

CROATICA CHEMICA ACTA CCACAA, ISSN 0011-1643, e-ISSN 1334-417X Croat. Chem. Acta 84 (4) (2011) 543–545. CCA-3511

Note

A Novel Version of the Edge-Szeged Index

Hui Dong,^a Bo Zhou,^{a,*} and Nenad Trinajstić^b

^aDepartment of Mathematics, South China Normal University, Guangzhou 510631, China ^bThe Rugjer Bošković Institute, P. O. Box 180, HR-10 002 Zagreb, Croatia

RECEIVED MARCH 24, 2011; REVISED JUNE 8, 2011; ACCEPTED JUNE 9, 2011

Abstract. A novel version of the edge-Szeged index is proposed in parallel to the revised (vertex) Szeged index, and some properties, especially lower and upper bounds are established for this molecular descriptor. (doi: 10.5562/cca1889)

Keywords: Szeged index, edge-Szeged index, revised edge-Szeged index, distance

INTRODUCTION

The Szeged index, denoted by Sz, has been introduced by Gutman¹ in 1994 whilst he was visiting the Attila József University in Szeged, attractive historical city in south-east Hungary, hence the name of this molecular descriptor. Since the Szeged index has immediately been recognized as interesting and useful molecular descriptor, many contributions appeared to report its mathematical properties (e.g., References 2-9) and various applications to modeling the physicochemical properties and physiological activites of organic compounds. Khadikar et al.¹⁰ succinctly summarized the applications of the Szeged index in the quantitative structure-property-activity-toxicity modeling. In that paper the authors also stated that the total number of publications on the Szeged index and its variants up to the time of preparation of the paper is about 120 and among them more than 60 are reporting various applications. All these papers are listed in their review.¹⁰ Since the article by Khadikar *et al.*¹⁰ appeared in 2005, many more contributions appeared, e.g., References 11-15.

The study of the Szeged index and its variants, such as the hyper-Szeged index, PI index, Harary-Szeged index, edge-Szeged index, etc., in the structure-property-activity modeling was summarized besides in Reference 10 also in two comprehensive handbooks on molecular descriptors.^{16,17} All these warrant further work on the Szeged index and its variants. In this report, we present a novel version of the edge-Szeged index.

PRELIMINARIES

Let G be a connected graph with vertex set V(G) and edge set E(G). For $u, v \in V(G)$, d(u, v | G) denotes the distance between u and v in G.¹⁸

For $uv \in E(G)$, let $n_G(u, v)$ be the number of vertices closer to vertex u than vertex v and $n_G(v, u)$ the number of vertices closer to vertex v than vertex u, *i.e.*,

$$n_{G}(u,v) = |\{w \in V(G) : d(w,u \mid G) < d(w,v \mid G)\}|,\$$

$$n_{G}(v,u) = |\{w \in V(G) : d(w,v \mid G) < d(w,u \mid G)\}|.$$

The Szeged index of a (molecular) graph G, Sz(G), is defined as¹

$$Sz(G) = \sum_{uv \in E(G)} n_G(u, v) n_G(v, u).$$

If G is a tree, then Sz(G) = W(G), the Wiener index of G.¹⁹

Let $n_G(uv)$ be the number of vertices equidistant from both ends of $uv \in E(G)$, *i.e.*, $n_G(uv) = |\{w \in V(G) : d(w, u | G) = d(w, v | G)\}|$. The revised Szeged index of *G* is defined as²⁰

$$Sz^{*}(G) = \sum_{uv \in E(G)} \left(n_{G}(u, v) + \frac{n_{G}(uv)}{2} \right) \left(n_{G}(v, u) + \frac{n_{G}(uv)}{2} \right).$$

Several properties for this index have been established, *e.g.*, References 20–23.

For $e = uv \in E(G)$, $w \in V(G)$, the distance between e and w in G is defined as d(e, w | G) =

^{*} Author to whom correspondence should be addressed. (E-mail: zhoubo@scnu.edu.cn)

$$m_{G}(u,v) = |\{e \in E(G) : d(e,u \mid G) < d(e,v \mid G)\}|,$$

$$m_{G}(v,u) = |\{e \in E(G) : d(e,v \mid G) < d(e,u \mid G)\}|.$$

The edge-Szeged index of G is defined as²⁴

$$Sz_e(G) = \sum_{uv \in E(G)} m_G(u, v) m_G(v, u)$$

For more work on this index, see References 24–28.

Let $m_G(uv)$ be the number of edges equidistant from both ends of $e = uv \in E(G)$, *i.e.*, $m_G(uv) = |\{e \in E(G) : d(e, u | G) = d(e, v | G)\}|$. Motivated by the reports on the revision of the Szeged index,^{20,22} below we propose the revised edge-Szeged index of G, defined as

$$Sz_{e}^{*}(G) = \sum_{uv \in E(G)} \left(m_{G}(u, v) + \frac{m_{G}(uv)}{2} \right) \left(m_{G}(v, u) + \frac{m_{G}(uv)}{2} \right).$$

REVISED EDGE-SZEGED INDEX OF CONNECTED GRAPHS

Let S_n and P_n be respectively the star and the path on n vertices, and K_n the complete graph on n vertices. Note also the molecular graphs are necessarily connected graphs.¹⁸

Proposition 1. Let G be a connected graph with m edges. Then

$$\frac{m(2m-1)}{4} \le Sz_e^*(G) \le \frac{m^3}{4}$$

with left equality if and only if $\{m_G(u,v), m_G(v,u)\} = \{m-1,0\}$ for any $uv \in E(G)$ and with right equality if and only if $m_G(u,v) = m_G(v,u)$ for any $uv \in E(G)$.

From Proposition 1, we immediately have

Corollary 1. Let G be a connected graph with n vertices. Then

$$\frac{(n-1)(2n-3)}{4} \le Sz_e^*(G) \le \frac{n^3(n-1)^3}{32}$$

with left equality if and only if $G = S_n$ and with right equality if and only if $G = K_n$.

REVISED EDGE-SZEGED INDEX OF TREES

Proposition 2. Let T be an n-vertex tree. Then

Croat. Chem. Acta 84 (2011) 543.

$$Sz_e^*(T) = Sz_e(T) + \frac{1}{4}(n-1)(2n-3)$$
$$= W(T) - \frac{1}{4}(n-1)(2n-1).$$

Thus the study of the revised edge-Szeged index, like the edge-Szeged index and the Szeged index, for trees is equivalent to the study of the Wiener index. It is interesting to see what happens for graphs with cycles. The startpoint is naturally unicyclic graphs.

REVISED EDGE-SZEGED INDEX OF UNICYCLIC GRAPHS

Proposition 3. Let G be a unicyclic graph with n vertices. Then

$$Sz_e^*(G) \le \frac{n^3}{4}$$

with equality if and only if G is the cycle C_n .

Let $C_r(T_1, T_2, ..., T_r)$ be the unicyclic graph with cycle $C_r = v_1 v_2 ... v_r v_1$ such that the deletion of all edges on C_r results in r vertex-disjoint trees $T_1, T_2, ..., T_r$ with $v_i \in V(T_i)$. Let $S_n(t_1, t_2, ..., t_r)$ be the n-vertex unicyclic graph $C_r(T_1, T_2, ..., T_r)$, where T_i is the star on $t_i + 1$ vertices with center v_i for i = 1, 2, ..., r and $\sum_{i=1}^r t_i = n - r$. Let $S_{n,3} = S_n(n - 3, 0, 0)$ and $S_{n,4} = S_n(n - 4, -4)$

0,0,0). Let |G| = |V(G)| for a graph G.

To give a lower bound for the revised edge-Szeged index for unicyclic graphs, we need a lemma.

Lemma 1. For $n \ge 5$, let G be an *n*-vertex unicyclic graph with cycle length 3. Then

$$Sz_e^*(G) \ge \frac{3}{4}n^2 + \frac{5}{4}n - \frac{15}{4}$$

with equality if and only if $G = S_{n,3}$.

1

Proposition 4. For $n \ge 5$, let *G* be an *n*-vertex unicyclic graph. Then

$$Sz_{e}^{*}(G) \ge \begin{cases} \frac{1}{2}n^{2} + \frac{23}{4}n - 15 & \text{for } n \ge 15 \\ \\ \frac{3}{4}n^{2} + \frac{5}{4}n - \frac{15}{4} & \text{for } n \le 15 \end{cases}$$

with equality if and only if $G = S_{n,3}$ for $n \le 14$, $G = S_{n,3}$ or $S_{n,4}$ for n = 15, and $G = S_{n,4}$ for $n \ge 16$.

CONCLUSIONS

Original version of the Szeged index and its variants found considerable application in structure-propertyactivity modeling.^{10,16,17} Here we propose a novel version of the edge-Szeged index and its properties are discussed for several classes of (molecular) graphs.

Supplementary Materials. – Supporting informations to the paper are enclosed to the electronic version of the article. These data can be found on the website of *Croatica Chemica Acta* (http://public.carnet.hr/ccacaa).

Acknowledgements. This work was supported by the National Natural Science Foundation of China (Grant No. 11071089) and the Ministry of Science, Education and Sports of Croatia (Grant No. 098-1770495-2919).

REFERENCES

- 1. I. Gutman, Graph Theory Notes New York 27 (1994) 9-15.
- P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. A. Dobrynin, I. Gutman, and G. Dömötör, *J. Chem. Inf. Comput. Sci.* 35 (1995) 547–550.
- I. Gutman and S. Klavžar, J. Chem. Inf. Comput. Sci. 35 (1995) 1011–1014.
- A. A. Dobrynin and I. Gutman, Croat. Chem. Acta 69 (1996) 845–856.
- I. Gutman, L. Popović, P. V. Khadikar, S. Karmarkar, S. Joshi, and M. Mandloi, *MATCH Commun. Math. Comput. Chem.* 35 (1997) 91–103.
- 6. A. A. Dobrynin, Croat. Chem. Acta 70 (1997) 819-825.
- 7. M.V. Diudea and I. Gutman, Croat. Chem. Acta 71 (1998) 21-51.

- 8. S. Simić, I. Gutman, and V. Baltić, Math. Slovaca 50 (2000) 1-15.
- B. Zhou, X. Cai, and Z. Du, *MATCH Commun.Math. Comput.* Chem. 63 (2010) 113–132.
- P. V. Khadikar, S. Karmarkar, V. K. Agrawal, J. Singh, A. Shrivastava, I. Lukovits, and M. V. Diudea, *Lett. Drug Design Disc.* 2 (2005) 606–624.
- H. Yousefi-Azari, B. Manoochehrian, A. R. Ashrafi, *Curr. Appl. Phys.* 8 (2008) 713–715
- 12. M. Ghorbani and M. Jajali, MATCH Commun. Math. Comput. Chem. 62 (2009) 353–362.
- 13. M. Mirzagar, *MATCH Commun. Math. Comput. Chem.* 62 (2009) 363–370.
- A. Iranamanesh and N.A. Gholani, MATCH Commun. Math. Comput. Chem. 62 (2009) 371–379.
- 15. B. Zhou, X. Cai, and Z. Du, *MATCH Commun. Math. Comput. Chem.* 63 (2010) 113–132.
- R. Todeschini and V. Consonni, *Handbook of Molecular Descriptors*, Wiley-VCH, Weinheim, 2000.
- 17. R. Todeschini and V. Consonni, *Molecular Descriptors for Chemometrics*, Wiley-VCH, Weinheim, 2009.
- N. Trinajstić, *Chemical Graph Theory*, 2nd revised edn., CRC Press, Boca Raton, 1992
- 19. H. Wiener, J. Am. Chem. Soc. 69 (1947) 17-20.
- 20. M. Randić, Acta Chim. Slov. 49 (2002) 483-496.
- 21. T. Pisanski and M. Randić, *Discrete Applied Math.* **158** (2010) 1936–1944.
- 22. T. Pisanski and J. Žerovnik, Ars Math. Contemp. 2 (2009) 49-58.
- 23. R. Xing and B. Zhou, Discrete Appl. Math. 159 (2011) 69–78.
- 24. I. Gutman and A. R. Ashrafi, Croat. Chem. Acta 81 (2008) 263–266.
- M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, and I. Gutman, Croat. Chem. Acta 81 (2008) 277–281.
- D. Vukičević, MATCH Commun. Math. Comput. Chem. 61 (2009) 673–681.
- A. Mahmiani and A. Iranamanesh, MATCH Commun. Math. Comput. Chem. 62 (2009) 397–417.
- X. Cai, B. Zhou, MATCH Commun. Math. Comput. Chem. 63 (2010) 133–144.