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Introduction

y

Many engineering structures or some of their parts are
exposed to various types of load, some of which acting
independently, so some of these loads are constant while
others are not defined in the course of time and they belong
to the group of variably repeated loads. In a large number of
cases only the domain to which the variably repeated load
belongs can be defined.

Limit analysis of structures is an analytic procedure
which determines the maximum load parameter of load
increment parameter, which can be sustained by an elasto-
plastic structure. If the structure is exposed to the action of
gradually increasing load, at some point it can surpass a
certain critical value, which causes the plastic failure of the
structure, after which the structure is not capable of
receiving any further increase of load. This critical state is
called the limit state of structure, and the load that causes it
is called the limit load. Determination of the bearing
capacity of a structure, as well as the assessment of the
structure failure is very valuable, not only as a simple
control of beam bearing capacity, but also as a significant
basis and factor in designing of structures.

Even though some ideas appeared in 18 century, the
limit analysis is of later date. Its beginning is related to
Kazincy [1], who calculated failure load of the beam fixed at
both ends, and confirmed the results by experiments. A
similar concept was proposed by Kist and Grüning.
However, the early work in this field much relied on
engineering intuition. Even though the static theorem was
first proposed by Kist [2], as an intuitive axiom, it is
considered that the basic theorems of limit analysis were
first announced by Gvozdev in 1936 and published two
years later at a local Russian conference, but they remained
unnoticed by the western authors until 1960 when the were
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Applying the theorems of structural limit analysis it is possible to determine the limit load of linear systems exposed to load which increases proportionally until
the formation of failure mechanism. In the case when beam systems are exposed to repeated load, the limit theorems do not yield the adequate solutions, thus the
adaptation theorems which made safe limit load determination possible were developed simultaneously. In this paper, applying the static and kinematic theorem
of limit and shakedown analysis, the failure load of continuous beam with two spans has been determined.Also displayed is the difference between the values of
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translated and published by Haythornthwaite [40]. The limit
analysis theorems were independently developed by Hill in
1951, for the stiff perfectly plastic material [21], as well as
Drucker and others [22, 23], for elastic perfectly plastic
material. In the meantime, a formal proof of these theorems
for beams and frames was derived by Horne [24], as well as
Greenberg and Prager [25].Application of limit theorems in
designing of civil engineering structures was later applied
by many authors among which the following are prominent:
Symonds and Neal [26, 27, 41]; Neal [3]; Hodge [4]; Baker
and Heyman [5]; Heyman [6]; Horne [7]; Zyczkowski [8];
Mrazik et al. [9]; Save [10].

Limit load of structures determined by the application
of the limit analysis is one of the indicators of bearing
capacity of the structure exposed to the action of
proportional load. When a structure is exposed to the action
of variable repeated load, the failure occurs under action of
the load which is lower than the load obtained by the
application of the limit analysis of structures.

Application of shakedown theory in the assessment of
safety of elasto-plastic structures exposed to the action of
variable, repeated load is important, and often
indispensable. In this context the term "shakedown"
introduced by Prager, means that after the onset of initial
plastic deformations, the structure acts purely elastic in its
further service. The opposite state, which leads to the unsafe
structure, is called "non-adaptation" of the structure. The
structure in this case undergoes failure due to one or both
forms of failure called incremental collapse and alternating
collapse. The incremental collapse occurs due to the
accumulation of plastic deformations during each load
cycle (progressive deformation), causing reduction of
structure durability, while the alternating collapse results
from the repetition of plastic deformations of the opposite
sign, (without accumulation of plastic deformations)
causing in this manner a phenomenon of low cycle fatigue.
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Shakedown analysis belongs to a class of "simplified"
methods where it is not necessary to monitor the entire
course of structural response (stress and strain) under the
action of repeated load. Also, it represents a significant
generalization of the limit analysis theorem.

The concept and method of the calculation of structures
applying the shakedown analysis was primarily developed
in 1930, even though it has been expanding since 1950. The
first papers in this field were presented by Bleich 1932,
Melan [28, 29] and Koiter [17, 30]. They proved two basic
shakedown theorems: the static shakedown theorem
(Melans theorem), i.e. the lower limit of shakedown load
and dynamic shakedown theorem (Koiter theorem), i.e. the
upper limit of shakedown load which represent a basis of
shakedown theory of elasto-plastic structures. These two
theorems have been successfully applied in solving of a
large number of civil engineering pro

öning and Maier [20];
Kaliszky [11]; König [12]; Polizzoto [31, 32]; Gro-Wedge
[33]; Ponter i Karter [34]; Pham[35]).

In the recent years, the shakedown analysis of elasto-
plastic structures is becoming increasingly applied in the
analysis of engineering problems due to the increased
demands of modern technologies. It is thus successfully
applied in many engineering problems, such as designing of
nuclear reactors, railways, civil engineering designing and
safety assessment of some building structures.

The goal of this paper is to present the application of the
static and kinematic theorem of limit analysis when the
beam is exposed to the load action which is proportionally
increasing, as well as the application of shakedown analysis
when the beam is exposed to the action of variably repeated
load. Also displayed is the difference between the values of
failure forces depending on the character of load and the
beam span value of continuous beams with two spans in
order to assess justification for the application of the
shakedown method in the analysis of the limit bearing
capacity of the beams.

In the area of elastic behavior of beams, the stresses and
strains are proportionally dependant. Due to the increase of
load, there is a gradual build-up of stress, until the value of
the stress in the most loaded fiber reaches the value of yield
stress. Further increase of load causes the plastification of
the entire cross section, and thus the formation of plastic
hinge [13]

It is known that in statically determinate structures, the
complete plastification of one cross-section of a beam
(formation of a plastic hinge on the location of maximum
bending moment) and the transition of the beam into the
failure mechanism means the loss of load bearing capacity.
In statically indeterminate beams, formation of one plastic
joint does not lead to the formation of failure mechanism,
and the bearing capacity of one times statically
indeterminate beam is fully exhausted when in the beam an
+1 plastic joint is formed.

In order to determine the limit bearing capacity of a
beam applying the limit analysis, previously it should be
proved that the limit state relevant for it will occur after
formation of the failure mechanism, i.e., the occurrence of
any other limit state should be excluded. It is necessary to
exclude the occurrence of fatigue under the action of
variable load, then the possibility of onset of local instability

blems (Мaier [18],
Corradi and Zavelani [19]; K

2
Basic postulates of limit and shakedown analysis

.

n

n

prior to reaching the complete plastification and exclude the
occurrence of any effect which would bring about the failure
of the beam before a sufficient number of plastic hinges
have been formed and before they transform to failure
mechanism [5]

It can be stated that a beam is in the state of limit
equilibrium when the bearing capacity of the beam has been
fully exhausted, and when the beam behaves fully plastic in
a sufficient number of cross sections [14]. On this basis it
can be concluded that at the moment of the formation of a
sufficient number of plastic hinges, the deformations are
progressive, and the beams transit into the failure
mechanism. The moment immediately preceding the
formation of failure mechanism represents the moment of
limit equilibrium of the beam.

If the beam is unloaded prior to the formation of failure
mechanism, certain residual strain occurs, which causes the
occurrence of retained bending moments. By applying the
limit analysis it is not possible to include the retained
bending moments in the calculations, in the case of repeated
loading of the beam. This is possible by applying the
shakedown analysis. In the shakedown analysis all the
assumptions of the limit analysis are also valid, whereby
this method makes possible the analysis of the behavior of
the beam exposed to repeated load.

.

If the beam is made of a material in which the initial
stress state is equal to zero (non-tempered material), the
load applied to it will lead to the stress which in certain cross
sections can exceed the limit of elasticity. Then the value of
the bending moment lies between the elastic stress moment

and the moment of full plastification of the cross section
(plastic moment). If the beam is in the elasto-plastic area,

in the case of unloading, the connection moment-curve is
linear until the value of the bending moment of the cross
section is the range 2 .

In the diagram of dependence of moment-curve (Fig. 1)
it can be observed that the value of the elastic moment of
unloading is 2 . Such diagram of dependence of moment
and curve is valid in the shakedown theory. The values of
yield moment and moment of plasticity , are equal
both at tension and at pressure. Except this, 2 remains the
range of yield where purely elastic behavior will occur,
regardless of the previous history of loading. [4]
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Figure 1 Relation moment–curve in shakedown theory
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λC in order to form the failure mechanism.

j

Shakedown theorems have a role to set the main
conditions under which the plastic yield in the structure
finally ceases, regardless of how frequently and in what
sequence the load was applied [6]. As well as in the limit
analysis, in the shakedown analysis there are static and
kinematic theorems, on whose basis it is possible to
determine the safe limit load depending on the type of
variable repeated load.

The bending moment of the observed cross section can
be presented as:

3
Limit and shakedown theorems

The basic theorems of limit analysis can be applied to
all the types of static systems, irrespective of whether they
are statistically determinate or statically indeterminate. The
basic theorems of limit analysis consist of:

static theorem or the theorem of the lower border of
limit load and
kinematic theorem or the theorem of the upper border of
limit load.

Static theorem is based on the static equilibrium of the
observed system.Alarge number of distributions of bending
moments meeting the equilibrium conditions as a result of
the given external load can be assumed for one statically
indeterminate system. Greenberg and Prager [25] named
such distribution statically admissible. If one such system
meets the yield condition, that is, if the bending moment has
not exceeded the appropriate value it is claimed that it is also
safe. A necessary requirement is that there must be at least
one safe distribution of moments in the structure, which is
also statically admissible. According to the static theorem,
this is a sufficient condition for providing the bearing
capacity.

The static theorem can be expressed in the following
way:

On the basis of this theorem, it can be concluded that if
under the given load there is no distribution of bending
moments which is simultaneously safe and statically
permissible, that this is higher than the factor of failure
load . Also, it can be concluded that one static system can
really bear the limit load without failure, considering that
is the maximum factor of load where the static equilibrium
cannot be achieved without formation of plastic hinges.

The kinematic theorem relates to the possible failure
mechanism. The failure mechanism comprises a
kinematically unstable system which a beam becomes after
the plastic hinges are formed in the cross sections where
there are conditions for this [5]. In the case the failure
mechanism is known, the factor of failure load , i.e. the
limit load ( ), is determined by equalizing the work of
external forces with the work absorbed in plastic hinges. In
the case when the failure mechanism which corresponds to
the limit load is not known in advance, the equation of the
work can be written for each assumed failure mechanism,
whereby the values ( ) are obtained, that are
corresponding to the assumed failure mechanisms.

The kinematic theorem can be expressed in the
following way:

,

, .
Combining the static and kinematic theorem one can

form also the theorem of uniqueness which can be
expressed in the following way:

�

�

if there exists any distribution of bending moment
throughout structure which is simultaneously safe and
statically admissible under the load , then the value
must be less or equal to the factor of failure load , ( > ).

The actual limit load ( ) can be equal or higher than

the given one.

for the given static system, subjected to the
set of loads the value of which corresponds to any
assumed failure mechanism must be higher or equal to the

factor of failure load that is,

if for the given static system
and the load there is at least one safe and statically
admissible distribution of bending moment at which the
plastic moment occurs at sufficient number of cross
sections, the corresponding factor of failure load should be
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M � �j j e jm ( ) ,M

where:
M – is the actual bending moment of the cross section,

– is the elastic bending moment of the cross section,
– is the residual bending moment of the cross section.

Any distribution of residual bending moments, defined
in this way must be statically possible in case when the
structure is unloaded, because the moment M and
must be in equilibrium with the external load [13]. Thus it
can be said that the structure has adapted under the action of
variable repeated load, if at some point the condition (1) has
been satisfied, and all the following loads cause only elastic
change of bending moments. Then it is possible to
determine the value of safe limit load, which depending on
the character of repeated load can be:
– incremental limit load,
– alternating limit load.

On the basis of conditions (1) the static shakedown
theorem can be expressed in the following form:

j

j

j j

j

( )

( )

M

m

M

if there
exists any distribution of residual bending moment m

throughout structure, which is statically admissible in the
case with zero external loading and which also satisfies at
every cross section j, it is necessary to meet one of the
conditions:

e

e

j

(  )1

pM ,� �� max
j j

j
m M (2)

pM ,� � �� min
j j

j
m M (  )3

� 	e2 ,M� �� max min
j j j

M M (  )4

the value will be less than or equal to the shakedown load
factor .

λ
λ

λ
λ

λ λ

λ

S

S

C

Each girder strives to adapt to the action of variable
repeated load in a best possible way. Thus, if exceeds the
value , the unlimited plastic yield occurs, and in this case
no distribution of residual moments is possible, which is a
necessary condition for determination of safe limit load.
Similarly, under the action of proportional load, the
structure will fail when the load factor reaches the value ,
above which the structure is not safe, and simultaneously
there is a statically possible distribution of bending
moments. Depending on the calculated load factor it is
possible to determine the safe limit load which depends on
the type of variable repeated load, on the basis of meeting
some of the requirements of the equations (2) and (3), as
incremental conditions of plasticity and equation (4), as
alternating plasticity conditions.

Application of static shakedown theorem is possible
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only if distribution of residual bending moments is already
known [3].Application of the static theorem is only justified
in the structures with the lower degree of static
indeterminacy.

As the application of kinematic shakedown theorem is
based on the assumed failure mechanisms, whose form is
identical to the form of failure mechanism in the limit
analysis of structures, it can be said that this procedure is
simpler to apply. The deficiency of this procedure is that the
residual bending moments are not included in the
calculation.

Assuming that the observed failure mechanism is
known, rotations of formed plastic hinges in
a certain number of characteristic cross sections.[5] If the
rotation in any cross section is positive ( ), then it can be
said that the total bending moment in this cross section
aspires to reach the value + , and if the rotation of the

formed plastic joint is negative ( ), the bending moment
aspires to reach the value – . On the basis of the
introduced assumptions, the equations (2) and (3) can be
written in the form:

can be noticed

M

M

θ

θ

+

–
P

P

started from the assumption that the work of all the residual
moments on the possible failure mechanism is equal to zero.
In this paper the incremental failure force will be calculated
applying the Symonds and Neal method.

Applying the adequate method, and depending on the
character of the load, an analysis of the limit load of
continuous beam displayed in Fig 2 was conducted. The
span of the beams affects the distribution of internal forces,
and therefore on the relevant condition of failure, that is, the
value of the failure force. On the example of the continuous
beam, a procedure of the failure force calculation has been
conducted, depending on the change of beam span, which is
defined by the coefficients and .

4
Analysis of limit bearing capacity of continuous beam
depending on the character of the load

.

α β
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which represents the basic equation of incremental failure.
On the basis of equation (10) it is possible to express the

kinematic shakedown theorem in the following way:

The kinematic shakedown theorem in this form was
first defined by Koiter [17, 30], though it can be said that he
had done that on the basis of the work of P. S. Symods and B.
G. Neal [36], which was published at the First National
Congress of Applied Mechanics in Chicago in 1951. They

the
value of parameter corresponding to any assumed failure
mechanism of alternating plasticity or of incremental

collapse must be either greater than or equal to the

shakedown load factor .

λ
λ

λ

λ

a

I

S

4.1
Failure limit state

Applying the principle of virtual work for the observed
beam (Fig. 2), in the paper [16], the equation (11) was
derived. In order to obtain the limit load in one-parameter
form, it is assumed = = :F F F1 2

B. Milošević et al.Comparative analysis of limit bearing capacity of a continuous beam applying the limit and shakedown analysis depending on the character of the load

pM� �� max
j j

j
m M for ,�
 j (5)

pM� � �� min
j j

j
m M for .�
 j (  )6

If the equations (5) and (6) are multiplied by the
corresponding rotation of the formed plastic joint in the
cross section , then, they have the form:j

pM ,�� �
 � 
 
max
j j j j j

j
m M

pM .�� �
 � 
 
max
j j j j j

j
m M

(  )7

(  )8

Adding up of equations (7) and (8), of all the plastic
hinges which have been formed on the observed failure
mechanism, give the following:

pM . (9)� �� �� � �
 �� � � �
 � 
 
 
max max
j j j j j j j

j
m M M

As the distribution of residual bending moments is in
equilibrium when the structure is unloaded, and the is
rotation of the cross section where the plastic joint has been
formed, the equation of the principle of virtual work can be
written in the following form

θ

0,�� 

j    j

m thus (9) becomes

pM ,� �� �� �
 �� � �� 
 
 
max max
j j j j j

j
M M (10)

Figure 2 Continuous two–span beam loaded by concentrated forces
in the middle of the span
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(11)

where denotes change of actual bending moment and
change of hinge rotation.
When the beam is exposed to the load which

proportionally increases, applying the equation (11) it is
possible to determine the value of the load which
corresponds to the formation of each plastic hinge, until the
failure mechanism is formed, whereby also are determined
the rotations of the cross sections where formation of plastic
hinges occurred.

Δ
Δ

M
θ

Figure 3 Elastic distribution of bending moment in the function of load

j

j

j j j

j j j
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Substituting = = = 0 with expression (11) the
distribution of bending moments when the beam is in the
elastic area is obtained (Fig 3). By equalizing the highest
value of the bending moment (cross section 3) and the
plastic moment ( ) the value of the load causing formation
of the first plastic hinge is obtained:

θ θ θ2 3 4

p

.

M

mechanism.
For the observed beam (Fig. 2) three failure

mechanisms can be formed, two independent (Fig. 6a and
Fig. 6b) and a combined one (Fig. 6c).

B. Milošević et al. Komparativna kontinu nog analize i metode adaptacijeanaliza granične nosivosti ira nosača primjenom granične ovisno o karakteru opterećenja

� 	
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p(1)
3 p

32M3
M F M F .

32 3
l

l     +
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� �
(12)

After formation of the plastic joint in the cross section
3, the beam becomes statically determined, and the
distribution of bending moments is given in Fig. 4.

Figure 4 Distribution of the bending moment after formation
of the first plastic hinge

If the load is increased, the bending moment of the cross
section 3 remains , and the rotation of the cross section
where the first plastic joint formed is:

Mp

� 	2
1

3

F

32EI

� � ��
� ����������������������������

l

 (13)

The load leading to formation of the next plastic joint
(cross section 2), when ( ) is:α β≥

� 	 � 	
p p(2) (1)

cr 1

32M M 18 14
F = F F F

3 + 3l l

� � �
� � � � �

� � � � ��
, (14)

while the load leading to formation of the plastic joint of the
cross section 4, when ( ) is:α β≤

� 	 � 	
p p(2) (1)

cr 1

32M M 18 14
F = F F F

3 + 3l l

� � �
� � � � �

� � � � ��
. 5(1  )

On the basis of the expressions (14) and (15) it is
possible to present the change of the limit force of failure in
one-parameter form, depending on the change of span
length (Fig. 5). Observing the diagram, it can be concluded
that with the increase of the span lengths, the force leading
to formation of the relevant failure mechanism decreases.
Therefore, if a partial failure mechanism of the first
span forms, while when a partial failure mechanism of
the second span of the beam is generated, and in the case
when the failure mechanism forms in both spans
simultaneously.

The limit failure load can be also determined by
applying the kinematic theorem when it is necessary to
equalize on the assumed failure mechanism the virtual work
of all the external forces with the forces absorbed in the
cross sections in which the plastic hinges are assumed. For
each of the possible failure mechanisms, one limit force of
failure is obtained. The lowest of them is at the same time
also the force causing formation of the relevant failure

α β

β α

α β

≥

≥

=

Figure 5 Change of the limit failure force depending on andα β

Figure 6. (a) Failure mechanism of the first span, (b) Failure mechanism
of the second span, (c) Combined failure mechanism

For each of the possible failure mechanisms, the limit
failure forces on the basis of the expressions (16), (17) and
(18) are obtained:

� 	 p
p p 1 1

6M
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�
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� ����������������������� � �

l l
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(1  )8

When the spans have equal lengths ( = =1), and when
the beam is simultaneously acted upon by two independent
load systems and , which are in arbitrary relationship,
the limit bearing capacity analysis and defining of the area
where the beam is safe from the onset of failure can be
performed on the basis of the interaction diagram. The

α β

F F1 2



490

mutual relationship of failure mechanisms and mutual load
relationship are best observed in the interaction diagram.

( / 1) ( / 1)

From the interaction diagram (Fig. 7) one may conclude
that the failure mechanism in the second span forms when
the relation of the load is , while when ,
the failure mechanism forms in the first span of the beam.
For any relation of loads lying inside the area 0abc0 no
failure mechanism will occur and thus no beam failure
either. If the relation of the load is such so as to be defined by
some of the segments, the failure mechanism defined by this
segment is formed.

When the beam (Fig. 2) is exposed to the action of
variable repeated load, the area in which the load acts lies
within the following range: 0 , 0 .

F F F F

F F F F

1 2 1 2≤ ≥

≤ ≤ ≤ ≤

4.2
Incremental failure load

1 1 2 2
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when the beam is acted upon only by force .
The analysis of limit bearing capacity of the beam

exposed to the action of variable repeated load will be
performed applying the shakedown theorems. For the
application of static shakedown theorem it is necessary to
know the possible distribution of residual bending moment
(Fig. 9).

F2
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Figure 7 Interaction diagram

Figure 8 Elastic bending moment of continuous
two–span beam

In Fig. 8a is presented the diagram of bending moments
when the beam is acted upon only by force , and in Fig. 8bF1

Figure 9. Possible distribution of residual bending moment

Applying the static shakedown theorem on the basis of
equations (2) and (3), as well as incremental conditions of
plasticity and equation (4) as alternating condition, the
values of the forces causing the beam failure are obtained.

The relevant limit failure load depends on the relation
of the coefficients and . So, if , the failure mechanism
is formed in the first span, and the value of incremental
failure force is obtained on the basis of the expression:

α β α β≥

� 	 p2
1 2

48M
8F 3F

α β+
� � �� � � ��������������������������

l
(19.1)

while the residual bending moment is:

� 	
� 	

2
1 2F 8 6F

96

� � �� � �
����������������������������������������

α β+

l l
m (19.2)

while in the case when , the failure mechanism in the
second span is formed. The incremental failure force is
obtained on the basis of the expression:

β α≥

� 	 p2
2 1

48M
8F 3F

α β+
� � �� � � ��������������������������

l
(20.1)

while the residual bending moment is:

� 	
� 	

2
2 1F 8 6F

96

� � �� � �
����������������������������������������

α β+

l l
m (20.2)

On the basis of the alternating plasticity conditions (4) for
the cross section 2 is obtained:

� 	 � 	2
1 2F 5 8 3F 64� � � � � � �������������������������� ��el l M (21)

for the cross section 3:

� 	2 2
1 23F 3F 32� � � �������������������������� ��el l M (22)

and for the cross section 4:

� 	 � 	2
2 1F 8 5 3F 64� � � � � � �������������������������� ��el l M (23)

.

As , it is concluded that the value of
alternating failure force depends on the coefficient of cross
section form. Here the rectangular cross section is adopted
whose form coefficient is

Interaction diagram (Fig. 10) is constructed for the case

formpe MM �/�

50,1�form�



491

m M

m M

=0,0263 . Depending on the change of the beam span,
the maximum value of the residual bending moment is

=0,0595 , and it occurs when =1,804 whereby the
failure mechanism in the first span is formed, i.e. for
=1,804 when the failure mechanism of the second span is

formed.
On the basis of equations (21), (22) and (23) the values

of alternating failure forces in one-parameter form are
obtained for the cross sections 2, 3 and 4 respectively:

p

p α β

β α

when the beam spans are equal ( 1), on the basis of
expressions (19.1), (20.1), (21), (22) and (23). From the
diagrams, it is observed that the safe area 0abc is defined on
the basis of incremental failure condition.

α β= =
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Figure 10 Interaction diagram

On the basis of the expression (19.1) and (20.1),
incremental failure load is obtained in one-parameter form:

� 	
p

inc 2 2

48M
F

8        8        3l
�����������������������������������

α β+

� � �� � � � 	
p

inc 2 2

48M
F

3        8        8l
�����������������������������������

� � �� � �
(24)

α β+

while on the basis of expression (24.2) and (25.2) the values
of residual bending moments are obtained:

� 	 � 	
2 2 2 2

p p

2 2 2 2

M 8 6 M 8 6
, .

2 8 8 3 2 8 8 3

� � �� � � � � �� � �
� � � �

� � �� � � � � �� � �
m m (25)

Figure 11 Change of incremental failure force depending on andα β

On the basis of the expressions (24) and (25) the
diagrams were constructed (Fig. 11 and Fig. 12) on which
the change of incremental force of failure and residual
bending moment is displayed for: 1 10 and 1 10.
In the diagrams it is possible to observe the change of the
incremental failure force and residual bending moments
depending on the length of beam span, as well as of the
relevant beam failure mechanism. In the diagram in Fig. 12
it can be observed that the value of the residual bending
moment when = is constant, and amounts to

≤ ≤ ≤ ≤α β

α β

Figure 12 Change of residual bending moment depending on andα β

� 	alt
64

F
5      3

eM

l
���������������������

� � �
(26)

� 	
� 	alt 2 2

32
F

3

eM

l

α β+
��������������������������

� ��
(2  )7

� 	alt
64

F
3      5

eM

l
���������������������

� � �
(2  )8

Figure 13 Possible failure mechanism of continuous two–span beam

Failure load was also determined applying kinematic
shakedown theorem, that is, Symonds and Neal method, in
the cases when the load has been defined by the range: 0

, 0 . On the basis of the condition that the
residual bending moments on possible failure mechanisms

≤

≤ ≤ ≤F1 1 2 2F F F
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(Fig. 13) are in equilibrium, the following equations can be
written:
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� 	 � 	2 32 0m m� � �����
 
 (29)

� 	 � 	3 4 2        0m m� � �����
 
 (    )30

� 	 � 	 � 	2 3 42 2 2 0m m m� � � �����
 
 
 (    )31

Solving equations (29), (30) and (31) the following
expressions are obtained:

� 	 � 	2
1 2 p8F 3F 48M� � �� � � �������������������������� ��l l

� 	 � 	2
1 1 p3F 8F 48M� � � � �� �������������������������� ��l l

� 	 � 	 � 	1 1 pF F M11      8 11     8         96� � � � � � � � � �������������������������� ��l l

(    )32

(    )33

(    )34

on whose basis, for the case of one-parameter load the
expressions for incremental failure force are obtained:

� 	
p

inc 2 2

48M
F

8        8        3l

�
������������������������������������

� � �� � �

��
(    )35

� 	
p

inc 2 2

48M
F

3        8        8l
������������������������������������

� � �� � �

� ��
(    )36

� 	
p

inc 2 2

96M
F

11       16         11l
����������������������������������������

� � �� � �

� ��
(    )37

The expressions obtained applying static (19.1), (20.1)
and kinematic shakedown theorem (33), (34) are equal, so
the conclusion is drawn that the obtained solution is also
singular, which in turn satisfies the theorem of uniqueness.
For different values of coefficients and the different
values of limit and incremental failure loads are obtained,
with the relevant failure mechanisms being different, too.

α β

Figure 14 Change of limit and incremental failure force in percent
depending on the change of and

s
α β

The difference between the limit and incremental force
of failure in percents, depending on the change of and is
presented on the diagram in Fig. 14. In the case when the
spans of the beams are equal ( = ), this difference is the
largest and amounts to 15,78 %, while for =1,804 , when
the value of the residual moment is maximum, this
difference is 6,90 %.

α β
α β

4.3
Alternating failure load

In further analysis of the limit bearing capacity of
beams it is assumed that the force in the first span of the
alternating character is (– ), while the force acting

in the second span is in the range 0 . Applying the
static shakedown theorem and failure conditions (2) and (3),
when , the value of the failure force is defined on the
basis of the expression:

F F F

F F

1 1 1

2 2

≤ ≤

≤ ≤

≥α β

� 	 � 	2
1 2 p8F 3F 48M� � �� � � �������������������������� ��l l

and the value of the residual bending moment is:

� 	
� 	

2
1 2F 8 6F

96

� � �� � �
����������������������������������������

l l
m

� ��

(38)

(38   ).1

That is, in the case when , the following is obtained:α β≤

� 	 � 	2
1 2 p3F 4F 24M� � � � �� �������������������������� ��l l (39)

� 	
� 	

2
2 1F 8 3F

96

� � �� � �
����������������������������������������

l l
m

� ��
(39.1)

On the basis of the expression (38) and (39) the values
of incremental failure force are obtained:

� 	 � 	
p p

inc inc2 2 2 2
=

48M 24M
F , F

8 8 3 3 4 4l l
� �

� �� � ��

� � �� � � � � �� � �
(40)

and, on the basis of the expression (38.1) and (39.1) the
values of the residual bending moments:

� 	 � 	
2 2 2 2

p p

2 2 2 2

M 8 6 M 3 8
, .

2 8 8 3 4 3 4 4

� � �� � � � � �� ��
� � � �

� � �� � � � � �� � �
m m (41)

For the cross sections 2, 3 and 4 the following
expressions are obtained on the basis of alternating
condition of plasticity (4) of the static shakedown theorem:

� 	 � 	2
1 2F 10 16 3F 64� � � � � � �������������������������� ��el l M (4  )2

� 	2 2
1 23 2 P P 32� �� �������������������������� ��el M (4  )3

� 	 � 	2
1 26F F 8 5 64� � � � � � �������������������������� ��el l M (4  )4

on whose basis the values of alternating forces for these
characteristic cross sections are obtained, as follows:

� 	
� 	alt 2 2

64
F

10 16 3

eM

l
���������������������������������������

� � �� � �
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(42.1)
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F

3 2

eM

l
��������������������������

� ��

� ��
(43.1)
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F
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eM

l
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� ��
(44.1)
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Applying the kinematic theorem, when in the first span
of the beam a force of alternating character is acting, for
possible failure mechanisms (Fig. 13), the following
expressions are formed:

� 	 � 	2
1 2 p8F 3F 48M� � �� � � �������������������������� ��l l (45)

� 	 � 	2
1 2 p3 F 4F 24M� � � � �� �������������������������� ��l l (4  )6

� 	 � 	 � 	1 2 pF F M14      8 8      11       96� � � � � � � � � � � ��l l (4  )7

on whose basis the values of incremental failure forces in
one-parameter form are obtained:

� 	
p

inc 2 2

48M
F

8        8        3l
�����������������������������������

� � �� � �

� ��
(45.1)
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(46.1)
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14        16        11l
����������������������������������������

� � �� � �

� ��
(47.1)

Figure 15 Interaction diagram when the force is action
in the middle of the first field of alternating character

On the basis of the expressions (42), (43), (44) as well
as of the expressions (45), (46), (47) the interaction diagram
was constructed (Fig. 15) on which it can be observed that
inside the area 0abc0 the beam is safe against the onset of
failure. This area is defined by the alternating failure
condition of the cross section 2 and incremental failure
condition corresponding to the formation of the second field
failure mechanism.

On the basis of the expressions (42.1) and (46.1) a
diagram was constructed (Fig. 16) in the case when the
failure load is defined in one-parameter form. On the
diagram is presented the change of relevant condition of
failure depending on the span of the beam. Thus, when
(2,137/ ) – (5,555/ ) 0, the failure force is defined on the
basis of alternating failure condition of the cross sections 2,
and when (2,137/ ) – (5,555/ ) 0, the incremental failure
condition is relevant, and the failure mechanism forms in
the second span of the beam.

From the diagram presented in Fig. 17 it can be
observed that the difference between the alternating and
limit forces of failure ranges between 32,74 % and 50,95 %
when = 1, and 1. The largest difference between the

α β

α β

β α

≥

≤

≥

Figure 16 Change of failure force depending on  and  when the beam
in the first field is loaded by the force of alternating character

Figure 17 Change of limit and alternating failure forces depending
on and when the beam is exposed to the action of alternating failure

force in the first span
α β

forces of failure, when the spans are of equal lengths , is
50,95 %. In case when , the difference between the
forces sharply decreases, so that it would be the smallest for

2,59 , when the failure force is defined on the basis of
the incremental failure condition.

In case when both forces of alternating character are
(– , – ), the failure force is defined on
the basis of the alternating condition of failure of the cross
section 2, and for > it is:

α β

β α

β α

α β

=
≥

≥

≤ ≤ ≤ ≤F F F F F F1 1 1 2 2 2

� 	
� 	alt 2 2

64
F

10 16 3

eM

l

�
���������������������������������������

� � �� � �

��
(48)

and for the cross section 4, for < , the failure force is:α β

� 	
� 	alt 2 2

64
F

3 16 10

eM

l
���������������������������������������

� � �� � �

� ��
(49)

which is elaborated in the paper in detail [16].

On the diagram (Fig. 19) it can be observed that the
greatest difference between the limit and alternating force is
50,59 % when the spans are of equal lengths. Depending on
what span is larger, the relevant condition of failure
changes, and the difference between the failure forces
decreases up to 32,74 %.
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Figure 18 Change of alternating failure force depending
on the change of andα β

Figure 19 Change of limit and alternating failure force
depending on α βand

5
Conclusion

The paper firstly presents the application of static and
kinematic theorems of structural limit analysis in
determination of the limit load of beams. In both cases the
finite, limit state of beam was observed. Application of
these theorems was presented on the example of the
continuous beam with two spans, loaded by two-parameter
and one-parameter load. When the limit load is determined
as two-parameter one, the dependence of the load on
possible failure mechanism is presented on the interaction
diagram, while in the case when the limit load is defined as
one-parameter one, its change depending on the span length
is presented.

Analysis of the behavior of beams exposed to variable
repeated load whose intensity lies in the previously defined
range is presented on the example of the continuous beam
with two spans which is loaded in the middle of the span
with concentrated forces. The limit load was determined
applying static and kinematic shakedown theorem, as one-
parameter and two-parameter load. When that load is of the
same direction, it is possible to determine only the
incremental failure load.

On the basis of Fig. 14, where changes of limit and
incremental failure force depending on the beam span value
are presented it is concluded that the application of
shakedown method is justified for certain relations of
coefficients and , while in some cases the limit load can
be determined through the application of limit analysis
considering that the difference between these forces is
small. However, when one of the forces has alternating

α β

character, the difference between the failure forces (Fig. 17)
for some spans is up to 50,95 %, so the application of
shakedown analysis is obligatory, which is also valid in the
case when both forces are of alternating character (Fig. 19).
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