_{\mathcal{B}_2} \mathcal{B}_1) \oplus (X_2 \oplus_{Y_2} Y_1)$ defined by $\gamma(a_1, x_1) = (\gamma_1(a_1), \gamma_2(x_1))$ is an isomorphism (we know that the map $(\mathcal{A}_2 \oplus X_2) \oplus_{\mathcal{B}_2 \oplus Y_2} (\mathcal{B}_1 \oplus Y_1) \mapsto (\mathcal{A}_2 \oplus_{\mathcal{B}_2} \mathcal{B}_1) \oplus (X_2 \oplus_{Y_2} Y_1)$ is a natural isomorphism). Then the diagram above is pullback. Therefore, the diagram of compact operators is also pullback, this means that the diagram of linking algebras is a pullback. (Recall that $K(\mathcal{A} \oplus X) = \mathcal{L}(X)$, where X is a Hilbert \mathcal{A} -module [1].)

Remark 1. Suppose the diagram in the Theorem 2 is a pullback diagram of full Hilbert C^* -modules in which all morphisms are surjective. Then the diagrams of compact operators and linking algebras are pullback.

Acknowledgement

The authors would like to sincerely thank the referee for her/his useful comments.

References

- D. BAKIĆ, B. GULJAŠ, On a class of module maps of Hilbert C^{*}-modules, Math. Commun.7(2002), 177-192.
- [2] D. BAKIĆ, B. GULJAŠ, Extensions of Hilbert C^{*}-modules, Houston J. Math. 30(2004), 537–558.
- [3] D. BAKIĆ, B. GULJAŠ, Extensions of Hilbert C^{*}-modules II, Glas. Mat. Ser. III 38(2003), 341-357.
- [4] E. C. LANCE, *Hilbert C^{*}-modules*, LMS Lecture Note Series 210, Cambridge University Press, Cambridge, 1995.
- [5] V. M. MANUILOV, E. V. TROITSKY, Hilbert C^{*}-Modules, Translations of Mathematical Monographs 226, Amer. Math. Soc., Providence, 2005.
- [6] M. S. MOSLEHIAN, On full Hilbert C*-modules, Bull. Malays. Math. Sci. Soc. 24(2001), 45-47.
- [7] G. J. MURPHY, C^{*}-algebras and operator theory, Academic Press Inc., Boston, 1990.
- [8] G. K. PEDERSEN, Pullback and pushout constructions in C^{*}-algebra theory, J. Funct. Anal. 167(1999), 243–344
- [9] I. RAEBURN, D. P. WILLIAMS, Morita equivalence and continuous-trace C^* -algebras, Mathematical Surveys and Monographs, Amer. Math. Soc., Providence, 1998.
- [10] N. E. WEGGE-OLSEN, K-Theory and C*-algebras a friendly approach, Oxford University Press, Oxford, 1993.