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This paper presents an approach for ego-motion estimation based on a Time-of-Flight (ToF) camera. It is applied
in real-time on a mobile robot platform during mission.

The proposed method utilizes the coherence of depth and reflectance data of ToF cameras by detecting image
features on reflectance data and estimating the motion on related depth data.This motion estimate is fused with data
from an inertial measurement unit in order to gain higher accuracy androbustness, especially in situations when
image registration fails.

Results are benchmarked against reference poses from an accurate laser ranger finder-based localization.
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Fuzija TOF kamera i inercijalnih mjernih jedinica za procjenu vlastito g gibanja. Članak opisuje pristup
procjeni vlastitog gibanja utemeljenom na time-of-flight (ToF) kamerama.Metoda je primijenjena u stvarnom vre-
menu na mobilnom robotu tijekom misije. Predložena je metoda utemeljena na slaganju dubinskih i reflektiranih
podataka iz ToF kamera, detektira značajke u slici reflektiranih podataka te procjenjuje gibanje pripadajućih du-
binskih podataka. Vrši se fuzija procjene gibanja s podacima iz inercijalnemjerne jedinice radi ostvarivanja bolje
točnosti i robusnosti, pogotovo u slučaju nemogúcnosti registracije slike. Rezultati su uspore�eni s referentnim
mjerenjima algoritma lokalizacije temeljenog na točnom laserskom senzoru udaljenosti.

Klju čne riječi: procjena vlastitog gibanja, ToF kamera, fuzija senzora

1 INTRODUCTION

Time-of-flight (ToF) cameras are compact, solid-state
sensors that provide depth and reflectance measurements at
high frame rates. An array of infrared LEDs is employed
to illuminate the environment with modulated light. The
reflected light is measured on a photo-sensitive chip in
CCD/CMOS technology, i.e., depth and intensity are de-
termined in parallel for each element in the sensor array.

The dense depth measurements facilitate 6-DoF regis-
tration of frame sequences. However, accuracy and preci-
sion of the distance measurements are limited by a num-
ber of error sources. Therefore, range image registration
is error prone and results in highly distorted maps even in
environments of small scale. Detailed explanations on the
working principle and related error sources can be found
in the works of Lange [1] and Schneider [2].

ToF cameras have some advantages when comparing
them to other state-of-the-art 3D sensors. So far, 3D laser
scanners and stereo camera systems are mostly used due to
their high measurement range and accuracy.

Stereo vision induces a high computational load since

correspondences between two images from a different per-
spective have to be determined. In addition, distances to
structureless surfaces cannot be measured, if the perspec-
tive projection of the object is larger than the camera’s
field of view. Stereo vision also suffers from shadowing
effects and changes in illumination. These issues can be
avoided using 3D laser range finders that actively illumi-
nate the scene. 3D laser range finders have other disad-
vantages though, like high power consumption, mechani-
cal moving parts and low frame rate.

The work presented in this paper utilizes a ToF cam-
era for ego-motion estimation. It incorporates the coher-
ent reflectance and depth images measured by the camera.
Point correspondences are determined directly on the low-
resolution reflectance data. The depth information is incor-
porated for estimating the transformation between frames.
In order to increase robustness, the motion estimate is
fused with the measurements of an inertial measurement
unit (IMU). Both sensors are complementary and, thus, can
compensate the errors of each other. Range image registra-
tion with a narrow field-of-view has difficulties in situa-
tions with high rotational velocities, whereas the transla-
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Fig. 1. The resulting 3D map based on the estimated ego-
motion.

tional uncertainties of the IMU can be compensated while
performing only translational motion in forward direction.

The remainder of the paper is structured as follows: Sec-
tion 2 summarizes the related work. Section 3 describes
necessary pre-processing steps. Section 4 and 5 present
our main contributions: an approach to estimate the ego-
motion from ToF camera data and a model for fusing it
with inertial measurements, respectively. Section 6 reports
on experiments that have been carried out to evaluate the
proposed method.

2 RELATED WORK

The first application of ToF cameras in mobile robotics
was published in 2004. Weingarten et al. [3] used the Swis-
sranger SR-2 device for basic obstacle avoidance and local
path planning. Their experiments showed that path plan-
ning and obstacle avoidance based on the ToF camera mea-
surements could prevent the robot from colliding with an
obstacle that was not detected by the 2D laser range finder.
Sheh et al. [4] used a ToF camera for 3D mapping of
a RoboCup Rescue environment. Because of the narrow
apex angle, they rotated the camera on a pan-tilt unit to
gain a larger field of view. The robot stopped at every lo-
cation and took 10 range images at different pan-tilt po-
sitions. The acquisition of one scan took 20 seconds and
registration of the range images was assisted by a human
operator. Ohno et al. [5] also used a SR-2 device to esti-
mate the robot’s ego-motion by means of 3D range image
registration based on theIterative Closest Point(ICP) algo-
rithm. The resulting trajectory was compared to a reference
trajectory. The experiments involved almost straight trajec-
tories with up to 6.5 m distance. The authors mentioned
that in larger scenes with less structure the rotational error

would be higher and that the use of a gyroscope could com-
pensate this error. They mainly used algorithms that have
been successfully applied to laser range finder data. Apply-
ing these methods to the ToF camera is not straightforward
mainly for two reasons: Bauer

• Compared to laser ranger finders, the measurement
accuracy of recent ToF cameras is lower.

• Due to the larger field of view of laser range-finders,
the registration of range images is easier.

Because of the lower measurement accuracy of ToF
cameras, many groups addressed error modeling and cal-
ibration. Lindner et al. [6] as well as Kahlmann et al. [7]
estimated intrinsic parameters of a ToF camera using the
reflectance image of a checkerboard and a planar test field
with Near-Infra-Red (NIR) LEDs, respectively. A per-pixel
precision of at least 10mm was achieved.

Regarding the registration of range images, the ICP al-
gorithm [8] is the most popular approach. It iteratively es-
timates the transformation between two point clouds, the
model point setand thescene point set. In every iteration,
the point correspondences between model and scene are
determined by a nearest neighbor search and the transfor-
mation between the point correspondences is estimated by
a least squares minimization. The mean squared error of
the estimated transformation applied to the scene is de-
termined in every iteration. The algorithm continues until
the error converges or a maximum number of iterations is
reached. There are many variations of the ICP algorithm.
The application of the ICP to ToF camera measurements
has been studied by May et al. [9]. A practical problem in
the application of the ICP algorithm is the convergence to
local minima. This is particularly the case in scenes with
low geometric structure. These situations occur more of-
ten when having a smaller field of view, e.g., for ToF cam-
eras. Sheh et al. [4] handled this problem by using a pan-tilt
unit which results in a low data acquisition rate. In scenes
where the geometric structure is low but the texture of the
objects is high, image features from the reflectance image
of the camera could contribute to a better motion estimate.

Swadzba et al. [10] performed only the coarse registra-
tion based on depth of features in the reflectance image,
whereas the fine registration has been calculated by the use
of the whole depth image. To compensate for the problems
of ToF cameras, researchers proposed the fusion with other
sensors. Prusak et al. [11] presented a joint approach for
robot navigation with collision avoidance, pose estimation
and map building employing a ToF camera combined with
a high-resolution spherical camera. A rough registration
was performed on the circumferential view of the spherical
camera. The registration was then refined using the range
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image. Huhle et al. [12] also used a joint approach of fea-
ture tracking and range image registration. They fused im-
ages from a high-resolution color camera with ToF camera
measurements to obtain colored 3D point clouds. Besides
that, they incorporate the information of an IMU to ini-
tialize registration. Feature determination performed much
better on the high-resolution color images than on the low-
resolution monochromatic reflectance images of the ToF
device. A comparison of tracking based on measurements
acquired from a ToF camera with images acquired using
a high-resolution color camera has been provided by Sa-
beti et al. [13]. They concluded that high-resolution color
sensors are more suitable for outdoor applications and pur-
poses that require the detection of fine details while ToF
sensors are more appropriate for object tracking that re-
quires information about the distance between object and
camera.

3 PRE-PROCESSING

The accuracy of measurements with ToF cameras in un-
known scenes varies considerably, due to error effects in-
herent to their functional principle. We apply a set of pre-
processing steps to discard and correct noisy and erroneous
measurements.

3.1 Jump Edge Filtering

In a first step, points at so-called jump edges are filtered
out. Jump edges occur when a foreground object occludes
a background object. The true distance changes suddenly
at the transition from foreground to background, but ToF
cameras measure a smooth transition. Details on the used
jump edge filter can be found in a previous publication [9].
Since the jump edge filter is sensitive to noise, we apply a
median filter to the distance image beforehand.

3.2 Amplitude Filtering

Noise errors can be rated with respect to the ampli-
tude measurements, since the accuracy of distance mea-
surements increases with the amount of light returning to
the sensor. Thus, measurements with a low amplitude (be-
low a certain threshold) should be neglected. A pure am-
plitude based filtering would be disadvantageous in terms
of narrowing the field of view. Due to the inhomogeneous
image illumination, measurements in the peripheral part
of the field of view would be discarded more often. Thus,
amplitude filtering is a trade-off between discarding noisy
measurements and discarding measurements in the periph-
eral part of the field of view. Lowering the threshold sorts
out more erroneous measurements but also further narrows
the field of view.

3.3 Phase Unwrapping

ToF cameras gain depth information by measuring the
phase shift between emitted and reflected light, which is
proportional to the object’s distance modulo the wave-
length of the modulation frequency. This results in a dis-
tance ambiguity: measurements beyond the sensor’s non-
ambiguity range are wrapped into the non-ambiguity range
and result in artifacts and spurious distance measurements.
A common way to handle these distance ambiguities is to
neglect measurements based on the ratio of the measured
distance and amplitude, since the amplitude of the reflected
signal decreases with the square of the distance to an ob-
ject. The drawback of this method is that information is lost
due to neglecting measurements. Another limitation of this
approach is that wrapped measurements are only detected
by the ratio of distance and amplitude, not taking into ac-
count the gradient surface of neighboring measurements,
which results in wrong classifications for distant objects
with high infrared reflectivity.

We correct wrapped distance measurements by identify-
ing a number ofphase jumpsin the distance image, i.e., the
relative wrappings between every pair of neighboring mea-
surements. We use a probabilistic approach [14] that de-
tects discontinuities in the depth image to infer these phase
jumps. The application of phase unwrapping is shown in
Fig. 2.

4 EGO-MOTION ESTIMATION

To estimate the camera’s motion between two consec-
utive frames, image features in the reflectance image of
the ToF camera are used to determine point correspon-
dences between the frames. To detect image features, the
Scale Invariant Feature Transform (SIFT) [15, 16] is used.
SIFT features are invariant in rotation and scale and are
robust against noise and illumination changes. The SIFT
algorithm has been shown to outperform other feature ex-
traction methods [17]. Various refinements of the basic
SIFT algorithm have been proposed, e.g. PCA-SIFT [18],
GLOH [19], and SURF [20]. Bauer et al. [21] compare re-
cent implementations of SIFT and SURF. They show that
SIFT yields the best results regarding theratio of incor-
rect and correct matches and the total number of correct
matches.

In order to estimate the camera motion between two
frames, the features of one frame are matched against the
features of the other frame. As described in [16], the best
match is the nearest neighbor in the 128-dimensional key-
point descriptor space. To determine the nearest neighbor,
the Euclidean distance is used. To measure the quality of
a match, a distance ratio between the nearest neighbor and
the second-nearest neighbor is considered. If they are too
similar, the match is rejected. Hence, only features that
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(a) (b) (c)

Fig. 2. Phase unwrapping of an indoor scene. (a) image of the scene. (b) + (c) 3D point clouds that have been generated
based on the camera’s depth image. Color of the points indicates the result of the algorithm; wrapped measurements are
shown in red. Brightness encodes distance to the camera center. (b) point cloud without unwrapping. Measured distances
beyond the sensor’s non-ambiguity range are wrapped into it, which results in artifacts between 0 and 3 meters. (c)
unwrapped depth image.

(a) (b) (c)

Fig. 3. SIFT feature extraction and matching applied on a ToFreflectance image. The scene shows a robot in the pavilion
at the Fraunhofer IAIS. Images (a) and (b) show the detected SIFT features on two consecutive camera frames. The
number of detected features are 475 (a) and 458 (b). (c) matching result: 245 features from image (a) are matched to
features from image (b). White lines indicate feature displacement.

are unambiguous in the descriptor space are considered as
matches. Experiments have shown that a distance ratio of
0.6 results in the best rejection rates in our case.

Figure 3 shows the reflectance images of two consecu-
tive frames. The red and green dots show detected features
in both images. Figure 3 (c) shows the matching results
of the two images. The green dots are the features from
image (a) and the red dots are the matched features from
frame (b). 245 features are successfully matched.

Each match constitutes a point correspondence between
two frames. By knowing the depth of every pixel, a point
correspondence in 3D is known. The set of points from the
current frame is called thedata set, and the set of corre-
sponding points in the previous frame is called themodel
set. The scene is translated and rotated by the sensor’s ego
motion. Thus, the sensor ego-motion can be deduced by
finding the best transformation that maps the data set to
the model set. We employ the method for estimating the

rigid transformation proposed by Arun et al. [22]. It uses
a closed form solution for estimating the3 × 3 rotation
matrix R and the translation vector~t, which is based on
singular value decomposition (SVD).

The distances between corresponding points, after ap-
plying the estimated transformation, forms theRoot Mean
Square(RMS) error. The RMS error is often used in range
registration to evaluate the scene-to-model consistency.It
can be seen as a measure for the quality of the match: if the
RMS error is high, the scene-to-model registration cannot
be consistent. On the other hand, a low RMS error does
not imply a consistent scene-to-model registration, sinceit
also depends on the number and distribution of the point
correspondences.

The translation vector~t is composed of(∆x,∆y,∆z)T ,
which is the translational change of the camera between
two frames. The rotation matrixR is the change of the
camera orientation between two frames. From the rotation
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matrix the three Euler angles can be calculated.

Since our robot is moving on planar ground, the pose es-
timate can be simplified. Hence, the translation(∆x,∆y)T

and the rotation around the vertical (yaw) axis∆θ can be
considered as the transformation that describes the cam-
era’s motion between two frames.

From the (∆xk,∆yk,∆θk)
T at framek, the trajec-

tory of the camera can be built incrementally. The pose
(xk, yk, θk)

T at framek can be calculated by

(xk, yk)
T = (xk−1, yk−1)

T +R(∆θk)(∆xk,∆yk)
T (1)

and

θk = θk−1 +∆θk, (2)

wherek − 1 is the previous frame andR(∆θk) is the 2D
rotation matrix ofθk.

5 FUSION OF MOTION ESTIMATES

The motion estimation described in the previous section
provides a translational(∆x,∆y)T and rotational change
∆θ of the camera between two camera frames. By know-
ing the time between two frames∆t, the translational and
rotational velocity is known. This is considered as obser-
vation

zk =
1

∆t
(∆x,∆y,∆θ)T (3)

at time stepk.

A second source of motion measurements is a XSens
MTi inertial measurement unit, calibrated with the ven-
dor’s calibration toolbox. It provides measurements for the
rotational velocityvθ and translational acceleration on the
x and y axis,(~ax,~ay). The meanrotational acceleration
~aθ,k at time stepk can be calculated by the difference be-
tween the velocities at time stepsk andk − 1:

~aθ,k = vθ,k − vθ,k−1. (4)

A Kalman filter predicts the system velocity estimate
(vx, vy, vθ)

T . The motion estimate from the camera is con-
sidered as observation, whereas the IMU data is considered
as control input to the system. The RMS error and its in-
dividual components of the estimated transformation re-
flect the certainty of the observation and are therefore used
as an approximation of the observation covariance (similar
to [23]).

Fig. 4. The scene of the first experiment carried out in the
Robotik Pavillion at Fraunhofer IAIS, Sankt Augustin. The
scene consists of a wooden staircase with a robot on it,
some posters and a calibration pattern. The robot moved
on a square with120 cm side length.

6 EVALUATION

The following experiments demonstrate the accuracy
and robustness of the proposed procedure. The employed
sensor is a ToF camera, the SR3000 by Mesa Imaging. A
Sick LMS200 laser range finder was used to incrementally
construct an accurate and consistent 2D map. The ICP al-
gorithm is applied to the laser-range scans to generate a
reference trajectory.

Figure 4 shows the scene of the first experiment. The ex-
periment was carried out in the Robotic Pavilion at Fraun-
hofer IAIS, Sankt Augustin. The image shows a wooden
staircase with a robot, some posters and a calibration pat-
tern. The robot moved along a square with120 cm side
length. Figure 6(a) compares the trajectory estimated from
the ToF camera alone and the trajectory estimated from
ToF and IMU to the reference trajectory. The fused tra-
jectory is less distorted than the ToF-only trajectory, espe-
cially in situations where the RMS error is high, e.g., in
curves.

Figure 5(a) depicts the RMS error of the estimated
transformation applied to the matched point pairs. The first
150 frames show a relative low RMS error, compared to
the peak at frame 245. To visualize the correlation of the
RMS error and the distorted trajectory, Fig. 5(b) shows the
estimated trajectory as well as the RMS error distribution.
The figure shows high RMS errors at those poses that de-
viate from the reference trajectory. Fig. 7 shows the cam-
era’s amplitude image at two frames where the RMS error
is large. One can see that at frame 160 the image is dis-
torted due to the motion blurring effect and at frame 245
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Fig. 5. (a) RMS error of the estimated transformation applied to the matched point pairs for each frame. The first 150
frames show a relative low RMS error compared to the peak at frame 245. (b) The trajectory is plotted by a red line and
the RMS error is visualized by blue ellipses, where the magnitude of the RMS error correlates to the size of the ellipsis.

(a) (b)

Fig. 7. ToF camera amplitude image at two frames where
the RMS error is large. At frame 160 (a) the image is dis-
torted due to the motion blurring effect and at frame 245
(b) the number and the distribution of features is low.

the number and the distribution of features is low.
Figure 8 shows the translational error, the rotational

error for every frame and the cumulated rotational error
for the unfiltered and the filtered motion estimate. The
Kalman-filtered motion estimate improves up to1006mm
on the translational error and up to25.4◦ on the rotational
error.

Figure 6(b) shows the estimated trajectories of a sec-
ond experiment. In a larger scene with up to8m diameter.
Figure 9 depicts the translational and rotational error of
the applied methods, comparing the ego-motion estimate
based solely on the camera data to the fused ego-motion
estimate. The rotational error of the fused ego-motion esti-
mate improves up to28.6◦. The improvement of the trans-
lational error is up to669mm.

Figure 10 shows the resulting 3D maps based on the es-

timated ego-motion. Figure 6 depicts the unfiltered motion
estimate. The resulting map is squeezed at the end of the
trajectory due to the error in the ego-motion estimate. In
contrast, Figure 6 shows the improved map based on the
fused ego-motion estimate.

With the camera’s relative low resolution of176× 144,
we achieve an average runtime of102ms per frame for
extracting the keypoints in the current frame and match-
ing them against the keypoints from the previous frame on
a 1.66GHz single core of a Core2Duo laptop computer.
However, the runtime depends on the number of feature
points, which corresponds to the amount of texture in the
scene. The extraction and the matching could be paral-
lelized.

7 CONCLUSIONS

This paper presented a way to estimate a robot’s ego-
motion while moving. An application of this motion es-
timate is to map an unknown environment based on data
from a ToF camera. ToF cameras provide depth and re-
flectance data of the scene at a high frame rate. They suf-
fer from a set of error sources which make them difficult
to handle. The proposed method utilizes the coherence of
depth and reflectance data of ToF cameras by detecting im-
age features on the reflectance data and estimating the mo-
tion on the depth data.

The visual motion estimate is fused with the IMU mea-
surements to gain higher accuracy and robustness. The
evaluation shows that fusing the pose estimate with the
data from the IMU improves the estimated trajectory.
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Fig. 6. (a) Estimated trajectories. The black trajectory shows the reference data based on the 2D laser range finder.
The green trajectory shows the SIFT-based motion estimate.On the upper left corner, the trajectory is distorted. The
application of the sensor fusion is depicted in the red trajectory. The blue ellipses on the red trajectory depict the a
posteriori system covariance of the Kalman filter. (b) Estimated trajectories of a second experiment.
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Fig. 8. (a) Translational error of the unfiltered (dashed green) and Kalman-filtered (red) motion estimate compared to the
reference from the 2D laser range finder. (b) Rotational error. (c) Cumulated rotational error.

The fusion of IMU and range image registration based
transformations also increased robustness. For large rota-
tional velocities, the error in registration is high due to a
smaller overlap. In this situation, an IMU is valuable. On
the other hand, performing a pure translation is handled
properly by range image registration. The ToF-based mo-
tion estimate also prevents drift. A mechanism to deal with
those situations is topic for future work.

In this work, the robot was moving on a planar ground,
and a 2D laser range finder was used as reference. Future
work will investigate in the extension to full 6D poses.

Another important point is the determination of the ob-
servation covariance. Here, the RMS error was used as a
first attempt. In the future work, a camera-specific error
model has to be considered.
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(a)

(b)

Fig. 10. (a) Top view of the resulting 3D map based on the estimated ego-motion. The map is squeezed at the end of the
trajectory due to the error in the ego-motion estimate. (b) Improved map based on the fused ego-motion estimate.
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