GREAT CIRCLE SAILING - CALCULATION OF INTERMEDIATE POSITIONS Ortodromska plovidba - izračun međutočaka

dr. sc. Zvonimir Lušić

Pomorski fakultet u Splitu
zlusic@pfst.hr

Summary

This paper deals with the realization of the great circle navigation. In practice, the main problem occurs because the great circle is a curve on the Mercator navigation chart, which has to be broken down into a number of smaller rhumb line parts. Besides computer programs, the simplest way of realization of the great circle navigation is by using the Gnomonic chart as the great circle is a straight line on this chart. Conventional numerical and tabular methods based on spherical trigonometry are quite complicated and time consuming. In order to simplify the way of computing intermediate positions along the great circle, this paper suggests the use of the Latitude Equation of the Mid-longitude and appropriate tables based on this method. Also, using spherical trigonometry, the paper presents a way of obtaining the Latitude Equation of the Mid-longitude. Originally, the Latitude Equation of the Mid-longitude is derived without the use of spherical trigonometry.
Keywords: great circle, calculation of intermediate positions, latitude equation of the mid-longitude

Sažetak

Ovaj se rad bavi problemom realizacije ortodromske plovidbe. Glavni problem u praksi pojavljuje se zbog toga što je ortodroma krivulja na Mercatorovoj navigacijskoj karti i što se neizostavno mora razbiti u više manjih Ioksodromskih dijelova. Ako se izuzmu računalni programi, najjednostavniji način realizacije ortodromske plovidbe je upotrebom gnomonske karte, jer je na njoj ortodroma pravac. Ostali numerički i tablični načini dosta su komplicirani i zahtjevaju vremena za rješavanje. Kako bi se pojednostavnio način računanja međutočaka ortodrome, predlaže se uporaba računa zemljopisne širine za srednju zemljopisnu dužinu dviju točaka ortodrome te prema ovoj metodi izrada odgovarajućih tablica. Jednadžba širine za srednju zemljopisnu dužinu izvorno je izvedena bez korištenja sfernom trigonometrijom, a u ovom radu ona se izvodi upravo s pomoću sferne trigonometrije.
Ključne riječi: ortodroma, izračun međutočaka ortodrome, jednadžba širine za srednju zemljopisnu dužinu.

INTRODUCTION / Uvod

A great circle track is the shortest distance between two points on the Earth's surface, assuming the Earth as a perfect spherical model ${ }^{1}$. One of the fundamental features of the great circle is that it intersects the meridians at different angles. On the other hand, determining the direction and the orientation at sea (or in the air) are based on the use of the compass, i.e. defining the direction that intersects the meridians at the same angle. For this purpose the Mercator navigation chart is also in use. On this chart a straight line (rhumb line) intersects the meridians at the same angle. This means that the great circle on the Mercator chart is a curve. It is very difficult to draw the great circle on the Mercator chart, but even if it is drawn, it is not practical to sail along an exact great circle route using the classic compass as, to follow a great circle track, the navigator needs to adjust the ship's course continuously. Also, every time a ship sails in one course, even for a little while, she is navigating the rhumb line. Therefore, in practice, the great circle is divided into a number of smaller parts, i.e. the intermediate positions, between which a ship sails along the rhumb line, are determined. The greater the number of intermediate positions, the closer the sailing will be to the ideal great circle.

Intermediate positions can be determined in many ways, but the simplest one is by using the Gnomonic chart. On this chart the great circle track is a straight line and the coordinates of the intermediate positions can be easily read and transferred to the Mercator navigation chart. On the other hand, numerical methods, even the simplest ones, require a lot of time. For example, commonly used models of spherical trigonometry, in which the Earth is an ideal sphere, necessarily imply the calculation of a number of additional elements without which it is not possible to determine intermediate positions. This involves determining the great circle (orthodromic) distance, initial orthodromic course, final orthodromic course, and latitude and longitude of the vertex. These data are useful, but they are not sufficient in accomplishing the great circle navigation which requires intermediate positions. In order to shorten the process of determining the elements of the great circle navigation, this paper presents the usefulness of Latitude Equation of the Mid-longitude. This method is directly aimed at determining intermediate positions, where the geographical coordinates of points of departure and arrival are the only necessary inputs.

[^0]
USE OF SPHERICAL TRIGONOMETRY / Korištenje sfernom trigonometrijom

Figure 1 shows orthodromic spherical triangle. From this triangle, by use of few basic laws of spherical trigonometry $[4,101-105]$ it is possible to obtain orthodromic distance, initial and final course, vertex and intermediate positions.

Figure 1. Orthodromic spherical triangle Slika 1. Ortodromski sferni trokut
P_{1} - starting position (standpoint)
P_{2} - ending position (forepoint)
D_{0} - orthodromic distance $\left(P_{1} P_{2}\right)$
C_{0} - initial course
C_{f} - final course
φ_{v} - latitude of Vertex
M - intermediate position
φ_{M} - latitude of point M
λ_{M} - longitude of point M
$\Delta \lambda_{M}\left(\lambda_{V}-\lambda_{M}\right)$
C_{M} - orthodromic course at point M
d_{v} - distance from Vertex to point M

Orthodromic Distance / Ortodromska udaljenost

According to the law of cosines:
$\cos D_{o}=\sin \varphi_{1} \cdot \sin \varphi_{2}+\cos \varphi_{1} \cdot \cos \varphi_{2} \cdot \cos \Delta \lambda$.
Initial and Final Course / Početni i završni kurs
a) According to the law of cosines:
$\cos C_{o}=\frac{\sin \varphi_{2}-\sin \varphi_{1} \cdot \cos D_{o}}{\cos \varphi_{1} \cdot \sin D_{o}}$,
$\cos C_{f}=\frac{\sin \varphi_{1}-\sin \varphi_{2} \cdot \cos D_{o}}{\cos \varphi_{2} \cdot \sin D_{o}}$.
b) According to the law of sines:
$\sin C_{o}=\frac{\cos \varphi_{2} \cdot \sin \Delta \lambda}{\sin D_{o}}$,
$\sin C_{f}=\frac{\cos \varphi_{1} \cdot \sin \Delta \lambda}{\sin D_{o}}$.
c) According to the law of cotangent:
$\cos C_{o}=\frac{\cos \varphi_{1} \cdot \tan \varphi_{2}}{\sin \Delta \lambda}-\sin \varphi_{1} \cdot \cot \Delta \lambda$

Vertex / Vrh ortodrome

According to Napier's Rule:
$\cos \varphi_{v}=\cos \varphi_{1} \cdot \sin K_{o}$,
$\cot \Delta \lambda_{v}=\sin \varphi_{1} \cdot \tan K_{o}$,
$\lambda_{v}=\lambda_{1} \pm \Delta \lambda_{v}$.

Intermediate Positions / Međutočke ortodrome

a) Determining the φ_{M} of the selected λ_{M} (according to Napier's Rule):
$\tan \varphi_{M}=\tan \varphi_{V} \cdot \cos \left(\lambda_{v}-\lambda_{M}\right)$.
b) Determining the position of a waypoint by distance d_{v} from Vertex (according to Napier's Rule):
$\sin \varphi_{M}=\cos d_{v} \cdot \sin \varphi_{V}$,
$\cot \Delta \lambda{ }_{M}=\cos \varphi_{v} \cdot \cot d_{v}$,
$\lambda_{M}=\lambda_{V} \pm \Delta \lambda_{M}$.
c) Determining the positions of the waypoints for course change $\left(\mathrm{C}_{\mathrm{M}}\right)$ of 1° (according to Napier's Rule):
$\cos \varphi_{M}=\frac{\cos \varphi_{V}}{\sin C_{M}} \quad \mathrm{C}_{M}=\mathrm{C}_{0} \pm 1, \mathrm{C}_{0} \pm 2, \ldots$,
$\sin \Delta \lambda_{M}=\frac{\cos C M}{\sin \varphi V} \quad \lambda_{M}=\lambda_{V} \pm \ddot{A} \lambda_{M}$.

In addition to the above formulas there are other models, also based on spherical trigonometry ${ }^{2}$.

GRAPHICAL SOLUTION / Grafičko rješenje

Figure 2 shows how to use Gnomonic chart to obtain waypoints of a great circle. Procedure:

- Join the two places on the Gnomonic chart by a straight line.
- Choose intermediate positions (waypoints) - those, it is recommend, where the great circle intersects the drawn meridians (for the same $\Delta \lambda)$.
- Transfer the waypoints (latitude and longitude) on the Mercator navigation chart.
- Join the waypoints on the Mercator chart by straight lines.

Figure 2. Using the Gnomonic chart to construct a great circle track on a Mercator projection
Slika 2. Upotreba gnomonske karte za konstrukciju ortodrome na Mercatorovoj karti [2, 372)]

LATITUDE EQUATION OF THE MID LONGITUDE / Jednadžba širine za srednju zemljopisnu dužinu

Waypoints of the great circle can be determined directly, i.e. without calculating the initial course, orthodromic distance, vertex, etc. One way is to calculate the latitude at the longitude halfway between the start longitude and the end longitude (latitude equation of the mid longitude)[6]. Having the coordinates of that middlepoint, it is possible to split each half further, and so on, using the same method, until point-to-point legs are short enough to be treated as rhumb-lines.

The latitude equation of the mid longitude can

[^1]be derived in several ways ${ }^{3}$. However, the same result (formula) can be obtained by using spherical trigonometry.

Cotanges theorem (for spherical triangle with lines a, b, c and angles $\alpha, \beta, \gamma)$:
$\frac{\cot \alpha}{\sin b}=\frac{\cot a}{\sin \gamma}-\cot \gamma \cdot \cot b$.
If we apply Expression (16) to the Orthodromic spherical triangle (Figure 1) to find the latitude of point M which has longitude difference $\Delta \lambda / 2$ from $P_{1}\left(\right.$ and $\left.P_{2}\right)$, then:
$\frac{\cot C_{o}}{\sin \left(90-\varphi_{1}\right)}=\frac{\cot \left(90-\varphi_{M}\right)}{\sin \frac{\Delta \lambda}{2}}-\cot \frac{\Delta \lambda}{2} \cdot \cot \left(90-\varphi_{1}\right)$,
$\frac{\tan \varphi_{M}}{\sin \frac{\Delta \lambda}{2}}=\frac{\cot C_{o}}{\cos \varphi_{1}}+\frac{\tan \varphi_{1}}{\tan \frac{\Delta \lambda}{2}}$,
$\tan \varphi_{M}=\sin \frac{\Delta \lambda}{2} \cdot\left(\frac{\cot C_{o}}{\cos \varphi_{1}}+\frac{\tan \varphi_{1}}{\tan \frac{\Delta \lambda}{2}}\right)$

If we apply Expression (16) to the Orthodromic spherical triangle $\left(P_{1}, P_{2}, P_{N}\right)$ it is possible to obtain a formula for the initial course C_{0} (Expression 6):
$\cot C_{o}=\frac{\cos \varphi_{1} \cdot \tan \varphi_{2}}{\sin \Delta \lambda}-\sin \varphi_{1} \cdot \cot \Delta \lambda$.

If the above Expression for C_{0} (6) replaces the initial course C_{0} in Expression 17:
$\tan \varphi_{M}=\sin \frac{\Delta \lambda}{2} \cdot\left(\frac{\cos \varphi_{1} \cdot \tan \varphi_{2}-\sin \varphi_{1} \cdot \cos \Delta \ddot{e}}{\sin \Delta \lambda \cdot \cos \varphi_{1}}+\frac{\tan \varphi_{1}}{\tan \frac{\Delta \lambda}{2}}\right)$.
Double-angle formula for $\sin \alpha$:
$\sin \alpha=2 \cdot \sin \frac{\alpha}{2} \cdot \cos \frac{\alpha}{2}$
$\tan \varphi_{M}=\sin \frac{\Delta \lambda}{2} \cdot\left(\frac{\cos \varphi_{1} \cdot \tan \varphi_{2}-\sin \varphi_{1} \cdot \cos \Delta \lambda}{2 \cdot \sin \frac{\Delta \lambda}{2} \cdot \cos \frac{\Delta \lambda}{2} \cdot \cos \varphi_{1}}+\frac{\tan \varphi_{1}}{\tan \frac{\Delta \lambda}{2}}\right)=$

[^2]$\frac{\tan \varphi_{2}}{2 \cdot \cos \frac{\Delta \lambda}{2}}-\frac{\tan \varphi_{1} \cdot \cos \Delta \lambda}{2 \cdot \cos \frac{\Delta \lambda}{2}}+\tan \varphi_{1} \cdot \cos \frac{\Delta \lambda}{2}=$
$\frac{\tan \varphi_{2}+\tan \varphi_{1} \cdot\left(2 \cdot \cos ^{2} \frac{\Delta \lambda}{2}-\cos \Delta \lambda\right)}{2 \cdot \cos \frac{\Delta \lambda}{2}}$,
$\tan \varphi_{M}=\frac{\tan \varphi_{1}+\tan \varphi_{2}}{2 \cdot \cos \frac{\Delta \lambda}{2}}$.

For $\varphi_{1}=\varphi_{2}$:
$\tan \varphi_{M}=\frac{\tan \varphi_{1}}{\cos \frac{\Delta \lambda}{2}}$.

According to the final formula (20), the tangent of latitude at mid-longitude is equal to the sum of the tangents of two latitudes divided by the double cosine of mid-longitude. If using this formula, it is easy to split up the great circle into smaller parts, without any approximation. Also, this formula enables making a table containing the latitudes of the mid longitude for various starting and ending positions (Table 1). These results can be used for further rough estimation of waypoints, i.e. for an approximate calculation of the waypoints.

Latitude 2 84 ${ }^{24}$		－83	． 0	． 50	Sa	－4）	36	So	Latitude 1			34	36	40	53	61	\％	50	
		－5							0	10									
38	10		－68．831	47	at	－1＞	．7，	0	13	$11.3 a 8$	18， 240	20.721	25，293	32 cas	35，410	41.803	49.215	sucts	72.316
	15	－6a391	＋7．884	40.214	－17．219	－7．625	0	6.142	12，693	14.254	20．814	26.995	32.214	36.810	11.739	40．850	51． 180	72304	
	20	－88．031	47,773	－30，38	－17，325	－7．970		0.185	11.958	10．3s	20.959	20，944	32.381	38.722	41.950	20．940	90．298	72.808	
	25	－60．027	41,020	－20，500	－17，457	－7，625	0	8.227	11，658	18，472	21，106	25， 73	22，620	35，060	42，177	40，746	50，475	72817	
	30	－2． 231	＋1．324	－06．807	－17．043	－7．711	0	0.303	11727	＋6．038	21.312	25.973	32.857	30.249	＋2．402	50.097	5P． 842	72.850	
	35	－0．471	48.85	－41．160	－17．654	－7．814	0	0.383	11.873	14.840	21.500	20．29s	31.189	34.549	42.825	50.445	36． 159	73.005	
	40	－6． 44	－4，vor	$-31,867$	－12．102	－7，928	0	6.477	12048	17，077	21，482	20，60s	31．685	37，068	41.200	80，081	40，s22	73.200	
	45	－7p．082	＋5，507	－32，002	－19．392	－ 9.053	0	0.597	12.245	17，352	22.169	28．998	22.092	37，473	43.754	\＄1．397	96．53T	73．587	
	60	－7ats2	－60．124	42.464	－12725	4.217	0	0.714	12475	17．068	22.507	27．444	32.499	38.085	44.304	61．372	91， $\mathrm{BLC}^{\text {a }}$	73．894	
	55	－70T98	－50．739	－33．060	－18．193	－9．983	0	Q．989	12.738	18.017	23.910	27．895	31.050	38.065	44.800	$52+98$	91.817	74.150	
	69	71.321	－61，456	－32．060	－10．53t	－8．584	0	3.003	12．a38	18．435	2 Sctc	28.623	32.050	35.270	45.608	68.130	62．483	74.507	
	65	－71．67t	－62．145	－34．364	－20．514	4． 3.21	0	5.210	12.373	18．tets	24．076	20.184	34.354	45．dE1	46.365	\＄3．a56	33．150	74．860	
	70	－ 2.171	－52．850	－35，977	－30．357	－9．077	0	7.421	12754	19，413	24，704	29．095	35.177	40，046	47，190	54，048	63，760	75.309	
	75	－ 2.098	－53，927	ac， 01	－21，197	－ 0.287	0	2，089	14，194	10．965	25，407	30.070	28．045	41，788	48，115	Sc．520	34，489	75，752	
	60	－ts 200	－04．7	－49，00	－21．852	－2．035	0	7.020	14.058	20.948	20.104	31，50？	37.025	42．754	40．10？	S0．439	05．260	70.224	
	85	－73． 554	－65，00	－34．06	－22，625	－10．056	0	6.294	16.214	21，362	27，603	12．56）	31.084	42，840	50．100	57.442	38．cts	76.722	
	$p 0$	－74．494	－51，90	－38．23	－29402	－10．418	0	0.509	15.912	22，260	20.008	39.041	32.232	45．045	51.305	50.518	absse	77247	
	05	． 78.144	－08．805	A5， 517	． 24.457	－10．963	0	8.874	12.581	28．135	23.162	34．454	42．4t\％	46．381	t2．095	80．095	SPAB4	77．768	
	160	The 634	－61．356	－41．060	456．504	－11．6ts	0	6.424	17．325	24．146	36．361	婎212	41.636	4）．773	Ss． 605	60．s．37	48．861	76.374	
	105	－70．351	－00，70e	－4，489	－2a， 7 TT	－12．139	0	P． 841	10.231	25，970	21，759	30，T0\％	43.48	48．319	\＄5，404	02.302	OPAES	70．904	
	110	T7T． 308	． 02.120	－48， 16	＋28．173	－12．853	0	10.837	19.358	28，740	33.306	20.771	45．588	50，007	87．090	62．585	75．se4	70.807	
	115	－78．638	－63．e56	4）．068	－20．75	－13．65	0	11.231	20.455	28.248	35．694	41．218	47.058	52.814	58.54	60.047	72 cto	30．362	
	120	－76．${ }^{\text {¢ }}$ ）	-65.246	－46．167	－31．567	－14．855	0	12.605	21．052	\＄5．046	17，．605	4） 2 兗	42．727	54，776	60.522	68.517	73.260	\＄6．36	
45	10	－67．699	－ 4.78	24.141	－10．037	0	7．454	18.413	12005	22.859	27，000	31.125	35.410	40．168	45．549	82.228	98． $0^{4} 47$	72004	
	15	－oreess	43，803	－24，243	－12，05s	0	7，920	13，475	12.452	22，937	27，117	31，248	38，540	40，243	45，005	22，390	a1，ces	73,001	
	20	－67， 624	44，006	．24，269	，10． 151	0	7，570	12，562	12．328	22，075	27，372	31，417	25，722	4D，432	45.877	52，548	61，226	72，169	
	25	－67．697	＋4．34	24.87	－10．233	0	7.336	18.878	1274F	23.255	27.470	31．63p	35.958	4B．478	40．128	22．738	41，485	73.306	
	30	－6\％．20s	44.85	－24．850	－10．305	0	7．710	13.817	13．ast	23，498	27．727	31.913	30．249	48．981	46.431	58.950	31．Ab2	73.478	
	35	－20．458	45，014	－28，0	－10．475	0	7，014	13，807	12．ta！	23，745	28，000	32，241	38，82T	41，342	40.005	52，430	61，965	73070	
	40	-6847	＋5．438	－25．4	－10．628	0	7.829	14．189	19， 425	24.040	28.382	30.025	37.025	49.763	47.219	53.835	62.345	73.898	
	45	-60.074	－5，822	－25，760	－10．105	0	1，061	14.421	12.72	24，414	21.791	30．081	27.473	42.247	45.0	54．225	82.741	74.156	
	80	－cas 38	＋1．474	－20．220	－11．019	0	1.217	14.109	20．035	24．840	28.290	39.973	38.095	42．746	40.200	54．as7	92．189	74，40	
	85	－tasas	－47．800	－20．718	－11．24）	0	8.358	14．809	20.458	25．314	28.780	34.144	38．095	48．410	48．862	56．s2s	98．ces	74.707	
	60	－70．200	－47，773	－27，273	－11，508	0	8，504	15，3＊0	20．051	25，048	$30.3{ }^{1}$	34．r34	32.276	44，006	40．54b	se， 034	34．223	75，762	
	65	－ 0 T57	＋1．327	-27 AS0	-11.89	0	M． 21	15.731	21.451	28.48	31，549	3 5 ＋91	＋2．081	44／854	50．209	36，733	94／A12	75．475	
	70	271． 271	4 A .358	46．809	＋12．143	0	0.977	10.173	22.028	27，130	31701	30.201	42.846	4E． 859	81.107	87．426	98．af0	75878	
	T8	－7． 622	－60．256	－25，300	－12531	0	2．385	16.670	22 570	27.871	12．s．	35.170	41．755	48．8t6	81．500	紋．20	58．135	76.305	
	to	－72408	－61，242	－36，226	-12.152	0	0，5s6	17，230	22.303	28，750	23．856	30.141	42．754	47，st6	S2．80）	\＄0．210	38，469	76．750	
	85	－7．098	－52．300	41，450	-13.459	0	18．000	17.109	24.203	28．042	34.859	39.211	＋1．949	41.080	\＄4．017	00.190	97885	77290	
	60	－73．637	－53，450	－32．2t9	－14．602	0	15．460	18.871	25.118	35．e52	35．070	40．338	45.045	45．870	55.148	01． 188	58， 480	77.754	
	65	－74．372	－64，761	－31，450	－14．62d	0	15，06d	16.374	2t．125	31，441	16．125	41，6d1	44．351	51，161	56.363	62.277	3b， 267	71.276	
	100	－ 75.102	－50，094	－3，754	-1534	0	41.500	20.204	27.273	33.133	30.304	40.195	47，773	52．540	57.005	09．+35	70．200	75190	
	105	．78．65t	－67／469	． 36.287	－10．154	0	42.183	21.318	220．612	24，834	38.838	44，868	42．310	54，890	c0．867	04．081	71.240	70，407	
	110	－Ta．64s	－68，086	497.807	－17．05s	0	12，853	22－404	st． 017	38，184	41.514	40．353	52．017	56，846	60．54b	60．956	72.263	80．007	
	115	－7T， 462	－62．816	－38，725	－18．158	0	13，589	21.189	31.855	37.984	43．37\％	48．221	52.114	\＄7，387	c2．115	57.318	73.321	s0．sz7	
	120	－78．301	－02．345	－41，769	＋19．425	0	54，009	25.414	29535	45．060	45．430	50．290	54.778	50．210	car94	Q9．747	74，A24	11209	

Table 1．Latitudes of the mid－longitudes（example）
Tablica 1．Zemljopisne širine za srednje zemljopisne dužine（primjer）
Source［Author］

In the Table 1 the input parameters（Lat ${ }_{1}$ and Long $_{2}$ ） are given with a 10° alteration，while Δ Long is given with a 5° alteration．Results are in degrees．By selecting this density of input parameters with relatively small number of offered final results（latitudes），a large part of the Earth＇s surface can be covered in a satisfactory way． With these final results it is possible to approximately determine any great circle waypoints，by using linear
interpolation．An error occurs solely because of using linear interpolation（when real coordinates of starting and ending positions do not match the ones for which the final results have been offered）．The linear interpolation error is reduced，or eliminated，by using tables featuring a higher density of input parameters or by selecting starting and ending coordinates according to the ones contained in the tables．

EXAMPLE 1 / Primjer 1.
From Lat. $30^{\circ} 00,0^{\prime} \mathrm{N}$., Long. $060^{\circ} 00,0^{\prime}$ W., to Lat. $40^{\circ} 00,0^{\prime} \mathrm{N}$., Long. $020^{\circ} 00,0^{\prime}$ W., find the total distance on the great circle and 3 waypoints by using Latitude Equation of the Mid-longitude (i.e., find the waypoints on Long. $050^{\circ} 00,0^{\prime}$ W., Long. $040^{\circ} 00,0^{\prime} \mathrm{W}$. and Long. $030^{\circ} 00,0^{\prime} \mathrm{W}$.).
a) Use of Equation (20):
$\begin{array}{ll}\tan \varphi M=\frac{\tan 30^{\circ}+\tan 40^{\circ}}{2 \cdot \cos 20^{\circ}} & \rightarrow \phi_{M}=37^{\circ} 00,3^{\prime} \mathrm{N}\left(\text { for } \lambda=040^{\circ} 00,0^{\prime} \mathrm{W}\right), \\ \tan \varphi M=\frac{\tan 30^{\circ}+\tan 37^{\circ} 00,3^{\prime}}{2 \cdot \cos 10^{\circ}} & \rightarrow \phi_{M}=34^{\circ} 03,0^{\prime} \mathrm{N}\left(\text { for } \lambda=050^{\circ} 00,0^{\prime} \mathrm{W}\right), \\ \tan \varphi M=\frac{\tan 37^{\circ} 00,3^{\prime}+\tan 40^{\circ}}{2 \cdot \cos 10^{\circ}} & \rightarrow \phi_{M}=38^{\circ} 57,7^{\prime} \mathrm{N}\left(\text { for } \lambda=030^{\circ} 00,0^{\prime} \mathrm{W}\right) .\end{array}$
b) Use of Table 1:

With Lat. $1=+30^{\circ} 00,0^{\prime}$, Lat. $2=+40^{\circ} 00,0^{\prime}$ and Δ Long. $=040^{\circ} \rightarrow$ Table $1 \rightarrow \phi_{\mathrm{M}}=37,005^{\circ}=37^{\circ} 00,3^{\prime} \mathrm{N}$ (for Long. $=040^{\circ} 00,0^{\prime} \mathrm{W}$).

With Lat. $1=+30^{\circ} 00,0^{\prime}$, Lat. $2=+37,005^{\circ}$ and Δ Long. $=020^{\circ} \rightarrow$ Table $1 \rightarrow \phi_{\mathrm{M}}=34,122^{\circ}=34^{\circ} 07,3^{\prime} \mathrm{N}$ (for Long. $=050^{\circ} 00,0^{\prime} \mathrm{W}$; ϕ_{M} obtained by linear interpolation between results for Lat. $2=30^{\circ} \mathrm{N}$ and Lat. $2=40^{\circ} \mathrm{N}$).

With Lat. $1=+37,005^{\circ}$, Lat. $2=+40^{\circ} 00,0^{\prime}$ and Δ Long. $=020^{\circ} \rightarrow$ Table $1 \rightarrow \phi_{\mathrm{M}}=39,021^{\circ}=39^{\circ} 01,3^{\prime} \mathrm{N}$ (for Long. $=030^{\circ} 00,0^{\prime} \mathrm{W} ; \phi_{\mathrm{M}}$ obtained by linear interpolation between results for Lat. $1=30^{\circ} \mathrm{N}$ and Lat. $1=40^{\circ} \mathrm{N}$).

Table 2. Calculation of waypoints - Example 1
Tablica 2. Izračun međutočaka - primjer 1

Waypoints - from Table 1					Waypoints - from Equation (20)			
No	Lat	Long	Course RL	$\begin{gathered} \hline \text { Dist } \\ \text { (n.m.) } \end{gathered}$	Lat	Long	Course RL	$\begin{gathered} \hline \text { Dist } \\ \text { (n.m.) } \end{gathered}$
0	30-00,0 N	060-00,0 W	064,2	567,5	30-00,0 N	060-00,0 W	064,6	565,8
1*	$\begin{aligned} & 34-07,3 \mathrm{~N} \\ & \varphi 1=30^{\circ} \\ & \varphi 2=37,005^{\circ} \end{aligned}$	$\begin{aligned} & 050-00,0 \mathrm{~W} \\ & \Delta \mathrm{Long}=20^{\circ} \end{aligned}$	070,6	519,8	$\begin{aligned} & 34-03,0 \mathrm{~N} \\ & \varphi 1=30^{\circ} \\ & \varphi 2=37,005^{\circ} \end{aligned}$	$\begin{aligned} & 050-00,0 \mathrm{~W} \\ & \Delta \text { Long }=20^{\circ} \end{aligned}$	070,1	521,4
2	$\begin{aligned} & 37-00,3 \mathrm{~N} \\ & \varphi 1=30^{\circ} \\ & \varphi 2=40^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & 040-00,0 \mathrm{~W} \\ & \Delta \text { Long }=40^{\circ} \end{aligned}$	075,7	489,8	$\begin{aligned} & 37-00,3 \mathrm{~N} \\ & \varphi 1=30^{\circ} \\ & \varphi 2=40^{\circ} \end{aligned}$	$\begin{aligned} & 040-00,0 \mathrm{~W} \\ & \Delta \text { Long }=40^{\circ} \end{aligned}$	076,1	489,1
3*	$\begin{aligned} & 39-01,3 \mathrm{~N} \\ & \varphi 1=37,005^{\circ} \\ & \varphi 2=40^{\circ} \end{aligned}$	$\begin{gathered} 030-00,0 \mathrm{~W} \\ \Delta \text { Long }=20^{\circ} \end{gathered}$	082,8	468,4	$\begin{aligned} & 38-57,7 \mathrm{~N} \\ & \varphi 1=37,005^{\circ} \\ & \varphi 2=40^{\circ} \end{aligned}$	$\begin{aligned} & 030-00,0 \mathrm{~W} \\ & \Delta \text { Long }=20^{\circ} \end{aligned}$	082,4	469,1
4	40-00,0 N	020-00,0 W			40-00,0 N	020-00,0 W		
Total distance			2045,5			Total distance		2045,4
GC distance 2036,6 n.m. // RL distance 2059,2 n.m.								

[^3]PRIMJER 2. / Example 2

From Lat. $30^{\circ} 00,0^{\prime}$ N., Long. $070^{\circ} 00,0^{\prime}$ W., to Lat $30^{\circ} 00,0^{\prime} \mathrm{N}$., Long. $010^{\circ} 00,0^{\prime} \mathrm{W}$., find the total distance on the great circle and 3 waypoints by using Latitude

Equation of the Mid-longitude (i.e., find the waypoints on Long. $055^{\circ} 00,0^{\prime}$ W., Long. $040^{\circ} 00,0^{\prime} \mathrm{W}$. and Long. $025^{\circ} 00,0^{\prime}$ W.).

Table 3. Calculation of waypoints - Example 2
Tablica 3. Izračun međutočaka - primjer 2

Waypoints - from Table 1					Waypoints - from Equation (20) and (21)			
No	Lat	Long	Course RL	$\begin{gathered} \text { Dist } \\ \text { (n.m.) } \end{gathered}$	Lat	Long	Course RL	$\begin{gathered} \text { Dist } \\ \text { (n.m.) } \end{gathered}$
0	30-00,0 N	070-00,0 W	077,6	790,2	30-00,0 N	070-00,0 W	077,8	789,7
1*	$\begin{aligned} & \hline 32-50,9 \mathrm{~N} \\ & \varphi 1=30^{\circ} \\ & \varphi 2=33,6901^{\circ} \end{aligned}$	$\begin{aligned} & 055-00,0 \mathrm{~W} \\ & \Delta \mathrm{Long}=30^{\circ} \end{aligned}$	086,1	757,8	$\begin{aligned} & \hline 32-46,8 \mathrm{~N} \\ & \varphi 1=30^{\circ} \\ & \varphi 2=33,6901^{\circ} \end{aligned}$	055-00,0 W Δ Long $=30^{\circ}$	085,9	758,3
2	$\begin{aligned} & 33-41,4 \mathrm{~N} \\ & \varphi 1=30^{\circ} \\ & \varphi 2=30^{\circ} \end{aligned}$	040-00,0 W Δ Long $=60^{\circ}$	093,9	757,8	$\begin{aligned} & 33-41,4 \mathrm{~N} \\ & \varphi 1=30^{\circ} \\ & \varphi 2=30^{\circ} \end{aligned}$	040-00,0 W Δ Long $=60^{\circ}$	094,1	758,3
3*	$\begin{aligned} & 32-50,9 \mathrm{~N} \\ & \varphi 1=33,6901^{\circ} \\ & \varphi 2=30^{\circ} \end{aligned}$	025-00,0 W Δ Long $=30^{\circ}$	102,4	790,2	$\begin{aligned} & 32-46,8 \mathrm{~N} \\ & \varphi 1=33,6901^{\circ} \\ & \varphi 2=30^{\circ} \end{aligned}$	025-00,0 W Δ Long $=30^{\circ}$	102,2	789,7
4	30-00,0 N	010-00,0 W			30-00,0 N	010-00,0 W		
Total distance			3096,0		Total distance			3096,0
GC distance 3079,1 n.m. // RL distance 3117,7 n.m.								

* "Waypoints-from Table 1" - near exact results obtained by linear interpolation; RL - Rhumb line.

CONCLUSION / Zaključak

The issue of the great circle navigation is most frequently addressed by using special computer softwares or modern electronic aids to navigation (GPS, ECDIS, etc.). However, the same problem can be solved by using gnomonic charts or nautical tables. Most tables are relatively complicated and can be, for this reason, supplemented by a table of final results showing the latitude of the intermediate position which lies between two observed positions. The final results tables can help obtain approximate waypoints but they can also be used for an initial assessment of the great circle navigation, i.e. for checking the results obtained by other means. Moreover, the method of calculating the latitude of the mid-longitude is useful when using logarithmic tables (logarithms of trigonometric functions), which are featured within nautical tables [4][5], also when using a calculator in computing intermediate positions of the great circle.

REFERENCES / Literatura

[1] Benković, F., Piškorec, M., Lako, Lj., Čepelak, K., Stajić, D.; Terestrička i elektronska navigacija, Hidrografski Institut Ratne mornarice, Split, 1986.
[2] Bowditch, N.; The American Practical Navigator, DMAHTC, Maryland, 1995
[3] Coolen, E.; Nicholls's Concise Guide to Navigation - Volume 2 (12th Edition), Brown, Son \& Ferguson, Ltd., Glasgow, 1995
[4] Nautičke tablice, Hidrografski institut Ratne mornarice, Split, 1984.
[5] Norie's Nautical Tables, Imray Laurie Norie and Wilson Ltd., St Ives, Cambridgeshire, 1991
[6] Tseng, W.-K., Lee, H.-S.; "Building the Latitude Equation of the Mid-longitude", The
Journal of Navigation (2007), 60, The Royal Institute of Navigation, UK, 164-170.

Rukopis primljen: 25. 9. 2011.

[^0]: ${ }^{1}$ A great circle is defined as a circle on the Earth's surface whose plane passes through the centre of the Earth.

[^1]: ${ }^{2}$ See different types of tables for calculation of great circle elements (haversines [3, 83], ABC tables [1, 587], PR ω [4, 41], etc.).

[^2]: ${ }^{3}$ Equation of mid-longitude derived by the equation of the plane determined by the two points and the centre of the sphere or equation derived by the equation of straight line on the Polar Gnomonic [6].

[^3]: * "Waypoints-from Table 1" - near exact results obtained by linear interpolation; RL - Rhumb line.

