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This paper presents an approach for ego-motion estimation basedrop-@ffFlight (ToF) camera. Itis applied
in real-time on a mobile robot platform during mission.

The proposed method utilizes the coherence of depth and reflectaiacef d@F cameras by detecting image
features on reflectance data and estimating the motion on related depffhdataotion estimate is fused with data
from an inertial measurement unit in order to gain higher accuracy@mndstness, especially in situations when
image registration fails.

Results are benchmarked against reference poses from antadesex ranger finder-based localization.

Key words: Ego-Motion estimation, TOF camera, Sensor fusion

Fuzija TOF kamera i inercijalnih mjernih jedinica za procjenu vlastito g gibanja. Clanak opisuje pristup
procjeni vlastitog gibanja utemeljenom na time-of-flight (ToF) kameravtetoda je primijenjena u stvarnom vre-
menu na mobilnom robotu tijekom misije. PredloZena je metoda utemeljenagaamjsialubinskih i reflektiranih
podataka iz ToF kamera, detektira Zagke u slici reflektiranih podataka te procjenjuje gibanje pripadajdu-
binskih podataka. Vrsi se fuzija procjene gibanja s podacima iz inercijgjame jedinice radi ostvarivanja bolje
toCnosti i robusnosti, pogotovo u €laju nemoganosti registracije slike. Rezultati su uspdeei s referentnim
mjerenjima algoritma lokalizacije temeljenog n&nom laserskom senzoru udaljenosti.

Klju €ne rijeCi: procjena vlastitog gibanja, ToF kamera, fuzija senzora

1 INTRODUCTION correspondences between two images from a different per-
Time-of-flight (ToF) cameras are compact solid-state>Pective have to be determined. In addition, distances to

sensors that provide depth and reflectance measurement&gfmureless surfaces cannot be measured, if the perspec-

high frame rates. An array of infrared LEDs is employed]tc!vf3 4 pr]?Je_ctlonS:)f the pt_)ject IIS Iargft? ' th?n thehc%me_ra’s
to illuminate the environment with modulated light. The Ield of view. S1ereo vision aiso suliers from shadowing

reflected light is measured on a photo-sensitive chip i ffects and changes in illumination. These issues can be

CCD/CMOS technology, i.e., depth and intensity are deg:woided using 3D laser range finders that actively illumi-

termined in parallel for each element in the sensor array. nate the scene. 3D laser range finders have other disad-

o _vantages though, like high power consumption, mechani-
The dense depth measurements facilitate 6-DoF regigey moving parts and low frame rate.

tration of frame sequences. However, accuracy and preci- The work presented in this paper utilizes a ToF cam-

sion of the distance measurements are_l|m|ted by_a NUMsra for ego-motion estimation. It incorporates the coher-
.b er of error sources. The.refo.re, range image reglstraﬂggnt reflectance and depth images measured by the camera.
IS error prone and results in hlghly.dlstorted maps even lib ;¢ correspondences are determined directly on the low-
enwr_onme_nts_ of small scale. Detailed explanations on th?esolution reflectance data. The depth information is incor
yvorkmg principle and related error sources can be fOun(?borated for estimating the transformation between frames.
in the works of Lange [1] and Schneider [2]. In order to increase robustness, the motion estimate is
ToF cameras have some advantages when comparifigsed with the measurements of an inertial measurement
them to other state-of-the-art 3D sensors. So far, 3D lasgjnit (IMU). Both sensors are complementary and, thus, can
scanners and stereo camera systems are mostly used dugépnpensate the errors of each other. Range image registra-
their high measurement range and accuracy. tion with a narrow field-of-view has difficulties in situa-
Stereo vision induces a high computational load sincdions with high rotational velocities, whereas the transla
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would be higher and that the use of a gyroscope could com-
pensate this error. They mainly used algorithms that have
been successfully applied to laser range finder data. Apply-
ing these methods to the ToF camera is not straightforward
mainly for two reasons: Bauer

e Compared to laser ranger finders, the measurement
accuracy of recent ToF cameras is lower.

e Due to the larger field of view of laser range-finders,
the registration of range images is easier.

Because of the lower measurement accuracy of ToF
cameras, many groups addressed error modeling and cal-
ibration. Lindner et al. [6] as well as Kahlmann et al. [7]
Fig. 1. The resulting 3D map based on the estimated egoe_stimated ir_ltrinsic parameters of a ToF camera using '_the
motion. re_ﬂectance image of a checkerboard ant_:l a planar tegt field

with Near-Infra-Red (NIR) LEDs, respectively. A per-pixel

precision of at least 10mm was achieved.
tional uncertainties of the IMU can be Compensated while Regarding the registration of range imageS, the ICP al-
performing only translational motion in forward direction gorithm [8] is the most popular approach. It iteratively es-

The remainder of the paper is structured as follows: Sedimates the transformation between two point clouds, the
tion 2 summarizes the related work. Section 3 describegodel point seaind thescene point setn every iteration,
necessary pre-processing steps. Section 4 and 5 preséfg¢ point correspondences between model and scene are
our main contributions: an approach to estimate the egdgletermined by a nearest neighbor search and the transfor-
motion from ToF camera data and a model for fusing itmation between the point correspondences is estimated by
with inertial measurements, respectively. Section 6 rispor @ least squares minimization. The mean squared error of

on experiments that have been carried out to evaluate ttg€ estimated transformation applied to the scene is de-
proposed method. termined in every iteration. The algorithm continues until

the error converges or a maximum number of iterations is
reached. There are many variations of the ICP algorithm.
The application of the ICP to ToF camera measurements
has been studied by May et al. [9]. A practical problem in

The first application of ToF cameras in mobile robotics Lo | )
was published in 2004. Weingarten et al. [3] used the Swisth® application of the ICP algorithm is the convergence to

sranger SR-2 device for basic obstacle avoidance and loc/c@ minima. This is particularly the case in scenes with

path planning. Their experiments showed that path plarl®¥ 9eometric structure. These situations occur more of-
ning and obstacle avoidance based on the ToF camera md§" When having a smaller field of view, e.g., for ToF cam-

surements could prevent the robot from colliding with an€'as- Sheh etal. [4] handled this problem by using a pan-tilt
obstacle that was not detected by the 2D laser range finddf"it Which results in a low data acquisition rate. In scenes
Sheh et al. [4] used a ToF camera for 3D mapping otvhere the geometric structure is low but the texture of the
a RoboCup Rescue environment. Because of the narroRPIECtS is high, image features from the reflectance image

apex angle, they rotated the camera on a pan-tilt unit t8f the camera could contribute to a better motion estimate.

gain a larger field of view. The robot stopped at every lo- Swadzba et al. [10] performed only the coarse registra-
cation and took 10 range images at different pan-tilt potion based on depth of features in the reflectance image,
sitions. The acquisition of one scan took 20 seconds andthereas the fine registration has been calculated by the use
registration of the range images was assisted by a humaof the whole depth image. To compensate for the problems
operator. Ohno et al. [5] also used a SR-2 device to estief TOF cameras, researchers proposed the fusion with other
mate the robot’s ego-motion by means of 3D range imagsensors. Prusak et al. [11] presented a joint approach for
registration based on thierative Closest PoiniCP) algo-  robot navigation with collision avoidance, pose estimatio
rithm. The resulting trajectory was compared to a referencand map building employing a ToF camera combined with
trajectory. The experiments involved almost straigheitaj a high-resolution spherical camera. A rough registration
tories with up to 6.5 m distance. The authors mentionedvas performed on the circumferential view of the spherical
that in larger scenes with less structure the rotationakrerr camera. The registration was then refined using the range

2 RELATED WORK
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image. Huhle et al. [12] also used a joint approach of fea3.3 Phase Unwrapping
ture tracking and range image registration. They fused im- 1, .ameras gain depth information by measuring the

ages from a hlgh-resoll_mon color camera with ToF Cam_er?)hase shift between emitted and reflected light, which is
measurements to obtain colored 3D point clouds. Bes'deﬁroportional to the object's distance modulo the wave-

t.hell.t' they. mcorpor?e the |dnf0rma_t|on_ of an fIMU t;r::"' length of the modulation frequency. This results in a dis-
tialize registration. Feature determination performed¢imu .o ambiguity: measurements beyond the sensor's non-

better on the high-resolution color images than on the lowémbiguity range are wrapped into the non-ambiguity range

resolution monochromatic reflectance images of the Tok, req it in artifacts and spurious distance measurements

dewc_e. g\fcompatll_s?:n of tracklnghbgsed on mea_su;eme_nﬁ common way to handle these distance ambiguities is to
acr?_mrr]e r?m_ a 1o | camera W'rt] mg)ages acq_udlr((aj busg'gleglect measurements based on the ratio of the measured
a high-reso ution color camera has een provided by Sjistance and amplitude, since the amplitude of the reflected
beti et al. [13]. They concluded that high-resolution colorSignal decreases with the square of the distance to an ob-

Sensors are morg suitable for putdoor appllcafuons qnd pl‘ll_[éct. The drawback of this method is that information is lost
poses that require the detection of fine details while To

; ) i due to neglecting measurements. Another limitation of this
sensors are more appropriate for object tracking that r

ires inf ) b he di b bi approach is that wrapped measurements are only detected
g;::zsr;n ormation about the distance between object an y the ratio of distance and amplitude, not taking into ac-

count the gradient surface of neighboring measurements,
which results in wrong classifications for distant objects
3 PRE-PROCESSING with high infrared reflectivity.

) _ We correct wrapped distance measurements by identify-

The accuracy of measurements with ToF cameras in Unpg 5 number ophase jumpé# the distance image, i.e., the
known scenes varies considerably, due to error effects ing|ative wrappings between every pair of neighboring mea-
herent to their functional principle. We apply a set of pre-g;rements. We use a probabilistic approach [14] that de-
processing steps to discard and correct noisy and erroneoysts discontinuities in the depth image to infer these has
measurements. jumps. The application of phase unwrapping is shown in
Fig. 2.

3.1 Jump Edge Filtering

i . _ ! 4 EGO-MOTION ESTIMATION
In a first step, points at so-called jump edges are filtered

out. Jump edges occur when a foreground object occludes To estimate the camera’s motion between two consec-
a background object. The true distance changes sudderiijive frames, image features in the reflectance image of
at the transition from foreground to background, but Torthe ToF camera are used to determine point correspon-
cameras measure a smooth transition. Details on the usé@nces between the frames. To detect image features, the
jump edge filter can be found in a previous publication [9].Scale Invariant Feature Transform (SIFT) [15, 16] is used.

Since the jump edge filter is sensitive to noise, we apply &!FT features are invariant in rotation and scale and are
median filter to the distance image beforehand. robust against noise and illumination changes. The SIFT

algorithm has been shown to outperform other feature ex-
traction methods [17]. Various refinements of the basic
SIFT algorithm have been proposed, e.g. PCA-SIFT [18],
Noise errors can be rated with respect to the ampliSLOH [19], and SURF [20]. Bauer et al. [21] compare re-
tude measurements, since the accuracy of distance megent implementations of SIFT and SURF. They show that
surements increases with the amount of light returning t®!FT Yields the best results regarding ttaio of incor-
the sensor. Thus, measurements with a low amplitude (b&€Ct and correct matches and the total number of correct
low a certain threshold) should be neglected. A pure amMatches.
plitude based filtering would be disadvantageous in terms In order to estimate the camera motion between two
of narrowing the field of view. Due to the inhomogeneousframes, the features of one frame are matched against the
image illumination, measurements in the peripheral parfeatures of the other frame. As described in [16], the best
of the field of view would be discarded more often. Thus,match is the nearest neighbor in the 128-dimensional key-
amplitude filtering is a trade-off between discarding noisypoint descriptor space. To determine the nearest neighbor,
measurements and discarding measurements in the perighe Euclidean distance is used. To measure the quality of
eral part of the field of view. Lowering the threshold sortsa match, a distance ratio between the nearest neighbor and
out more erroneous measurements but also further narrowise second-nearest neighbor is considered. If they are too
the field of view. similar, the match is rejected. Hence, only features that

3.2 Amplitude Filtering
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(b) (©

Fig. 2. Phase unwrapping of an indoor scene. (a) image of teaa. (b) + (c) 3D point clouds that have been generated
based on the camera’s depth image. Color of the points itelécthe result of the algorithm; wrapped measurements are
shown in red. Brightness encodes distance to the camerarcéni point cloud without unwrapping. Measured distances
beyond the sensor’'s non-ambiguity range are wrapped intaliich results in artifacts between 0 and 3 meters. (c)
unwrapped depth image.

(b)

Fig. 3. SIFT feature extraction and matching applied on a Teffectance image. The scene shows a robot in the pavilion
at the Fraunhofer IAIS. Images (a) and (b) show the detected $atures on two consecutive camera frames. The
number of detected features are 475 (a) and 458 (b). (c) nragalesult: 245 features from image (a) are matched to
features from image (b). White lines indicate feature @dispment.

are unambiguous in the descriptor space are considered agid transformation proposed by Arun et al. [22]. It uses
matches. Experiments have shown that a distance ratio af closed form solution for estimating tl3ex 3 rotation
0.6 results in the best rejection rates in our case. matrix R and the translation vectdt which is based on

Figure 3 shows the reflectance images of two consecigingular value decomposition (SVD).
tive frames. The red and green dots show detected features The distances between corresponding points, after ap-
in both images. Figure 3 (c) shows the matching resultplying the estimated transformation, forms fReot Mean
of the two images. The green dots are the features frorBquare(RMS) error. The RMS error is often used in range
image (a) and the red dots are the matched features fromegistration to evaluate the scene-to-model consistdhcy.
frame (b). 245 features are successfully matched. can be seen as a measure for the quality of the match: if the

Each match constitutes a point correspondence betwe&tMS error is high, the scene-to-model registration cannot
two frames. By knowing the depth of every pixel, a pointbe consistent. On the other hand, a low RMS error does
correspondence in 3D is known. The set of points from thd0t imply a consistent scene-to-model registration, since
current frame is called theata set, and the set of corre- also depends on the number and distribution of the point
sponding points in the previous frame is called thedel ~ correspondences.
set. The scene is translated and rotated by the sensor’s egoThe translation vectdris composed of Az, Ay, Az)7,
motion. Thus, the sensor ego-motion can be deduced byhich is the translational change of the camera between
finding the best transformation that maps the data set ttwo frames. The rotation matriR is the change of the
the model set. We employ the method for estimating the&eamera orientation between two frames. From the rotation
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matrix the three Euler angles can be calculated.

Since our robot is moving on planar ground, the pose es
timate can be simplified. Hence, the translatidn:, Ay)”
and the rotation around the vertical (yaw) adig can be
considered as the transformation that describes the ca
era’s motion between two frames.

From the (Axy, Ay, AB;)T at framek, the trajec- :
tory of the camera can be built incrementally. The pose
(z1,yr, 0x)T at framek can be calculated by

(T yk) " = (1, yp—1) " +R(AOL) (Azy, Ayp)” (1)

and

Or = Or—1 + Ab, @ Fig. 4. The scene of the first experiment carried out in the
Robotik Pavillion at Fraunhofer I1AIS, Sankt Augustin. The
scene consists of a wooden staircase with a robot on it,
some posters and a calibration pattern. The robot moved
on a square with 20 cm side length.

wherek — 1 is the previous frame anB(A#fy) is the 2D
rotation matrix ofg;,.

5 FUSION OF MOTION ESTIMATES

The motion estimation described in the previous sectiof EVALUATION
provides a translationdlAx, Ay)” and rotational change  The following experiments demonstrate the accuracy
Af of the camera between two camera frames. By knowand robustness of the proposed procedure. The employed
ing the time between two framest, the translational and sensor is a ToF camera, the SR3000 by Mesa Imaging. A
rotational velocity is known. This is considered as obserSick LMS200 laser range finder was used to incrementally
vation construct an accurate and consistent 2D map. The ICP al-
gorithm is applied to the laser-range scans to generate a
1 - reference trajectory.
At (Az, Ay, A) ®) Figure 4 shows the scene of the first experiment. The ex-
) periment was carried out in the Robotic Pavilion at Fraun-
at time stegk. hofer IAIS, Sankt Augustin. The image shows a wooden

A second source of motion measurements is a XSenstaircase with a robot, some posters and a calibration pat-
MTi inertial measurement unit, calibrated with the ven-tern. The robot moved along a square witt0 cm side
dor’s calibration toolbox. It provides measurements fer th length. Figure 6(a) compares the trajectory estimated from
rotational velocityvy and translational acceleration on the the ToF camera alone and the trajectory estimated from
x and y axis,(@,, @,). The meanrotational acceleration ToF and IMU to the reference trajectory. The fused tra-

@y at time stepk can be calculated by the difference be-jectory is less distorted than the ToF-only trajectory.eesp

2k

tween the velocities at time stepandk — 1: cially in situations where the RMS error is high, e.g., in
curves.
. Figure 5(a) depicts the RMS error of the estimated
9.k = Vo,k — Vo, k—1- (4)  transformation applied to the matched point pairs. The first

150 frames show a relative low RMS error, compared to

A Kalman filter predicts the system velocity estimatethe peak at frame 245. To visualize the correlation of the
(vz, vy, v9)T . The motion estimate from the camera is con-RMS error and the distorted trajectory, Fig. 5(b) shows the
sidered as observation, whereas the IMU data is considerextimated trajectory as well as the RMS error distribution.
as control input to the system. The RMS error and its in-The figure shows high RMS errors at those poses that de-
dividual components of the estimated transformation reviate from the reference trajectory. Fig. 7 shows the cam-
flect the certainty of the observation and are therefore useera’s amplitude image at two frames where the RMS error
as an approximation of the observation covariance (similais large. One can see that at frame 160 the image is dis-
to [23]). torted due to the motion blurring effect and at frame 245
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Fig. 5. (a) RMS error of the estimated transformation apglie the matched point pairs for each frame. The first 150
frames show a relative low RMS error compared to the peakaatdr245. (b) The trajectory is plotted by a red line and
the RMS error is visualized by blue ellipses, where the ntadeiof the RMS error correlates to the size of the ellipsis.

timated ego-motion. Figure 6 depicts the unfiltered motion
estimate. The resulting map is squeezed at the end of the
trajectory due to the error in the ego-motion estimate. In
contrast, Figure 6 shows the improved map based on the
fused ego-motion estimate.

With the camera’s relative low resolution 076 x 144,
we achieve an average runtime 12 ms per frame for
(b) extracting the keypoints in the current frame and match-
ing them against the keypoints from the previous frame on

Fig. 7. ToF camera amplitude image at two frames where? 1.66 GHz single core of a Core2Duo laptop computer.
the RMS error is large. At frame 160 (a) the image is dis-However, the runtime depends on the number of feature
torted due to the motion blurring effect and at frame 245P0ints, which corresponds to the amount of texture in the

(b) the number and the distribution of features is low. Isﬁ_e”%- The extraction and the matching could be paral-
elized.

the number and the distribution of features is low.
Figure 8 shows the translational error, the rotational
error for every frame and the cumulated rotational error This paper presented a way to estimate a robot’'s ego-
for the unfiltered and the filtered motion estimate. Themotion while moving. An application of this motion es-
Kalman-filtered motion estimate improves uplfid6 mm  timate is to map an unknown environment based on data
on the translational error and up26.4° on the rotational from a ToF camera. ToF cameras provide depth and re-
error. flectance data of the scene at a high frame rate. They suf-
Figure 6(b) shows the estimated trajectories of a Secf.er from a set of error sources which make them difficult
ond experiment. In a larger scene with umto diameter.  to handle. The proposed method utilizes the coherence of
Figure 9 depicts the translational and rotational error oflepth and reflectance data of ToF cameras by detecting im-
the applied methods, comparing the ego-motion estimatage features on the reflectance data and estimating the mo-
based solely on the camera data to the fused ego-motidi®n on the depth data.
estimate. The rotational error of the fused ego-motion esti  The visual motion estimate is fused with the IMU mea-
mate improves up t@8.6°. The improvement of the trans- syrements to gain higher accuracy and robustness. The
lational error is up t&69 mm. evaluation shows that fusing the pose estimate with the
Figure 10 shows the resulting 3D maps based on the estata from the IMU improves the estimated trajectory.

CONCLUSIONS
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Fig. 6. (a) Estimated trajectories. The black trajectoryosls the reference data based on the 2D laser range finder.
The green trajectory shows the SIFT-based motion estinaiethe upper left corner, the trajectory is distorted. The

application of the sensor fusion is depicted in the red tyey. The blue ellipses on the red trajectory depict the a
posteriori system covariance of the Kalman filter. (b) Eatied trajectories of a second experiment.
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Fig. 8. (a) Translational error of the unfiltered (dashed gn and Kalman-filtered (red) motion estimate compared¢o th
reference from the 2D laser range finder. (b) Rotational erf) Cumulated rotational error.
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Fig. 10. (a) Top view of the resulting 3D map based on the estichego-motion. The map is squeezed at the end of the
trajectory due to the error in the ego-motion estimate. (hptoved map based on the fused ego-motion estimate.
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