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Ubiquitous Robotics is a novel paradigm aimed at addressing the coordinated behaviour of robots in environ-
ments that are intelligentper se. To this aim, suitable methods to enforce cooperative activities must be assessed.
In this article, a formalism to encode spatio-temporal situations whose occurrences must be detected by a context-
aware system is introduced. The Situation Definition Language is a tool usedto specify relationships among classes
of sensory data in distributed systems (such as those adhering to the Ubiquitous Robotics paradigm), without posing
any assumption on how data themselves are acquired. The capabilities offered by the language are discussed with
respect to a real-world scenario, where a team of mobile robots cooperates with an intelligent environment to per-
form service tasks. Specifically, the article focuses on the system ability to combine in a centralized representation
information originating from distributed sources, eithermobile(i.e., the robots) orfixed(i.e., the intelligent devices
in the network).
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Roboti i inteligentni prostori: prikazivanje znanja i procjena k onteksta u raspodijeljenim sustavima.
Sveprisutna robotika nova je paradigma namijenjena koordiniranom ponašanju robota u prostorima koji su sami po
sebi inteligentni. Radi toga, nužna je procjena primjerenih metoda za provedbu kooperativnih aktivnosti. U ovome
sečlanku predstavlja formalizam za zapisivanje prostorno-vremenskih doga�aja koji moraju biti detektirani u kon-
tekstno osviještenom sustavu. Situation Definition Language je alat koji se koristi za specifikaciju odnosa me�u
klasama senzorskih podataka u raspodijeljenim sustavima (poput onih koji se pridržavaju paradigme sveprisutne
robotike), bez ikakvih pretpostavki nad načinom prikupljanja podataka. Mogućnosti koje jezik nudi analizirane su
za stvarne slǔcajeve, gdje je tim mobilnih robota sura�ivao s inteligentnim prostorom radi izvo�enja uslužnih za-
dataka.Članak se posebice fokusira na mogućnost sustava da na centraliziran način objedini informacije iz raspodi-
jeljenih izvora, bili oni mobilni (tj. od robota) ili stacionarni (tj. od inteligentnihure�aju na mreži).

Klju čne riječi: sveprisutna robotika, procjena konteksta, raspodijeljeni sustavi

1 INTRODUCTION

According to the Ubiquitous Robotics paradigm [1, 2],
mobile robots are part of a fullynetworkedsystem that is
populatedby intelligent devices (both sensors and actua-
tors) distributed throughout the environment. Robots co-
operate with intelligent devices to perform tasks that re-
quire sophisticated physical interaction capabilities, such
as remote sensing and interaction withquasi staticparts
of the environment (e.g., automated doors, elevators, load-
ing/unloading stations) or with other appliances. In these
cases, highly specialized intelligent devices can provide
with information exchange for the lack of physical interac-
tion capabilities traditionally exhibited by robots: “auton-
omy” and “situatedness” refer thus to the whole system.
Robotic architectures proposed in the literature lack in ad-
dressing how this novel paradigm affects knowledge rep-

resentation and context awareness. A promising approach
is to describe contexts using high-level symbolic frame-
works [3]. In Ubiquitous Robotics the need arises for a the-
oretical framework able to deal with the following issues:
(i) design and implement context assessment strategies for
robots and intelligent devices; (ii) assess the trade-off be-
tween situation-dependent knowledge representation and
intelligent behaviour.

This article introduces the Situation Definition Lan-
guage (henceforth referred to asSDL) aimed at mak-
ing the process of representing contextual knowledge eas-
ier. SDL allows users to express models for context-
awareness that are organized in a hierarchical fashion and
encoded through ontologies [4]. Although different for-
malisms have been proposed to this end, such as the Sit-
uation Calculus [5, 6], the Linear Temporal Logic [7] and
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the Allen’s Interval Algebra [8,9], the use of temporal con-
straints in this work is rather different. The aim of the en-
visaged context-assessment system is not only to specify
highly expressive formulas and to reason upon their conse-
quences, but also to ground sensory data (originating from
different sources) with respect to predefined event tem-
plates.

The paper is organized as follows. Section 2 discusses
situation languages for context models, as well as relevant
Robotics frameworks. Section 3 describes the key com-
ponents of the proposed model. Section 4 discusses the
related context assessment strategy. Section 5 describes
SDL syntax and semantics. Implementation details, exper-
iments and results are discussed in Section 6. Conclusions
follow.

2 RELATED WORK

Situation languages. Context-aware systems are subject
to three key requirements:effectivenessin assessing sen-
sory information;reusabilityfor generating composite rep-
resentation structures;expressivenessin representing rela-
tional and temporal event patterns. The notion of “context”
has been defined asany information that can be used to
characterize the situation of an entity[10–15]. Four ap-
proaches to implement this idea are particularly relevant
for this discussion.

The “Context Toolkit” [10] is based on contextwidget,
interpreterandaggregator. A widget corresponds to a real-
world artefact acquiring contextual knowledge. Widgets
are not application specific. Instead, they can be considered
as available services. Interpreters correspond to modules
reasoning upon contextual knowledge. They can process
several contexts and produce new contextual information.
Finally, aggregators are modules used to combine hetero-
geneous knowledge.

The “Context Broker Architecture” (CoBrA in short)
has been designed to deal with three requirements of dis-
tributed systems [16]: (i) contextual knowledge must be
shared; (ii) intelligent agents must be provided with a well-
defined information semantics; (iii) interoperability among
heterogeneous data must be enforced. Within CoBrA, all
these aspects are realized by abroker, a software entity
maintaining a shared language to model situations, acquir-
ing data from distributed sources and establishing data de-
livery policies.

The “Aspect-Scale-Context” model and the associated
Context Ontology Language (CoOL in short) [17] orig-
inate from theshared understandingissue of distributed
systems: each “actor” must be provided with the same
declarative data semantics. CoOL is structured to enforce
interoperability: situations are sets of “aspects”, each one

represented using one or more “scales”, relating hetero-
geneous contextual knowledge. The model has two major
constraints: (i) the availability of pairwise mappings be-
tween scales; (ii) the existence of a metric to establish the
mapping itself.

In [18], a hierarchical temporal situation language has
been introduced. A context is a dynamic process where the
relationships between semantics and interpretation depend
on their ownhistory. Therefore, a context is a sequence
of “context states” depending on “context features”, which
are individual and atomic language elements. Unfortu-
nately, context features must be carefully classified and
evaluated in order to determine which features are impor-
tant for a particular context.

Frameworks for Ubiquitous Robotics. Although many
Ubiquitous Robotics approaches have been presented in
the literature [4], if we focus on systems specifically tak-
ing context-awareness into account, this number reduces to
a few examples. Within theAmbienceproject [19], robots
and smart environments manage human-robot interaction
tasks. A principled context model is not explicitly repre-
sented within the system, which lacks in reusability and
expressiveness. TheUbibot paradigm [1] is based on three
main constituents:Mobots (i.e., mobile robots),Embots
(i.e., embedded robots: agents in charge of data collec-
tion) andSobots(i.e., software robots: agents implement-
ing cognitive algorithms). A context model requires a tight
integration between Mobots, Embots and Sobots. How-
ever, just few contextual information is used by the system,
which lacks in effectiveness and reusability. As part of the
PEIS Ecologyframework, and grounded with respect toco-
operative anchoring, the work in [20] is one of the first at-
tempts to generate distributed context structures. Unfortu-
nately, issues related to reusability and expressiveness are
not sufficiently discussed. Finally, with a specific empha-
sis on human-robot interaction, the work in [21] is aimed
at investigating formal models of human behaviour in spe-
cific situations, integrating information obtained from dis-
tributed sources. Although this is an effective solution to
drive robot behaviours, an explicit context model is miss-
ing.

Ontologies and logic approaches. Approaches based on
ontologiesare expected to provide a superior expressive-
ness in describing concepts and relationships [13,22]. The
work in [23] adopts activity models to characterize a situa-
tion, which refer to many entities: a situation is originated
from contexts affecting different individuals. Crowley and
colleagues [24] extend this principle by considering con-
texts as networks of building blocks: different entity prop-
erties are obtained by considering relationships among dif-
ferent contexts. The network model abstracts from the
source of a particular information, therefore allowing to
consider distributed sources. Although these systems offer
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a basic framework for supporting reasoning, they are char-
acterized by two major drawbacks: (i) they tend to produce
highly specialized terminologies, and (ii) context models
can not be easily aggregated to build composite represen-
tations.

Logic approaches manage contexts integrating sensory
data with axioms and rules. Two inspiring principles de-
serve special attention [25]: (i)locality: reasoning must
occur within a domain defined by a context; (ii)cross-
domains bridging: relationships can occur between reason-
ing activities belonging to different contexts. Logic-based
architectures have been proposed for smart environments
[26]. However, they show a number of limitations with
respect to expressiveness, since they lack in representing
compact models.

3 A CONTEXT MODEL FOR UBIQUITOUS
ROBOTS

The proposed model takes inspiration fromcomputa-
tional functionalism, a theory of mindconsidering men-
tal states as functional relationships [27]. Mental statesare
defined using mental andnonmental states, such as sen-
sory information. Functional states are defined in abstract.
Their effective realization is independent from the underly-
ing embodiment. Functional states can be originated from
distributed and heterogeneous sources of information, pos-
sibly remotely located and only loosely coupled. The main
hypothesis of this work is to consider contexts as special
mental states. A system based on functionalist consider-
ations is characterized by very desirable properties, such
as the possibility of being easily implemented, the support
for distributed cognition and the lack of assumptions about
physical properties of information sources. The proposed
context model adheres to a number of design principles,
which are introduced as follows.

Proposition 1 Contexts are functional states emerging
from the interaction between sensory data and the func-
tional structures used to assess information.

Proposition 2Functional structures and the correspond-
ing relationships are defined in abstract and then grounded
with respect to the particular scenario.

Proposition 3 Physically distributed as well as abstract
sources of information are considered: a context can be
shared among many distributed entities, each one possibly
contributing to its assessment.

Proposition 4 Contexts are hierarchically structured in
order to maintain knowledge and allow for reasoning at the
proper level of abstraction.

On the basis of these principles, the proposed model is
described as follows (Figure 1 on the bottom).

Proposition 5 Symbolsσk, k = 1, . . . , |σk| are itera-
tively defined by numerical or ordered values provided by

Fig. 1. A graphical sketch of the proposed context assess-
ment model.

distributed sources using other symbolsσk, whose seman-
tics is grounded with respect to an ontologyΣ.

Proposition 6 Each symbol inΣ is defined by a vector
r of n functional rolesri, each one possibly filled by a
vectorφi of one or more symbol fillersφj

i , according to
the role definition:σk = ∧{ri} .

= r1∧ r2∧ . . .∧ rn. Roles
implement functional relationships among symbols.

Proposition 7A contextΣ |= σk(σ̂) is a grounded sym-
bol originating from the closure of the functional relation-
ship between roles and fillers (which is referred to in the
following as avariable assignmentα), according to the
definition ofσk : σ̂

.
= ∧{ri

⊗
φi} = r1 ⊗ φ1 ∧ r2 ⊗ φ2 ∧

. . . ∧ rn ⊗ φn.
From Propositions 6 and 7 it can be seen how a

grounded symbol̂σ is recursively structured: each fillerφj
i

of a certain roleri is a grounded symbol. Since eachsym-
bol ultimately represents real-worldeventsthe system can
observe, Propositions 5–7 define acomputational process
extracting base predicate symbols from sensory data and
to semantically assess information from symbol combina-
tions.

Proposition 8 Given the symbol̂σ grounded with re-
spect to a contextσ described in an ontologyΣ, and given
a variable assignmentα under a specific interpretationI,
then the proposed context model can be seen as the satisfi-
ability procedure(Σ, I, α) |= σ̂.

This model requires to identify an interpretationI .
=

(Σ, ·I) for contexts inΣ.
Proposition 9 A context modelΣcm is defined such

thatΣcm .
= {P, C,S} ⊂ Σ, wherecm stands for “con-

text model”,P is a set ofpredicates Pp, p = 1, . . . , |P|,
used to build more complex structures,C is a set ofcon-
texts Cc, c = 1, . . . , |C| and, finally,S a set ofsituations
Ss, s = 1, . . . , |S|.
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In the following paragraphs, we adopt the syntax of De-
scription Logic formalisms and the related nomenclature.

Proposition 10 Instance checking. A binary operator is
introduced, henceforth calledinstance checking, such that
{true|false} ← Σ |=? σcm

l (σ̂cm
j ), whereΣ is an ontol-

ogy, σcm
l is a non grounded symbol (i.e., a concept) and

σ̂cm
j is a grounded symbol (i.e., an individual) of the con-

text modelΣcm. Given a variable assignmentα, the op-
erator returns true if̂σcm

j is an instanceof (i.e., it can be
classified as)σcm

l , or false otherwise.

Although the model can manage hierarchical contexts,
in practice only 3-layer structures are needed, namely
predicate, representing information about sensory data,
context, aggregating predicates dealing with the same
entity andsituation, considering different contexts as a
whole. Common logic operators are provided by the un-
derlying ontology. However, to deal withtemporalevent
patterns, the contextΣcm is augmented with a number of
temporal operators.

Proposition 11Introduction of the temporal dimension.
Given a time instantτ , elements of the context modelσcm

l ,
wherel = 1, . . . , |P| + |C| + |S|, are satisfied inτ (and
we writeσcm

l,τ ) if there is an interpretationI and a variable
assignmentατ such that(Σ, I, ατ ) |= P(σ̂cm

l,τ )∪C(σ̂cm
l,τ )∪

S(σ̂cm
l,τ ).

The use of temporal information is coupled inΣ with
a number of operations on symbols. Of particular rele-
vance are thederivativeand thelengthof symbols, as well
as thetimeline. The derivativeδ is an operator returning
true when the truth value of the operated grounded sym-
bol changes in two subsequent time instants. The lengthλ
returns true if the truth values (either true or false) of the
operated grounded symbols are in a particular temporal re-
lationship, such as<,≤,=,≥, >. Finally, the timeline≺
expresses precedence relationships between two grounded
symbols, returning true if the first symbol actually precedes
the second.

Different techniques can be adopted to implement tem-
poral relationships. To this aim, symbols in the model use
two specific roles, namelystartsAtandendsAt, which spec-
ify the temporal interval when the correspondingσ̂cm

l def-
inition has been last satisfied by a variable assignment. It
is possible to encode advanced temporal relationships by
properly reasoning on actualstartsAtand endsAtvalues.
However, the focus of this work is on strict precedence re-
lationships, i.e.,̂σ1 ≺ σ̂2 holds iff σ̂1 ends beforêσ2 starts.

4 CONTEXT RECOGNITION AS A COMPUTA-
TIONAL PROCESS

Theorem 1 Given a finite-length sequence of grounded
symbolsσ̂1, . . . , σ̂K such thatΣcm |= P(σ̂k), Σcm |=

C(σ̂k) or Σcm |= S(σ̂k), ∀k ∈ 1, . . . ,K, it is possible to
uniquely determine if such a sequence is composed of ac-
tual symbols, to retrieve the number of involved symbols,
and to identify symbols.

Proof: Each grounded symbol̂σk can be associated
with a finite-length treeTk, which represents the process
of functional relationships by recursively inspecting filler
symbols until reaching elements inP, i.e.,leaves. The pro-
cess of building the associated treeTk can be achieved us-
ing the following steps: (i) the tree root is labelled with
σ̂k; (ii) if a node is such thatΣcm |= P(σ̂k), it is a leaf;
(iii) if a node is such thatΣcm |= σk(σ̂k) = ∧{ri}, then
it hasn child nodes, which are labelled, respectively, us-
ing φ1

i , . . . , φ
m
i . If it is possible to buildTk for eachσ̂k,

then it is possible to inspect the sequenceσ̂1, . . . , σ̂K by
exhaustively parsing all the trees.

In virtue of Theorem 1, we can draw a parallelism
between finite-length trees and elements in the context
model. Specifically, building the finite-length treeTk for a
givenσ̂k is equivalent to fill the corresponding rolesri with
symbolic structures belonging toΣcm. Parsing the tree is
equivalent to traverse functional relationships among func-
tional states. On the basis of this result, context awareness
in Ubiquitous Robotics scenarios is reduced to manysatis-
fiability procedures carried out over instances ofΣcm.

Proposition 12 Given a finite-length treeTk, an inter-
pretationI, a variable assignmentατ , then satisfied sym-
bols σ̂k are such that(Tk, I, ατ ) ⊢k Σcm

τ (σ̂k), i.e., σ̂k can
be derived with the derivationk.

Strictly speaking, symbols inC or S are encoded as
finite-length treesTk which – on their turn – rely on defi-
nitions of concepts inΣcm. Context awareness is realized
by aggregating instances of symbols inP in order to sat-
isfy symbolic structuresCc and Ss represented withinΣ
(see Proposition 9 onwards). The aggregation assumes the
form of thehistoryof then most recent instances of sym-
bols inP Pi

p, i = 1, . . . , n, which are stored withinΣ in a
first-in-first-outapproach (see Figure 1 on the bottom).

Every time instantτ , when updated sensory information
is available, a classification process is carried out over in-
stances of symbols inP, thus – possibly – modifying their
truth value. In particular, the overall history descriptionDp

is considered;Dp is obtained by joining the description of
eachPi

p:

Dp
.
= D(P1

p ⊓ . . . ⊓ Pn
p ) p = 1, . . . , |P|. (1)

Dp represents the system state with respect to both the
current situation and the most recent past events. For The-
orem 1, the system can infer what symbolsCc are satisfied.
This is accomplished by checking for instance relationship
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betweenC andDp. Specifically,Cv(τ) is the collection of
Cc symbols classifyingDp:

Cv(τ) = {Cc : Σ
cm |=? Cc(Dp)}. (2)

Therefore, all the satisfied symbols inC, namelyCc ⊆
Cv(τ) are occurring inτ (Figure 1 on the mid). This mech-
anism is easily iterated for symbols inS. Since Cv(τ)
varies at eachτ , the history descriptionDc is consid-
ered, obtained by superimposing the description of each
Cj
c ⊆ Cv(τ):

Dc
.
= D(C1

c ⊓ . . . ⊓ C|Cv(τ)|
c ) c = 1, . . . , |C|. (3)

Analogously to satisfied symbols inC, usingDc the sys-
tem can infer whatSs are satisfied inτ (see Figure 1 on
top). Again, this is managed by instance checking between
S andDc. Current situations are stored inSv(τ), which is
the collection of instancesSs subsumingDc, where

Sv(τ) = {Ss : Σcm |=? Ss(Dc)}. (4)

Remark 1 By explicitly taking time into account, tem-
poral instances ofSituationcan be handled as relational
symbols: the only difference is that satisfiability periods
may not overlap. For each temporalSituation, the num-
ber of constituentContextelements to be considered over
time is limited. The reason is twofold: (i) since efficiency
in logic inferences depends on description complexity, an
increased number ofContextelements in defining aSitu-
ation can lead to dramatic response times; (ii) correlation
among different instances ofContextfades away with time.

Remark 2 The state at time instantτ can not completely
represent the whole evolution of the system, because tem-
poral Situationsymbols require an explicit representation
of previously satisfied symbols. In other words, the con-
text model does not comply with theFirst Order Markov
Assumption: the approach implements a process of “sym-
bolic smoothing” over a temporal window that is charac-
terized by the history lengthn. As long asn increases,
the rate of successful recognition ofSituation instances
increases, since relevantPredicatesymbols are still rep-
resented within the system, thus contributing to build the
necessaryContextelements. However, computational load
exponentially increases withn , thus requiring a trade-off
between history length and real-time recognition require-
ments.

5 A FORMAL LANGUAGE FOR SITUATION
SPECIFICATION

5.1 Syntax and Definitions

A formal language is introduced that builds upon the
knowledge representation model described in the previous

Section.SDL is used to build abstract sentences correlat-
ing different base symbols, which correspond to sensory
data. As a consequence, the language poses constraints on
the construction of symbolic structures in the ontology,
which correspond to namedContextsandSituations.

Proposition 13SDL is defined asSDL = L(SDLst),
whereL is a generative process that operates on a grammar
SDLst. As usual,SDLst is formally defined as a 2-ple
SDLst =< A,R >, whereA is a finitealphabetandR
is a binary relationship overA∗ (the set of finite, possibly
empty, strings overA) such thatR ⊆ A∗ ×A∗.

The grammar specifies how to build well-formed sen-
tences belonging toSDL starting from an initial sentence
in A∗ and iteratively applyingrewrite rules belonging to
R until the intended sentence isderivedin n steps. In par-
ticular, sentencessi in SDL are elements of the setA∗,
whereas rewrite rulesra → rc are defined as binary ele-
ments(ra, rc) ∈ R, wherera andrc ∈ A∗ are called, re-
spectively, theantecedentand theconsequentof the rule.
The generative processL must be precisely defined.

Proposition 14 Given a1 and a2 ∈ A∗, a one-step
rewrite relation⇒R over an alphabetA∗ can be defined
such that, givenx, y, ra andrc ∈ A∗, thena1 ⇒R a2 holds
if and only if a1 = xray, a2 = xrcy and(ra, rc) ∈ R.

Proposition 15An n-derivation inSDL is defined as a
finite sequence of sentencess0, . . . , sn that are produced
starting from an initial sentences0 belonging toA∗ and
rewriting it by means of rewrite rules inR.

Proposition 16The generative processL can be defined
such thatSDL = {si ∈ A∗|s0 ⇒R si}, from which it can
be argued thatSDL is a Semi-Thue system.

Sentences are not atomic elements ofSDL. On the con-
trary, they can be decomposed into many parts, which are
explained in the following paragraphs.

Proposition 17 The alphabetA is defined as a set of
symbol classes such thatA = {s0, s, ∅, l, f,⊕, t, v, c},
where:s0, s and∅ are, respectively, the initial sentence, the
generic sentence and the null sentence;l representslabels,
meant at providing each sentence with a name;f repre-
sentsformulas, i.e., building blocks upon which sentences
can be built;⊕ represents both unary and binary connect-
ing operators; t representsterms, i.e., everything else apart
from sentences, and more precisely languagevariablesv
andconstantsc.

Proposition 18A sentences is an element ofA∗ in the
form l ≡ l(f);, wherel represents suitable labels andf is
a formula.

Proposition 19 A formula f is an element ofA∗ that
can be a label, a term, a juxtaposition or a composition of
subformulas by means of connecting operators.

Proposition 20A connecting symbol∅ is an element of
A that contributes to formulas by composing one or more
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subformulas using, respectively, unary symbols⊕u and bi-
nary symbols⊕b.

Proposition 21The set of rewrite rulesR is defined as
follows: s0 → s | ss0 | ∅; s→ l ≡ l(f); f → l | t | ⊕uf |
f ⊕b f ; l → string; t → v | c; v → string; c → string;
⊕u → ¬ |≡| δ | (); ⊕b → ⊓ | ⊔ | λω |≺|.

The syntax ofSDL is completely specified on the basis
of the alphabetA and the rewrite rules inR. However, what
is unspecified is how to ground the language with respect to
the underlying ontologyΣ, and in particular to descriptions
Dk. In particular, it is necessary to map language elements
to symbol classes within the ontology.

Proposition 22The rulev → string maps a set of vari-
ablesvk, k = 1, . . . , |vk|, to corresponding symbols within
Σ that are related toBasic TypesB such thatΣ |= B(Dk).

Variablesvk correspond to descriptionsDk that refer to
basic types. In particular,string refers to the name of the
relatedσk.

Proposition 23The rulec → string maps a set of con-
stantscl, l = 1, . . . , |cl|, to symbols within the ontology
that are related to instances ofBasic TypesB such that
Σ |= B(D̂l).

Differently from variables, constantscl correspond to
descriptionsD̂l that refer to instances of basic types. In
this case,string refers to the name of the relatedσ̂l.

Proposition 24The rulel→ stringmaps labels to a set
of named non-groundedσk or grounded̂σl symbols within
the ontologyΣ, each one related to eitherPredicates, Con-
textsor Situations.

All the symbols above contribute to the definition of for-
mulas.

Proposition 25 The rulef → l | t | ⊕uf | f ⊕b f
maps formulasfj , j = 1, . . . , |fj | to corresponding either
non-grounded or grounded descriptions withinΣ, which
are related to eitherPredicates, Contextsor Situations.

Proposition 26 The rules → l ≡ l(f); maps a set
of sentencespj ∈ A∗, j = 1, . . . , |pj | to corresponding
Predicatesymbols withinΣ.

Sentencespj correspond to descriptions related to ba-
sic types in conjunctive normal form that describe “facts”
about an entity.

Proposition 27 The rules → l ≡ l(f); maps a set
of sentencescj ∈ A∗, j = 1, . . . , |cj | to corresponding
Contextsymbols withinΣ.

Sentencescj correspond to descriptions related to pred-
icates in conjunctive normal form that refer to the same
entity.

Proposition 28 The rules → l ≡ l(f); maps a set
of sentencessj ∈ A∗, j = 1, . . . , |sj |, to corresponding
Situationsymbols withinΣ.

Sentencessj correspond to descriptions related to pred-
icates in normal conjunctive form that refer to different en-
tities.

The introduced mapping defines a translation mecha-
nism to mapSDL sentences in structures that are repre-
sented within an ontologyΣ. The set of connecting opera-
tors is not described in details, as actual translation mech-
anisms are ontology-dependent (since they rely on the un-
derlying operators) and – as such – out of the scope of this
paper1.

5.2 Semantics

Every time instantτ , grounded formulas originate from
a variable assignmentατ according to a specific interpre-
tation I. Sentences inSDL assert which symbols must
be grounded inτ for the represented sentence to be sat-
isfied, given sensory information acquired from some in-
stant in the past up to the present time. How the grounding
process is performed depends on the constituent formulas.
Ultimately, this requires to identify a proper interpretation
I
.
= (Σ, ·I) for symbols belonging to the underlying ontol-

ogyΣ, thereby imposing a semantics to the corresponding
formulas.

In order to groundBasic TypesB, it is necessary to
ground symbols with respect to actual percepts corre-
sponding to sensory data. In this work, we refer to the map-
ping discussed in [28], and we focus on how semantics is
propagated to abstract structures by means of sentences.
In particular, the effects of the variable assignmentα over
SDL formulas must be defined.

Proposition 29Thesubstitutionof an actual numerical,
ordered or non-ordered valueαi to all the occurrences of
a variablev in a termt, that is referred to ast[v/αi], is
recursively defined as: (i) ift is a variable s.t.v 6= t, then
t[v/αi]→ t; (ii) if t is a variable s.t.v = t, thent[v/αi]→
αi; (iii) if t is a constant, thent[v/αi]→ t.

Proposition 30 The substitutionof a termt to all the
occurrences of a variablev in a formulaf , that is referred
to asf [v/t], is recursively defined as: (i) iff⊕u

is a formula
in the form⊕uf , thenf⊕b

[v/t]→ ⊕uf [v/t]; (ii) if f⊕b
is

a formula in the formf1⊕bf2, thenf⊕b
[v/t]→ f1[v/t]⊕b

f2[v/t].

As soon as new or updated information is available
at the time instantτ , a new variable assignmentατ is
defined. Accordingly, variables are updated. As a conse-
quence, corresponding formulas are given proper truth val-
ues, thereby satisfying more complex sentences. Further-
more, the meaning associated with connecting operators

1The interested reader could guess how to implement connectingop-
erators by inspecting their semantics in the next Section. However, in De-
scription Logics based ontologies, the mapping can be easilyrealized us-
ing some sort of extra logic “trick”.
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must be clearly assessed. In order to recursively compose
formulas, unary and binary symbols can be better classi-
fied in relational and temporaloperators, that are charac-
terized by an intuitive correspondence with common logic
and mathematical operators. Specifically, common logic
operators have been added.

Proposition 31Assignment. The unary operator
.
=∈ ⊕u

produces a formulaf .= ←
.
=f that is the copy of the sub-

formulaf . Given an interpretationI and a variable assign-
mentα, the grounded formula

.
= f̂ is satisfied if and only

if the logical expression̂f is satisfied.

Proposition 32 Parentheses. The unary operator() ∈
⊕u produces a formulaf() ← (f) that specifies the level
of precedence in the parsing process for the subformulaf .
Given an interpretationI and a variable assignmentα, the
grounded formula(f̂) is satisfied if and only if the logical
expression̂f is satisfied.

Proposition 33 Conjunction. The binary operators
{⊓, , } ∈ ⊕b produce formulasf{⊓,,} ← f1{⊓, , }f2
that are the juxtaposition of two subformulasf1 andf2.
Given an interpretationI and a variable assignmentα, the
grounded formulaŝf1{⊓, , }f̂2 are satisfied if and only if
the logical expression̂f1 and f̂1 is satisfied.

It is worth noting that the correspondence of mean-
ing between the two latter connecting operators originates
from the mapping process of formulas to structures within
the ontology. However, this is permitted to guarantee com-
patibility with commonly used logic formalisms.

Proposition 34 Disjunction. The binary operator⊔ ∈
⊕b produces a formulaf⊔ ← f1⊔f2 that is the disjunction
of two subformulasf1 andf2. Given an interpretationI
and a variable assignmentα, the grounded formulâf1 ⊔ f̂2
is satisfied if and only if the logical expression̂f1 or f̂2 is
satisfied.

Proposition 35Negation. The unary operator¬ ∈ ⊕u

produces a formulaf¬ ← ¬f that is the negation of the
subformulaf . Given an interpretationI and a variable as-
signmentα, the grounded formula¬f̂ is satisfied if and
only if the logical expressionnot f̂ is satisfied.

Temporal operators require to take several time instants
τ into account. As a consequence, they contribute to for-
mulas that are satisfied by a sequence of several variable
assignmentsατ . Three operators have been defined.

Proposition 36Derivative. The unary operatorδ ∈ ⊕u

produces a formulafδ ← δ(f) that is the “derivative” of
the subformulaf . Given two time instantsτ and τ − 1,
an interpretationI and two assignmentsατ andατ−1, the
grounded formulaδτ (f̂τ ) is satisfied if and only iff̂τ =

¬f̂τ−1.

For simplicity, two operators, namelypositive deriva-
tive δt→f andnegative derivativeδf→t are used in place

of the general operatorδ, in order to differentiate the case
in which the argument of the derivative changes fromsat-
isfiedto not satisfiedor vice versa.

Proposition 37 Length. The family of binary opera-
torsλω ∈ ⊕b, ω ∈ {<,≤,=,≥, >}, produces a formula
fλ ← λω(f1, f2) that compares the temporal duration of
two subformulasf1 andf2. Given three time instantsτ ,
tau1 andτ2, an interpretationI and three variable assign-
mentsα, ατ1 andατ2 ; given thatτ1 < τ is the most re-
cent time instant such thatδ(f1) holds, andτ2 < τ is the
most recent time instant such thatδ(f2) holds; then the
grounded formulaλω,τ (f̂1,τ , f̂2,τ ) is satisfied if and only
if (τ − τ1)ω(τ − τ2) is satisfied, whereas it is not satisfied
otherwise.

In most cases, one of the constituent formulas may sim-
ply correspond to actual time intervals (e.g., “20 minutes”
or “8 hours”), and the operator is currently used to check
whether a formula lasts less, equally, or more than the spec-
ified interval.

Proposition 38 Precedence. The binary operator≺∈
⊕b produces a formulaf≺ ←≺ (f1, f2) that expresses the
temporal precedence relationship between two subformu-
las f1 andf2. Given two instantsτ1 andτ2, an interpre-
tationI and two variable assignmentsατ1 andατ2 ; given
thatδt→f (f̂1,τ1) andδf→t(f̂2,τ2) hold; then the grounded
formula f̂1,τ1 ≺ f̂2,τ2 is satisfied if and only ifτ1 < τ2
holds (i.e., if the interval in whichf1 is satisfied strictly
precedes the interval in whichf2 is satisfied), and not sat-
isfied otherwise.

6 IMPLEMENTATION AND DISCUSSION

SDL has been used to model the behaviour of a team
of service robots in a hospital environment. All the exper-
iments have been performed using Merry Porter, a com-
mercially available robotic platform (Figure 6). In the fol-
lowing paragraphs, implementation details and an overall
discussion about system performance are presented.

6.1 Implementation Details

At the hardware level, Merry Porter is characterized
by an unicycle kinematics with an active front steering
wheel, three different systems for outdoor or indoor lo-
calization, respectively based on GPS, laser rangefinders
and active beacons (referred to as DLPS system), a safety
laser rangefinder for obstacle detection and two cameras
for surveillance. Merry Porter has a battery working time
of about4 hours with only30 minutes charge time.

At the software level, Merry Porter exploits a multi-
agent architecture that is based on the ETHNOS frame-
work [29,30], where each module is in charge of executing
well-defined tasks, for instance mission management [31],
localization [32], trajectory planning [33], see Figure 2.
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Fig. 2. The robot software architecture.

The theoretical model described in this paper has been
implemented as part of theTask Managermodule. It re-
ceives as input information originating from sensors dis-
tributed in the environment as well as on board the robots,
such as position, detected obstacles or batteries level. The
model has been implemented using the CLASSIC knowl-
edge representation framework, which has been selected
for its efficiency in the reasoning scheme [34]. As a matter
of fact, CLASSIC guarantees a number of desirable prop-
erties like reasoning complexity in polynomial time, at the
price of few limitations with respect to base construct ex-
pressiveness.

In order to obtain an efficient structure for the ontology,
specifically in a reasoning perspective, a number of rule-
of-thumb and best practices related to the field of Ontology
Engineering have been considered [35]. In particular, a first
classical division inupperanddomainontologies has been
considered. On the one hand, the upper ontology represents
general-purpose concepts related to information (e.g., data)
and physical (e.g., space, areas, places, time) domains, as
well as general environment and robot related characteris-
tics. On the other hand, the domain ontology is related to
specific concepts holding in typical Ubiquitous Robotics
scenarios, in particular in the form of further specifica-
tion of concepts both in the information space (e.g., data
types, such as those related to laser, GPS or device activity)
and in the physical space (e.g., automated doors, elevators,
load/unload stations and other relevant objects), as well as
specific features of robots and intelligent devices.

In order to ground theSDL language, the model has
been implemented as a specific module within the ontol-
ogy. Following the subdivision in upper and domain ontol-
ogy, an upper specification ofSDL comprises those con-

cepts representing language elements in the form ofPred-
icates, ContextsandSituations. The domain specification
of SDL represents all the predicates, contexts and situa-
tions that can be defined using theSDL formalism as in-
troduced in Section 5. For instance, theContextconcept is
represented in Description Logics formalism as:

Context
.
= ∃madeOf.Predicate⊓ ≥1 madeOf⊓
∃startsAt.Integer⊓ =1 startsAt⊓
∃endsAt.Integer⊓ =1 endsAt,

wherestartsAtandendsAtare – respectively – the start and
end time instants associated with a given truth value for
the context (time is modelled using integers). As a major
consequence of organizing predicates, contexts and situ-
ations in a hierarchical fashion, a bottom-up approach to
the continuous update of the ontology is achieved: sensory
data affects instances of basic of domain elements, which
are used to determine truth values associated with domain
predicates, to be used by higher-level concepts such as con-
texts and situations to define complex abstractions.

All the SDL operators have been implemented as spe-
cific concepts in the ontology subsumed bySDLOperator.
For instance, given theContextconcept, thePrecedence
operator is defined as:

Precedence
.
= SDLOperator⊓
∃arg1.Context⊓ =1 arg1⊓
∃arg2.Context⊓ =1 arg2⊓
(arg1.endsAt< arg2.startsAt),

where the test in the last row of the definition is used to
characterize precedence between occurrences of contexts
in arg1andarg2, respectively. Similar considerations hold
for other concepts and operators.

Fig. 3. Map of the robot operating environment.

The approach described in this paper is currently under
validation at the Polyclinic of Modena, a hospital located
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in Italy. Robots are required to transport – either according
to a time schedule or on demand – biologic waste and other
material between areas located at different floors of one of
the buildings of the Polyclinic complex (Figure 3). In the
following paragraphs, two test cases is reported, discussing
different examples of use.

6.2 Example 1: Mission Feasibility

Rationale. Mobile robots need to know bothin advance
and at run-time the availability of elevators (e.g.,A andB
in Figure 3), the crowding of areas to traverse (e.g.,F, H
and other areasA1, . . . ,An), the type of material being de-
livered (in order to avoid possible contacts with food provi-
sions and people) and the charge status of theBatteryPack.

In our set-up, this data is provided by proper informa-
tion sources: anEnvironment Automationmodule running
on the network device associated with elevatorsA andB
continuously provides information about their availability;
a Task Managermodule running on a networked work-
station determines the sequence of areasA1, . . . ,An to be
visited in order to carry out the mission [31]; algorithms
(running on networked workstations) process camera im-
ages and passive infra red data (managed through sen-
sor nodes in the network) in order to determine whether
areasA1, . . . ,An are crowded or not, specifically using
state of the art background subtraction algorithms [36],
whereas distributed sensors provide information to track
movements of other vehicles (through RFID tags) through-
out the hospital; the integration with the hospital informa-
tion system allows to access data about the type ofmate-
rial being handled and the privileged routes for other de-
livery activities; finally, an on board battery system module
monitors battery status, whereas other agents cooperate to
perform self-localization [32], obstacle avoidance [37] and
navigation [33].

A mission is considered feasible if a path between the
initial and goal areas exist, if on board batteries are suffi-
ciently charged, and either the material to be delivered is
safe, or – in case of risky material – the elevators are im-
mediately available and the areas to be traversed are free
of people.

Modelling. Assuming thatF andH are – respectively –
the initial and goal areas, and thatA1, . . . ,An are the areas
to be traversed by the robot in order to move fromF to
H, mission feasibility is modelled as theFeasibleMission
situation, and in particular using the following collection
of sentences (or “source code”) inSDL:

1. Path
.
= Connected(f, h);

2. IsSafe
.
= Safe(m);

3. IsUnsafe
.
= ¬IsSafe;

4. NotCrowded
.
= ¬(Crowded(a1)⊓. . .⊓Crowded(an));

5. AreAvailable
.
= Available(a)⊔ Available(b);

6. AreCharged
.
= δf→tCharged(bp);

7. σ1
.
= FeasibleMission≡ Path ⊓ AreCharged⊓

(IsSafe⊔ (IsUnsafe⊓NotCrowded)) ⊓ AreAvailable;

Specifically, FeasibleMissionis the actual situation
name, Path, IsSafe, IsUnsafe, NotCrowded, AreAvail-
able and AreCharged are Contexts; Connected, Safe,
Crowded, Available and Charged are Predicates; f , h,
m, a1, . . . , an, a, b and bp are variables which names
correspond to environmental elements represented in
Figure 3. For a given interpretationI and time in-
stant τ , an ατ can be defined such thatConnected[f/F,
g/G], Safe[m/laundry], ¬Crowded[a1/A1, . . . ,an/An] ,
AreCharged[bp/BatteryPack], Available[a/A] and
¬Available[b/B], then the corresponding grounded
sentencêσ1 satisfiesσ1.

Fig. 4. A variable assignment satisfying the FeasibleMis-
sion situation.

Figure 4 shows a real truth value log that satisfies this
situation (opportunely “stretched” to fit space limits):Fea-
sibleMissionholds at time instantt when all the constitut-
ing instances of context elements are satisfied at the same
time. In this example, it can be noticed that, when the robot
is requested to perform an actual mission, it is in battery
charge mode: as soon as batteries are charged enough to
complete the mission, then it becomes feasible. Further-
more, since the material is safe, the availability of elevators
and the crowding of the areas to be visited do not really
matter.

Mapping. Within the ontology, the sentenceσ1 is
mapped to a conceptFeasibleMissionsubsumed bySitu-
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ation, and defined as:

FeasibleMission
.
= Situation⊓

Path⊓ AreCharged⊓
(IsSafe⊔
IsUnsafe⊓ NotCrowded) ⊓
AreAvailable.

Specifically,FeasibleMissionis made up of sixContext
concepts, which are connected through theand/or opera-
tors provided by the underlying ontology. EachContextis
conventionally provided with a rolemadeOfthat is filled
by a proper set ofPredicateconcepts. In this example, a
one-to-one mapping exists betweenContextsand Predi-
cates, e.g.,AreChargedis associated withCharged:

AreCharged
.
= madeOf.Charged.

Predicate concepts are related to their entities and
grounded instances through theirarg roles. In this case:

Charged
.
= arg1.batteryPack⊓ arg2.batteryLevel.

Predicateconcepts have two child concepts that are
used to designate their truth value. For instance,Charged
subsumesChargedTrueandChargedFalse, which differ on
the basis of the value ofbatteryLevel. When this value is
over a given threshold, the instance ofCharged is sub-
sumed byChargedTrue, thereby contributing toFeasible-
Mission to hold. Finally, analogous mechanisms hold for
the otherContextinstances as well.

Fig. 5. Merry Porter performing a delivery task.

6.3 Example 2: Loading an Object to Deliver

Rationale. When loading an object from loading sta-
tions, mobile robots can start their missionstrictly after
the overall loading phase has been carried out. This can be
achieved by a tight interaction between robots and load-
ing conveyor stations (Figure 5 on the bottom): the robot
MP1 must properly dock close to the loading conveyor sta-
tion, the station must be activated, the material to be de-
livered must be successfully detected on board the robot,
and the station must notify the successful conclusion of
the overall procedure. Again, this information is provided
by proper information sources: aLocalizationmodule run-
ning on board the robot provides both metric and topolog-
ical information about the robot position [32]; aConveyor
Managermodule running on the network device associ-
ated with loading stationsS1 andS2 continuously provides
information about their status (e.g.,on, off, active); finally,
pressure sensors located on the robot base are managed by
a Base Systemagent to detect when the material is loaded.
The loading procedure is considered accomplished if the
robot enters theDockingArea, then if the station is acti-
vated, if the material is detected on board, and finally if
the conveyor station stops. Obviously enough, further in-
formation can be obtained by the rear camera mounted on
the robot pole (Figure 5).

Modelling. Assuming thatMP1 is the robot in charge of
loading the material fromS1 in areaF, LoadMaterialcan
be modelled using the followingSDL code:

1. Docking
.
= δf→tIsIn(r, da);

2. StationOn
.
= δf→tActive(ls);

3. StationOff
.
= δt→fActive(ls);

4. Load
.
= δf→tPresent(m);

5. σ2
.
= LoadMaterial ≡ Docking ≺ StationOn≺

Load≺ StationOff;

Specifically,LoadMaterialis the actual situation name,
Docking, Load, StationOff and StationOnare Contexts,
IsIn, Active and Presentare Predicates, whereasr, da,
ls and m are variables. For a given interpretationI
and a sequence of time instantsτ1, . . . , τ7, if it is
possible to define a number of variable assignments
ατ1 , . . . , ατ7 , whereατ1 is such that¬IsIn[r/MP1, da/F],
ατ2 such that IsIn[r/MP1, da/F] (and therefore the
corresponding derivativeδf→t holds), ατ3 such that
¬Active[ls/S1] , ατ4 such thatActive[ls/S1] (therefore sat-
isfying the corresponding derivativeδt→f ), ατ5 such that
¬Present[m/laundry], ατ6 such thatPresent[m/laundry]
(and therefore the corresponding derivativeδf→t holds),
and finally an assignmentατ7 such that¬Active[ls/S1] ,
then the corresponding grounded sentenceσ̂2 satisfiesσ2.
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Fig. 6. Merry Porter performing a delivery task.

Figure 6 shows a truth value log satisfyingLoad: in
order for the situation to be detected, four time instants,
t1, . . . , t4, are important:t1 corresponds to the true switch-
ing instant of predicateIsIn: MP1 enters areaF. This trig-
gers the contextDocking to hold. After some time, as a
consequence of a direct communication betweenMP1 and
S1, the latter activates in order to load the robot base in
t2. MP1 detects an object on its base int3, when predi-
catePresentbecomes true. Int4, afterS1 deactivates, the
procedure is complete.

Mapping. Within the ontology, sentenceσ2 corresponds
to a conceptLoadMaterialsubsumed bySituation, and de-
fined as:

LoadMaterial
.
= Situation⊓

PrecDockingStationOn⊓
PrecStationOnLoad⊓
PrecLoadStationOff.

Specifically,LoadMaterial is made up of threePrece-
denceconcepts, each one responsible for detecting prece-
dence betweenContexts. For instance,PrecDockingSta-
tionOncan be modelled as follows:

PrecDockingStationOn
.
= Precedence⊓
∃arg1.Docking⊓
∃arg2.StationOn.

As it can be noticed from the previous definition, each
trend similar to that of Figure 6 satisfies the formula, be-
causet1 < t2.

7 CONCLUSIONS

In this paper, a formal language suitable to model
context-aware behaviours has been presented and dis-
cussed. In order to ground actual descriptions of patterns of

events to detect, an example borrowed from the Ubiquitous
Robotics paradigm has been discussed, which is currently
experimented in a real-world scenario. With respect to the
three fundamental requirements that context models must
adhere to, it is possible to conclude that: (i)effectiveness:
sensory data are mapped to symbolic representation that
can be directly operated upon; (ii)reusability: since sym-
bolic representations are maintained within an ontology in
a hierarchical fashion, selected concepts and relationships
can be differently composed to build different representa-
tions; (iii) expressiveness: since tractability of inference is
a fundamental prerequisite, the system is limited to sim-
ple temporal relationships among events; however, prac-
tice suggests that it is possible to model a wide range of
contexts and situations for a broader spectrum of artificial
cognitive systems.
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