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Abstract
Linear logic provides a logical perspective on computational issues such as control of resources

and order of evaluation. The most important feature of linear logic is that formulae are consid-

ered as actions. While classical logic treats the sentences that are always true or false, in linear

logic it depends on an internal state of a dynamic system. Curry-Howard correspondence is a

correspondence between logic and computing in informatics. In this contribution we present two

ways of computations which correctness we show by Curry-Howard correspondence. We show a

standard way and a new way of computing based on hylomorphism by using coalgebras which is

an alternative method. Our method of recursive and corecursive computations we apply in simple

authentication system.

Keywords: anamorphism, catamorphism, hylomorphism, linear logic, Curry-Howard corre-

spondence, authentication system

1. Introduction

An important problem in theoretical computer science is discovering logical foundations of pro-

gramming languages. One of the most fruitful methods used to explore such logical foundations

has been to utilize a fascinating relationship between various typed lambda-calculi, constructive

logic and models from category theory. For example, intuitionistic logic corresponds to simply

typed λ-calculus and to the cartesian closed category as the categorical model. Another impor-

tant example is the higher-order intuitionistic logic [18], which corresponds to higher order typed

λ-calculus and to the toposes as the categorical model [16]. Linear logic provides a logical per-

spective on computational issues such as control of resources and order of evaluation. The most

important feature of linear logic is that formulae are considered as actions. While classical logic

treats the sentences that are always true or false, in linear logic the truth value depends on an

internal state of a dynamic system. We showed in [19] a new way of computing factorial based on

hylomorphism by using coalgebras. In this contribution we present correctness of this computing

by linear logic and the Curry-Howard correspondence. Usually the Curry-Howard correspon-

dence [21] is used as follows: At first we make the proof of the problem and then we develop

the program. But Curry-Howard correspondence is bijective, so it applies to both ways. Here we

show how to prove the correctness of the developed program. This opposite method is called re-
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verse engineering. Because of checking the correctness of program is the most important phase of

transformation into logical formulae. Then the proof is constructed in linear logic. Our recursive

and corecursive methods of computation we apply in a model of simple authentication system.

2. Basic notions

We start our approach with the well-known notion from universal algebra: a many-typed signature

(the signature in the following text). A many-typed signature Σ = (T,F) consists of a finite set

T of the basic types needed for a problem solution denoted by symbols σ, τ . . . and of a finite set

F of function symbols. Every function symbol f ∈ F is of the form f : σ1, . . . , σn → σn+1 for

some natural number n. Using the type constructors on basic types from Σ we construct Church’s

types: product types, coproduct (sum) types and function types [14]. Generally, we distinct in a

signature:

• constructor operations which tell us how to generate (algebraic) data elements;

• destructor operations, also called observers or transition functions, that tell us what we can

observe about our data elements;

• derived operations that can be defined inductively or coinductively.

If the operation f has been defined inductively, the value of f is defined on all constructors.

In a coinductive definition of f the values of all destructors on each outcome f(x) have been

defined, i.e. it takes inputs of types σ1, . . . , σn and yields an output of a type σn+1.

2.1 Category theory

Algebraic and coalgebraic concepts are based on category theory. A category C is mathematical

structure consisting of objects, e.g. A,B, . . . and morphisms of the form f : A → B between

them. Every object has the identity morphism idA : A → A and morphisms are composable.

Because the objects of category can be arbitrary structures, categories are useful in computer

science, where we often use more complex structures not expressible by sets. Morphisms between

categories are called functors, e.g. a functor F : C → D from a category C into a category D
which preserves the structure.

2.2 Linear Logic

Girard’s linear logic [7] has offered great promise, as formalism particularly well-suited to serve

at the interface between logic and computer science. Linear logic provides a logical perspective

on computational issues such as control of resources and order of evaluation. By using the Curry-

Howard correspondence, propositions of linear logic are interpreted as types. This paradigm has

been a cornerstone of new approach concerning connections between intuitionistic logic, func-

tional programming and category theory [5]. We consider here intuitionistic linear logic because

it is very suitable for describing of the program execution. Precisely, reduction of linear terms cor-

responding to proofs in intuitionistic linear logic can be regarded as a computation of programs

[19].

The interpretation in linear logic is of hypotheses as resources: every hypothesis must be

consumed exactly once in a proof. The most important feature of linear logic is that formulae

are considered as actions. That differs from usual logic where the governing judgment is of truth,

which may be freely used as many times as necessary. While classical and intuitionistic logic treat

the sentences that are always true or false, in linear logic formulae describe actions and the truth

values depend on an internal state of a dynamic system. For instance, a linear implication ϕ−◦ψ is

causal, i.e. the action described by formula ϕ is a cause of the action described by ψ; the formula
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ϕ does not hold after linear implication. Linear logic uses two conjunctions: multiplicative ϕ⊗ψ
expressing that both actions will be performed; and additive one ϕ�ψ expressing that only one

of the two actions will be performed and we can decide which one. Intuitionistic linear logic uses

additive disjunction ϕ ⊕ ψ which expresses that only one of the two actions will be performed

but we cannot decide which one. Dual of multiplicative conjunction is multiplicative disjunction

ϕ�ψ and is read as "par". We consider here intuitionistic linear logic (the logic without "par"

operation) because we would like to use it to describe program execution.

2.3 Curry-Howard correspondence

The Curry-Howard isomorphism is a correspondence between systems of mathematical logic and

programming languages. It is formulated as a relationship between the computer programs and

proofs in constructive logic and it forms the proofs-as-programs and formulae-as-types paradigms.

The concept was formulated by the mathematician H. Curry and logician W. A. Howard. Knowl-

edge of the Curry-Howard correspondence has enabled the development of programming lan-

guages in which we can actually type up and then automatically check mathematical proofs. The

computer will tell us if our proof has any errors.

The rôle of the computer program is carrying on the instructions under whose the computer

system is to perform some required computations. A running program should provide us a de-

sirable solution of a given problem. We consider programming as a logical reasoning over ax-

iomatized mathematical theories needed for a given solved problem. A program is intuitively

understood as data structures together with algorithms [8]. Data structures are always typed and

operations between them can be regarded as algorithms. The results of computations are obtained

by evaluation of typed terms. Due to a connection between linear logic and type theory - a phe-

nomenon of the Curry-Howard correspondence [21], we are able to consider types as propositions

and proofs as programs, resp. Then we are able to consider the program as a logical deduction

within linear logical system. Thus computation of any resource-oriented program is some form of

goal-oriented searching the proof in linear logic. One of the main advantages of this approach is

that it is helping to avoid eventual mistakes of correctness generated by implementation of a pro-

gramming language. This approach also keeps us away from potential problems in the verification

of programs.

3. Algebras and Coalgebras

The essential idea of the behavioral theory is to determine the relation between internal states and

their observable properties. The internal states are often hidden. There are introduced many for-

mal structures to capture the state-based dynamics, e.g. automata, transition systems, Petri nets,

etc. Horst Reichel firstly introduced the notion of behavior in the algebraic specifications [17].

The basic idea was to disengage types in a specification into visible and hidden ones. Hidden

types capture states and they are not directly accessible. The execution of a computer program

causes a generation of some behavior that can be observed typically as a computer’s input and

output [9]. The observation of program behavior can be formulated by using the coalgebras. A

program can be considered as an element of the initial algebra arising from the used program-

ming language. In other words it is an inductively defined set P of terms [15]. This set forms

a suitable algebra F (P ) → P where F is an endofunctor constructed over the signature of the

operations appointed to execution by a program. So a data type is completely determined by

its constructors, algebraic operations going into data type. Each language construct corresponds

to certain dynamics captured in coalgebras. The behavior of programs is described by the final

coalgebra P → G(P ) where the functor G captures the kind of behavior that can be observed.

Shortly, generated computer behavior amounts to the repeated evaluation of a (coinductively de-
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fined) coalgebraic structure on an algebra of terms. The state can be observed via the visible

values and can be modified. In coalgebra it is realized by using destructor operations pointing out

of the structure. Thus coalgebraic behavior is generated by an algebraic program [19]. Therefore

the algebras are used for constructing basic structures used in computer programs and coalgebras

act on the state space of computer describing what can be observed externally. For expressing the

relations we use categories. Because the objects of category can be arbitrary structures, categories

are useful in computer science, where we often use more complex structures not expressible by

sets [4].

Algebras and coalgebras are considered as dual structures. Usually we treat them in cate-

gories [4, 20]. We use special kind of algebras and coalgebras - an initial algebra and a final

coalgebra, resp. It holds for initial algebra, that there exists the unique morphism from the initial

algebra into any algebra. This morphism is called the catamorphism. Dually, there exists final

coalgebra, for which holds, that from any coalgebra exists unique morphism into final coalgebra,

called anamorphism [1]. Composition of those morphisms is a new morphism which is called the

hylomorphism. We apply it in the alternative way of the factorial computation.

3.1 Initial algebras and catamorphisms

Let F be an endofunctor from C to C . An algebra with the signature F (or an F -algebra for short)

is a pair (A,α) where A called the carrier is an object and the algebra structure α : FA → A
is a morphism in C . For any two F -algebras (A,α) and (C, γ), a morphism f : A → C is said

to be a homomorphism of F -algebras from (A,α) to (C, γ), so the following diagram at Fig. 1

commutes.

FA
α � A

FC

Ff

�

γ
� C

f

�

Figure 1: Diagram of algebras

It follows from the diagram at Fig. 1 that it holds the equality α ◦ f = Ff ◦ γ. An F -algebra

is said to be an initial F -algebra if it is an initial object of the category A lg(F ) of F -algebras.

The existence of initial algebra of the endofunctor is constrained by the fact that initial algebras,

when they exist, must fulfill the following important properties:

• they are unique up to isomorphism, therefore we write initial F -algebra as u : FU ∼= U ,

and

• the initial algebra has an inverse u−1 : U → FU

It follows from the first property that there exists at most one initial F -algebra. Because from

the initial F -algebra exists unique homomorphism to every F -algebra, the initial F -algebra is the

initial object in the category A lg. The second property was proven in [11] which means that the

initial F -algebra is the least fixed point of the endofunctor F . Initial algebras are generalizations

of the least fixed points of monotone functions, since they have unique maps into arbitrary F -

algebra [3].
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The initiality provides a general framework for induction and recursion. Given a functor F ,

the existence of the initial F -algebra (μF, inF ) means that for any F -algebra (A,α) there exists

a unique homomorphism of algebras from (μF, inF ) into (A,α). Following [6], we denote this

homomorphism by (cata α)F , so (cata α)F : μF → A is characterized by the universal property

[22]:

f ◦ inF = α ◦ Ff ⇔ f = (cata α)F .

The type information is summarized in the following commutative diagram at Fig. 2.

FμF
inF � μF

FA

Ff

�

α
� A

f

�

Figure 2: Diagram of initial algebra and catamorfism

Morphisms of the form (cata α)F are called catamorphisms; the structure (cata (_))F is an

iterator.

3.2 Final coalgebras and anamorphisms

Coalgebras are dual structures to algebras. Let F be an endofunctor from C to C . A coalgebra

with the signature F (an F -coalgebra for short) is a pair (U,ϕ), where U called the state space is

an object and ϕ : U → FU called the coalgebra structure (or coalgebra dynamics) is a morphism

in C . For any two F -coalgebras (T, ψ) and (U,ϕ), a morphism f : T → U is said to be a

homomorphism from (T, ψ) to (U,ϕ) between F -coalgebras, so the following diagram at Fig. 3

commutes

U
ϕ � FU

T

f

�

ψ
� FT

Ff

�

Figure 3: Diagram of coalgebras

and it holds the equality ϕ ◦ Ff = f ◦ ψ.

The F -coalgebras and the homomorphisms between them form a category. The category

C oalg(F ) is the category whose objects are the F -coalgebras and morphisms are the homomor-

phisms between them. Composition and identities are inherited from C . An F -coalgebra is said

to be a final F -coalgebra if it is the final object of the category C oalg(F ).
The existence of the final F -coalgebra (νF, outF ) means that for any F -coalgebra (U,ϕ)

there exists a unique homomorphism of coalgebras from (U,ϕ) to (νF, outF ). This homomor-
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phism is usually denoted by (ana ϕ)F , so (ana ϕ)F : U → νF is characterized by the universal

property [22]:

outF ◦ f = Ff ◦ ϕ ⇔ f = (ana ϕ)F .

The type information is summarized in the following diagram at Fig. 4.

U
ϕ � FU

νF

f

�

outF
� F νF

Ff

�

Figure 4: Diagram of final coalgebra and anamorphism

Morphisms of the form (ana ϕ)F are called anamorphisms and the structure of (ana (_))F is a

coiterator.

3.3 Recursive coalgebra

The concept of the recursive coalgebra, i.e. a coalgebra which has a unique coalgebra-to-algebra

morphism into every algebra is important for the formulation of the relation between coalgebras

and algebras in one category. Recursive coalgebras extend that universal property beyond the

initial algebra considered as coalgebra [1].

Let F : C → C be an endofunctor. A coalgebra (U,ϕ) is called recursive if for every algebra

(A,α) there exists a unique coalgebra-to-algebra morphism f : U → A at Fig. 5.

FU � α
U

FA

Ff

�

ϕ
� A

f

�

Figure 5: Diagram of recursive coalgebra

The Fig. 5 gives equality as follows:

f = α ◦ Ff ◦ ϕ.

3.4 Hylomorphism

The hylomorphism recursion pattern was firstly defined in [6]. Given an F -coalgebra ϕ : U →
FU and an F -algebra α : FA → A, the hylomorphism denoted by hylo(α, ϕ)F is the least arrow

f : U → A that makes the following diagram at Fig. 6 commute [10].

Moreover, the hylomorphism is a composition of an anamorphism with a catamorphism [10]:

hylo(α, ϕ)F = (cata α)F ◦ (ana ϕ)F .
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FU � ϕ
U

FA

Ff

�

α
� A

f

�

Figure 6: Diagram of hylomorphism

The hylomorphism captures general recursion by producing the complex data structure and then

processing it.

4. The computation and logical proof

By using the Curry-Howard correspondence we are able to consider proofs as programs and ex-

ecution of a program as a logical deduction in a considered logical system. The first step in the

design solution is constructing the type theory that we will use for a given problem. The types

together with operations over them we enclose into well-know notion from the universal algebra,

a many-typed signature Σ = (T,F).

4.1 Traditional way of the factorial computation

Traditional mathematical way of the factorial computing is the following [13]:

fact (n) =
{

1, if n = 0 or n = 1;
n ∗ fact (pred n) otherwise.

The type theory for a given problem we construct as a signature Σ = (T,F) (Fig. 7). Set of types

contains the types for numerical values, tuples of values and the type of truth values Ω.

T = {nat, nat× nat,Ω} .

Set of function symbols contains operations over those types in T used for the calculation of

factorial.

F = {pred : nat → nat,

=: nat, nat → Ω,

mult : nat, nat → nat,

zero :→ nat,

one :→ nat}

Term for factorial in the type theory has the form

n : nat 
 if (n = 0) ∨ (n = 1) then 1 else n ∗ fact (pred n) .

Corresponding formula in linear logic for the given term is

(ϕ−◦ ψ1)�

(
ϕ⊥ −◦ ψ2

)
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Figure 7: The many-typed signature for the factorial

where

ϕ : (n = 0 � n = 1) ; ψ1 : fact = 1; ψ2 : fact = n ∗ fact (pred n)

So the formula is

((n = 0 � n = 1)−◦ fact = 1) �((n > 1)−◦ fact = n ∗ fact (pred n)) .

Now we are able to construct the logical proof for a given formula. The fragment of proof is

depicted at Fig. 8.

Figure 8: Proof of formula expressing standard factorial computation

Finally, the corresponding program in OCaml is

l e t r e c f a c t n =

i f ( n ==0) o r ( n ==1) t h e n 1

e l s e n∗ f a c t ( p r ed n ) ; ;

4.2 Alternative method for the factorial calculation

Now we show alternative method of the factorial calculation. Our method is based on algebras

and coalgebras. The signature (Fig. 9) consists of a finite set of the basic types

T = {int, intList,Ω},
and of a set of function symbols:
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F = {
==: intList, intList→ Ω,
=: int, int→ Ω,
join : int, intList→ intList,
∗ : int, int→ int,
pred : int → int,
head : intList→ int,
tail : intList→ intList

} .

Figure 9: Signature for the alternative method of factorial computation

If the definition of types theories for the problem is fully, then we are able to formulate terms

and by using the Curry-Howard correspondence we find a type to each formula. For our alterna-

tive method for computation of the factorial we need terms, which represent catamorphism and

anamorphism. Our function fact(n) is based on hylomorphism, which has been defined as a

composition of cata and ana. Function fact consist of composition two functions, too. Listed

functions are named by morphisms which they are representing, namely: cata and ana, resp.

4.2.1 Anamorphism

An anamorphism usually represents a corecursive function that starts with a single input (here

int) and it returns more complex output, here a wide list (intList). The function ana it is of type

int → intList.

The definition of function ana is as follows:

ana(n) =
if (n = 0) then ana = emptyList
elseif (n = 1) then ana = [1]
else ana = join(n, ana(pred n)).

Typed term that represents the function ana has the following form:

n : nat 
 if (n = 0) then ε elseif (n = 1) then [1] else join(n, ana(pred n))
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Formula representing the function ana(n) is:

(ϕ1 −◦ ψ1) & (ϕ2 −◦ ψ2) & ((ϕ⊥1 ⊗ ϕ⊥2 )−◦ ψ3),

where
ϕ1 : (n = 0) ; ϕ2 : (n = 1)
ψ1 : ana = ε; ψ2 : ana = [1] ; ψ3 : ana = join(n, ana(pred n))

4.2.2 Catamorphism

By applying the catamorphism in the informatics we get a recursive function that starts with a list

(here intList) and it returns a single numerical output (here int). The function cata is of type

intList→ int.

Definiton of this function:

cata(list) =
if (list = emptyList) then cata = 1
else cata = head(list) ∗ cata(tail(list))

Typed term that represents the function cata has the following form

l : intList 
 if (list == ε) then 1 else head(list) ∗ cata(tail(list))

Formula representing the function cata(l) is:

(θ −◦ α)�(θ⊥ −◦ β),

where

θ : list = emptyList; α : cata = 1; β : cata = head(list) ∗ cata(tail(list))

4.2.3 The function for calculating the factorial

The composition of functions ana a cata creates a function fact(n) for the factorial computation.

The function generates a list of natural numbers from 1 to n by incrementing; and simultaneously

the list is eliminated by the multiplication operation between elements of the list. The function is

of type

int → intList→ int.

Definiton of the function fact(n):

fact(n) = cata(ana(n)) =
if (ana(n) == emptyList) then fact = 1
else fact = n ∗ cata(ana(pred n))

Typed term that represents the function fact has the following form:

n : nat 
 if (ana(n) == ε) then 1 else n ∗ cata(ana(pred n)).

Formula representing the function fact(n) is

((ϕ1 −◦ ψ1)−◦ α) � ((ϕ2 −◦ ψ2)−◦ α) � (((ϕ⊥1 ⊗ ϕ⊥2 )−◦ ψ3)−◦ β).
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Figure 10: Proof of formula expressing alternative factorial computation

5. The proof

The logical proof of the given formula in the section 4.2.3 is at Fig. 10.

When our formula is proven, it means that our program is correct and it does not need any verifi-

cation.

6. Implementation in OCaml

In this section we show the implementation of our method for the factorial calculation. We use

the new functional language OCaml.

6.1 The function ana

This function is defined as follows: if the argument of the function ana is 0 then it returns an

empty list. If the argument is 1 then ana generates a list containing only 1 as item. Otherwise,

ana generates a list with new element appended. The implementation of the function ana(n) is:

l e t r e c ana n =

match n wi th

| 0 −> [ ]

| 1 −> [ 1 ]

| n −> n : : ana ( n−1 ) ; ;

6.2 The function cata

This function takes as an argument a list of factors of the type int and returns the result of multi-

plicative operations over the list by multiplication the values from the input list. The result of the

function is an element of the type int which is the result of multiplication of elements in the list.

The implementation of the function cata(l) is:

l e t r e c c a t a l i s t =

match l i s t w i th

| [ ] −> 1

| head : : t a i l −> head ∗ ( c a t a t a i l ) ; ;

6.3 The function fact

Composition of two function cata◦ana is written in programming language OCaml as cata(ana(n)).
The definition of this hylomorphism function fact(n) is as following

l e t f a c t n =

c a t a ( ana n ) ; ;
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Now we show example of the evaluation of function fact with input value 4. Execution of

this function in OCaml:

# f a c t 4 ; ;

− : i n t = 24

Illustration of this example step by step:

fact 4 =
cata (ana 4) =

4 cata (ana 3) =
12 cata (ana 2) =
24 cata (ana 1) =
24 id =
24

It is seen that our alternative method of programming by using the hylomorphism provides the

expected results. Because it has been proven in linear logic as a formula representing our function,

we can say that our function is correct.

7. Where do we go from here

We showed an alternative method for the factorial computation which is based on recursion and

corecursion. Our idea is to use this method in real-life systems. We consider here very simple

model of the authentication system where user is allowed to get in only if he/she is authorized

to do it. There exist some other approaches of how to model a server implementation [2, 12].

In our method of authentication the user is not asked for input the password. The reason is that

possible attacker in the network can catch the users’ passwords. When through the network only

a sequence of seeming the random numbers is sent, the attacker would not be able to recognize

their meaning and to stole the enrolling data.

7.1 The model of system

Authentication system (Fig. 11) is based on the client-server process platform. The clients request

from server an access to service. On the server side is a database containing the personal data of

the users. Each user has the unique user identification number (id). When the client requests from

server an access to service, he is confirmed whether the id is in database. If the user’s id is in the

database of users, then server generates two control numbers m and n by the following way:

m = 10 + det

(
cs(id) cs(hour)
cs(min) cs(sec)

)
mod 21

n = 21 + det

(
cs(id) cs(hour)
cs(min) cs(sec)

)
mod 31

where cs is the function of cipher sum, det is a determinant and hour, min and sec are the hour,

minute and second of the time on the server when user requests an access to service from server.

Here we have chosen the interval for the Fibonacci numbers from 10 to 20 for the first number

and from 21 to 30 for the second number. This is because we would like to express numbers

which are not very small for security and for usability of an algorithm also not very great. The

numbers m and n can be sent to the user for instance by SMS message. User has his own simple

application for calculating the response. After getting the data from server user inputs the numbers

m and n to the user’s application. The result for access is a string which contains m-th and n-th
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Fibonacci number. Both Fibonacci numbers (Fib(m) and Fib(n)) are converted to strings and the

concatenated into one string. The same computation si made on the server side. After the client’s

application returns the result, the new generated string is sent to server. Then server compares the

client’s result and its eigen result. If the both strings are identical then user is granted to access.

Figure 11: The model of an authentication system

We would like to remark that our model of system is only a proposition of an algorithm and

we do not dwell on the data and transfer encryption.

7.2 How the authentication process calculates the user input values

The computation of the values sent to the user is based on mathematical structures introduced

in previous chapters. The computation uses corecursive and recursive structures. An anamor-

phism is a generating structure and catamorphism is an eliminating structure. Firstly, the list of

values is being generated by anamorphism and then the list is being consumed - eliminated by

catamorphism. The elimination operation of catamorphism in that case is an addition.

For the computation of Fibonacci numbers we use the Pascal’s triangle. We showed in [19]

that it holds for the i-th Fibonacci number:

1. if the number i is even:

fib(i) =

i
2
−1∑

k=0
n=i−k−1

(
n

k

)
(1)

2. if the number i is odd:

fib(i) =

i−1
2∑

k=0
n=i−k−1

(
n

k

)
(2)

For the combination number calculation we apply the previously defined factorial based on hylo-

morphysm

(
n

k

)
=

n!
(n− k)!k!

and in OCaml:

l e t comb ( n , k ) = ( f a c t ( n ) ) / ( ( f a c t ( n−k ) ) ∗ ( f a c t ( k ) ) ) ; ;

The usage of the function comb(n, k) is as usual:
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# comb ( 3 , 2 ) ; ;

− : i n t = 3

and the signature of the function is int× int → int.
The function fib_ana is based on generating structure of anamorphism. This function corre-

sponds to calculation of the n-the Fibonacci number by using formulas (1) and (2); its signature is

int → (int× int)List. It generates the list of elements, where each element of the list is a tuple

representing the combination number. Such a generated list is an input for the function fib_cata.

In the function fib_ana are used subsidiary functions repeat_up, repeat_down, and zip.

l e t f i b _ a n a i =

i f ( ( i mod 2) = 0) t h e n

z i p ( repea t_down ( i / 2 ) ( i −1)) ( r e p e a t _ u p ( i / 2 ) 0 )

e l s e

z i p ( repea t_down ( ( ( i −1 ) / 2 ) + 1 ) ( i −1)) ( r e p e a t _ u p ( ( ( i −1 ) / 2 ) + 1 ) 0 ) ; ;

The usage of the function fib_ana is as follows:

# f i b _ a n a 6 ; ;

− : ( i n t ∗ i n t ) l i s t = [ ( 5 , 0 ) ; ( 4 , 1 ) ; ( 3 , 2 ) ]

and the result is the list of three tuples which represent the combination numbers.

The subsidiary function repeat_up is a simple recursive function which inserts n elements

into the list. The numbers are generated increasingly starting from the value x.

l e t r e c r e p e a t _ u p n x =

i f n > 0

t h e n x : : r e p e a t _ u p ( n−1) ( x +1)

e l s e [ ] ; ;

# r e p e a t _ u p 3 0 ; ;

− : i n t l i s t = [ 0 ; 1 ; 2 ]

Similarly, the subsidiary function repeat_down inserts n elements into the list. The numbers

are generated decreasingly starting from the value x.

l e t r e c repea t_down n x =

i f n > 0

t h e n x : : r epea t_down ( n−1) ( x−1)

e l s e [ ] ; ;

# repea t_down 3 5 ; ;

− : i n t l i s t = [ 5 ; 4 ; 3 ]

Finally, the function zip is a recursive function. Its input are two lists: the first is a result of

the function repeat_up and the second is a result of repeat_down. The result of the function

zip is a new list which elements are tuples consisting of elements of both input list - the elements

of input lists are "zipped" into a tuples and inserted into one list. The function has a signature

intList× intList→ (int× int)List.

l e t r e c z i p l s t 1 l s t 2 = match l s t 1 , l s t 2 wi th

| [ ] , _ −> [ ]

| _ , []−> [ ]

| ( x : : xs ) , ( y : : ys ) −> ( x , y ) : : ( z i p xs ys ) ; ;

# z i p [ 5 ; 4 ; 3 ] [ 0 ; 1 ; 2 ] ; ;

− : ( i n t ∗ i n t ) l i s t = [ ( 5 , 0 ) ; ( 4 , 1 ) ; ( 3 , 2 ) ]

S�������	��� MACKO
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The function cata_fib is a recursive function. Its input is a list of tuples of integers that

represent the combination number from the Pascal’s triangle. Function is based on the eliminating

structure - the catamorphism. Input list is eliminated by calculating the combination number from

the concrete tuple by using the function comb and then adding all that values into one sum. After

all the list is consumed, the function fib_cata returns the n-th Fibonacci number. Our method

does not need to calculate previous two Fibonacci numbers for the n-the Fibonacci numbers. The

result is obtained just by adding the concrete combination numbers. The signature of the function

fib_cata is (int× int)List→ int

l e t r e c f i b _ c a t a l i s t =

match l i s t w i th

| [ ] −> 0

| head : : t a i l −> comb ( L i s t . hd l i s t ) + ( f i b _ c a t a t a i l ) ; ;

# f i b _ c a t a [ ( 5 , 0 ) ; ( 4 , 1 ) ; ( 3 , 2 ) ] ; ;

− : i n t = 8

Finally, the function fib is a composition of the functions fib_ana and fib_cata. It generates

the list of tuples which represent the combination numbers and then the list is eliminated by adding

all the values into one sum. The result of the function fib is the n-th combination number without

knowing its previous two numbers in the sequence of the Fibonacci numbers. Signature of the

function fib is int → int.

l e t f i b i =

f i b _ c a t a ( f i b _ a n a i ) ; ;

# f i b 6 ; ;

− : i n t = 8

8. Conclusion

In this contribution we presented an alternative way of the factorial calculation. Our way is based

on the algebraic and coalgebraic structures: the anamorphism, the catamorphism and the hylomor-

phism which are algebraical and coalgebraical structures and they can be expressed in categories.

These structures provide the computation which we proved with the Curry-Howard correspon-

dence and we constructed the logical proof of the appropriate formulas in linear logic. By using

the recursive and corecursive structures we proposed simple authentication system. The idea of

our authentication system is that user is not requested to input the password but to make some

calculations and then send those results to server. If the results have been calculated correctly, the

user is granted to access. Our next goal is going to be the extension of this approach in other cate-

gorical structures based on recursive coalgebras and constructing of the appropriate description of

the computation in linear logic and to describe the behavior of the authentication system by using

categorical structures.

Acknowledgments

This work has been supported by VEGA Grant No.1/0015/10: Principles and methods of semantic
enrichment and adaptation of knowledge-based languages for automatic software development.

References

[1] ADÁMEK, J., LÜCKE, D., AND MILIUS, S. Recursive coalgebras of finitary functors. ITA
41, 4 (2007), 447–462.



212

JIOS, VOL. 35, NO. 2 (2011), PP. 197-213
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