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ABSTRACT 

Response and dynamical stability of oscillators with discontinuous or steep first derivative of 

restoring characteristic is considered in this paper. For that purpose, a simple single-degree-of-

freedom system with piecewise-linear force-displacement relationship subjected to a harmonic force 

excitation is analysed by the method of piecing the exact solutions (MPES) in the time domain and by 

the incremental harmonic balance method (IHBM) in the frequency domain. The stability of the 

periodic solutions obtained in the frequency domain by IHBM is estimated by the Floquet-Lyapunov 

theorem. Obtained frequency response characteristic is very complex and includes multi-frequency 

response for a single frequency excitation, jump phenomenon, multi-valued and non-periodic 

solutions. Determining of frequency response characteristic in the time domain by MPES is 

exceptionally time consuming, particularly inside the frequency ranges of co-existence of multiple 

stable solutions. In the frequency domain, IHBM is very efficient and very well suited for obtaining 

wide range frequency response characteristics, parametric studies and bifurcation analysis. On the 

other hand, neglecting of very small harmonic terms (which in-significantly influence the r.m.s. 

values of the response and are very small in comparison to other terms of the spectrum) can cause 

very large error in evaluation of the eigenvalues of the monodromy matrix, and so they can lead to 

incorrect prediction of the dynamical stability of the solution. Moreover, frequency ranges are 

detected inside which the procedure of evaluation of eigenvalues of the monodromy matrix does not 

converge with increasing the number of harmonics included in the supposed approximate solution. 

KEY WORDS 

dynamical stability, response characteristic, non-linear vibrations, piecewise-linear system 

CLASSIFICATION 

ACM: J.2 Engineering 

JEL: Z0



H. Wolf, D. Banić and Ž. Božić 

118 

INTRODUCTION 

Among the great number of various types of non-linear dynamic systems a very specific 

group constitutes non-linear systems described by differential equations which contain non-

linear restoring characteristic with discontinuous or steep first derivative (for example 

systems with clearances, rolling bearings, gears, clutches, impacting oscillators, etc.). 

Frequency response characteristics of these systems are usually very complex and include 

multi-frequency response for a single frequency excitation, jump phenomenon, multi-valued 

solutions, and possibility of non-periodic solutions. Both periodic and non-periodic responses 

can be determined in the time domain by using digital simulation. But procedures of that kind 

can be exceptionally time consuming, particularly inside the frequency ranges of co-existence 

of multiple stable solutions (where many combinations of initial conditions have to be 

examined for obtaining all possible steady-state solutions), for lightly damped systems (since 

a great number of excitation periods must be simulated to obtain a steady-state response), and 

when the state of the system is near to bifurcation. These methods are not suitable for 

obtaining wide range frequency response characteristics, unstable solutions and for 

bifurcation analysis also. A very efficient method for solving strong non-linear differential 

equations in the frequency domain is the harmonic balance method (HBM) [1-6]. When the 

assumption of dominance of primary resonance in the response is satisfied, the HBM (single 

harmonic) is very accurate and numerically very efficient method for obtaining periodic 

response of non-linear systems with harmonic excitation. But it becomes very inaccurate if 

the influence of higher harmonics in the response is significant. Multi frequency harmonic 

balance methods (e.g., Incremental harmonic balance method or Newton-Raphson harmonic 

balance method [7-14]) provide the study of effects of superharmonics and subharmonics to 

response. These methods become exceptionally efficient in combination with path following 

techniques [15-17], and can be successfully applied to a wide range of non-linear problems. 

They are very well suited for parametric studies because a new solution can be sought by these 

methods, with the previous solution used as a very good approximation. Since these methods 

enable obtaining both dynamically stable and unstable solutions, determining of dynamical 

stability of these solutions should be reliable and numerically efficient. Since the estimation 

of dynamical stability of the steady state response by Floquet-Lyapunov theorem [18] is a 

sensitive procedure [19-21], the factors which can lead to incorrect prediction of the 

dynamical stability must be taken into consideration. 

Responses determined in the time domain (MPES) and in the frequency domain (HBM and 

IHBM) are considered in this paper as well as problems which can occur in estimation of 

dynamical stability of the periodic solutions obtained in the frequency domain. For that 

purpose, a simple single-degree-of-freedom system with piecewise-linear force-displacement 

relationship subjected to a harmonic excitation is analysed. 

MODEL OF A MECHANICAL SYSTEM WITH A CLEARANCE 

Model of a simple mechanical system with clearance is shown in Figure 1. It consists of an 

inertia element m, a linear viscous damping parameter c, and a non-linear elastic element 

defined by a piecewise-linear function g(x) and a coefficient k. When the system is excited by 

a periodic harmonic force F(t), the motion of the system can be described by the non-linear 

differential equation: 

    
2

2

d d
( ) cos

d d
m p F

x x
m c kg x F t F F t
t t

          0 cos sinC Sf f t f t     , (1) 
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Figure 1. Model of vibration system. 

where f0 = Fm represents mean transmitted force, F f fp C S 2 2  is the amplitude of the 

vibratory component at frequency , while fC and fS are force component amplitudes of the 

corresponding harmonic terms and F is the excitation phase angle. 

The piecewise linear function g(x) and its derivative are shown in Figure 2(a) and Figure 2(b), 

respectivelly. Parameter b denotes one-half of the clearance space. Since the procedure of 

prediction of the dynamical stability is based on derivative of a non-linear function, 

expressions for non-linear function and its derivative are given: 

 g(x) = h
*
(x – b

*
), (2) 
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Figure 2. Graphs showing a) non-linear function  g x  and b) its derivative g(x)/x. 

BRIEF DESCRIPTION OF THE APPLIED METHODS 

THE INCREMENTAL HARMONIC BALANCE METHOD (IHBM) 

By introducing a non-dimensional time as a new independent variable, the differential 

equation (1) can be rewritten in the non-dimensional form: 

  
2 2 M

n n2 2
n 0

2
( ) ( cos n(ν ) sin n(ν )),

ν ν

d x d x
g x F f g

d d

  
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  

      (5) 
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with 
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In this way, the period of the response (with  subharmonics taken in consideration) is always 

2, making it possible (by using the IHBM) to consider any number of superharmonics and 

subharmonics included in the supposed approximate solution. Any characteristic dimension 

of the system is denoted by l here. 

Supposed approximate solution is given by: 

 
N

i i

i 0

cos i sinix a b 


   T a,, (6) 

where 

  1, cos , cos2 ,...,cos N , sin , sin2 ,...,sin N     T ,  

  0 1 1 2, ,..., , , ,...,
T

N Na a a b b ba .  

The equation N = M represents the number of all harmonics included in the supposed 

solution,  is the number of subharmonics and M is the number of superharmonics. By 

applying this method, which consists of two basic steps: incrementation and Galerkin's 

procedure, the non-linear differential equation (5) is transformed into the system of 2N + 1 

linearized incremental algebraic equations: 

 K
j j 1 j a r , (7) 

 j 1 j j 1Δ  a a a , (8) 

with Fourier coefficients (a0, ai, bi, i = 1, …, N) as unknowns. In equations (7) and (8), the 

superscript j denotes the number of iterations. In each incremental step, only linear (i.e., 

linearized) algebraic equations have to be formed and solved. A solution is obtained from the 

iteration process when the corrective vector norm ||r|| is smaller than a certain (arbitrary) 

convergence criterion. The comprehensive description of the method, its application to 

piecewise-linear systems and the way of determining elements of Jacobian matrix K and the 

corrector r in explicit form is given by Wong et al. in [10]. Generally, accuracy of the 

approximate solution obtained by using IHBM depends on the number of harmonics included 

in the solution, accuracy of procedures used for determining elements of K and r, and a value 

of convergence criterion. Since the IHBM described by Wong et al. ([10]) is used in this 

work, accuracy of the procedure of determining elements of K and r depends only on the 

precision of numerical determination of times i in which the system changes stage stiffness 

region (Fig. 3). Regarding the parameter b, the three stages in the problem are defined in 

accordance with (4). 

THE METHOD OF PIECING THE EXACT SOLUTIONS (MPES) 

By introducing the non-dimensional time  as an independent variable (what is convenient 

when one determines response in the time domain), the differential equation (1) can be 

rewritten in the non-dimensional form: 

    
d

d

d

d

2

2
2

x x
g x F Fm p F





     cos , (9) 
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Figure 3. Solutions to the equations x b  and x b  . 
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Force-displacement relationship g( x ), shown in Fig. 2(a), is piecewise-linear. Local solutions 

of differential equation (9) are known explicitly inside each of the stage stiffness, and can be 

repeatedly matched at bx   and bx  , to obtain a global solution of (9). Piecing together 

of these local solutions is not directly possible, because the times of flight in each stage 

stiffness region cannot be found in a closed form. But, the matching of local solutions can be 

numerically done very easily. Only approximation done by the applying of this procedure is 

in the numerical determination of times in which the system changes stage stiffness region 

( bx  , bx  ). Effective amplitudes px  of the steady state time domain responses are 

calculated by using: 
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where T denotes the period of the response. The solutions of equation (9) inside each of the 

stage stiffness region are: 

1. for   b x b  
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in which 0x  and (d x /d)0 are non-dimensional displacement and velocity at the initial time 

 = 0, i.e. at time in which the motion is determined by the given equation. 

2. for x b  

       x A B Fm       
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e
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     0
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        1 2   b Q F Rcos , (12a) 
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3. for x b   

       x A B Fm       
 

e
  

     0

3

2

0 3

2

01 1cos sin   

        1 3   b Q F Rcos , (13a) 

 
         

d

d
e

x
B A A B


         

  







          






  0

3

2

3

2

0 3

2

3

2

01 1 1 1cos sin   

       Q F R3 sin , (13b) 

where 

 

   
Q Q

F
j j

p

3 2
2

2 2
1 2

 

  

,   



R 













tan 1

2

2

1
,  

    A x F b Qm F R3 0 3 01         cos ,  

  B
x

A Q F R3 2
0

3 3 0

1

1












    











 

    
d

d
sin .  

THE STABILITY OF THE STEADY STATE SOLUTION 

When the periodic solution is obtained, the stability of the given solution can be determined 

by examining the perturbed solution x
*
: 

 x x x* *   , (14) 

where  x
*
 is a small perturbation of a periodic solution x . By substitution of equation (14) 

into equation (5), and after expanding the non-linear function g( x ) in Taylor's series about 

the periodic solution with neglecting non-linear incremental terms, one obtains a linear 

homogeneous differential equation with time changing periodic coefficients g( x )/ x : 
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When the steady state solution x () is determined, the values of g( x )/ x  are known inside 

the period of the response. A very efficient and very often used method for determining the 

stability of the periodic solution is based on the Floquet-Lyapunov theorem [18, 22]. For that 

purpose equation (15) can be rewritten in the state variable form as: 
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Since the matrix A ( )  is a periodic function of  with period 2, the stability criteria are 

related to the eigenvalues of the monodromy matrix, which is defined as the state transition 

matrix at the end of one period. According to Floquet-Lyapunov theorem, the solution is 

stable if all the moduli of the eigenvalues of the monodromy matrix are less than unity. 

Otherwise the solution is unstable. Bifurcation occurs when one of the moduli of the 

eigenvalues of the monodromy matrix reaches unity. Generally, it is not possible to derive an 

analytic expression for the transition matrix. But, if the non-linear force-displacement 

relationship is piecewise-linear, its derivative g(x)/x = h
*
 is, according to (4), constant 

inside each of the intervals [i, i+1]. Figure 3 shows a period of the response where 0 = 0 

and L + 1 = 2. There are L times denoted as 1, 2, ... , L, in which the system undergoes a 

stiffness change. Consequently, A(i, i+1) is also a constant matrix inside that interval. 

According to [23], for the constant A(i, i+1) (inside the interval [i, i+1]), transition matrix 

(i+1, i) can be expressed as: 

    i i 1 i+1 iA( , )

i 1 i, e
   

    

  ; (18) 

and for the whole interval [0, 2] according to [10] one obtains: 

  2π, 0   
 i i 1 i+1 i

L
A( , )

i 0

e
     



 . (19) 

Beside the precision of numerical determination of times i in which the system changes 

stage stiffness region ( x b , x b  ), the only approximation occurring in this procedure is 

the accuracy of computation of the matrix exponential exp[A(i, i+1)(i+1 – i)] and the 

product of matrix exponentials 
 i i 1 i+1 i

L
A( , )

i 0

e
     



 . 

NUMERICAL EXAMPLES 

Figures 4 and 5 show effective amplitude-frequency plots  p px x  obtained by MPES 

(both periodic and non-periodic solutions) for the parameter values: b  1 ,  = 0,03,  
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Figure 4. Effective amplitude-frequency plot  p px x  obtained by MPES: 0 0x  , 
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Figure 5. Effective amplitude-frequency plot  p px x  obtained by MPES for 0 0x  , 
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0 0.25,mf F   0.25,C pf F   fS  0   0F  . Figure 4 shows 1990 effective amplitudes 

px  of the time domain responses obtained at 1990 non-dimensional frequencies  for initial 
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conditions: 0 0x   and (d x /d)0 = 0. Figure 5 shows 7960 effective amplitudes px  obtained 

at the same 1990 non-dimensional frequencies , for four different initial conditions: 0 0x  , 

0
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 
; 0 1x  , 

0

d
1

d

x




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 
; 0 1x  , 

0

d
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d

x




 

 
 and 0 1x   , 

0

d
1

d

x




 

 
. Figure 6 shows 

comparison of results obtained by MPES and those obtained by IHBM in the case when 

supposed approximate solution includes only a constant term and the first harmonic (single 

harmonic balance method). As one can see, a good agreement of the results obtained by these 

two methods is achieved, but only when the assumption of dominance of primary resonance 

in the response is satisfied. 

 

Figure 6. Comparison of the results obtained by MPES (dots) and by single harmonic balance 

method (line). 

In Figure 7 the numerical results obtained by IHBM are compared with those obtained by 

MPES. Figure 7 shows excellent agreement between the results obtained by these methods. 

Non-periodic responses obtained by MPES are not found by the incremental harmonic 

balance method, because this method is limited only to consideration of periodic vibrations. 

Also, frequency response characteristics obtained by MPES are incomplete, because the 

results of MPES depend on given initial conditions, making it difficult to find all possible 

solutions. 

As it is shown in [21], the accuracy of determining the eigenvalues of the monodromy matrix 

depend significantly on the number of harmonics included in the supposed approximate 

solution. Consequently, neglecting of very small harmonic terms of the actual time domain 

response can cause a very large error in evaluation of the eigenvalues of the monodromy 

matrix and can lead to incorrect prediction of the dynamical stability of the solution (Fig. 8). 

Figure 8(a) shows the relative differences of the effective amplitudes px  (the a branch of the 

amplitude-frequency plot from Figure 7) obtained with N = 7, 12, 15, 18 and 30 harmonics 

with respect to the effective amplitudes px  obtained with N = 100 harmonics 
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  
   

 
N 100

Ndiff

100

, N 7, 12, 15, 18, 30
p p

p

p

x x
x

x


  . (20) 

 

Figure 7. Comparison of the results obtained by MPES (dots) and by IHBM (line). 

Figure 8(b) shows a corresponding plot of maximum modulus of the eigenvalues of the 

monodromy matrix  max max ,N   . A very specific situation occurs at  = 0,176. In this 

case the value of max  is more precisely determined for N = 7 than for N = 12, N = 15 and 

N = 18, what can lead to incorrect estimation of dynamical stability of the response and can 

make bifurcation analysis difficult. The spectrum of the corresponding time domain response 

is shown in Fig. 9. In this example amplitudes of the harmonics for N   are exceptionally 

small in comparison to other terms of the spectrum and in-significantly influence effective 

amplitude px (amplitudes of the higher harmonics (N > 8) are less than 0.7 % of the 

amplitude of the dominant harmonic). Absence of convergence can be explained by essential 

difference between IHBM (the method used for obtaining approximate steady state solutions) 

and the procedure of evaluating the monodromy matrix (used for estimation of dynamical 

stability of the steady state solution by Floquet-Lyapunov theorem). Since the IHBM is based 

on the Galerkin’s procedure, Fourier’s coefficients of the supposed approximate solution 

( 0 i i, , , i 1,...,Na a b  ) are determined in the way that differential equation (5) is satisfied in 

average, but not in every point of the response x = x (). On the other hand, stability 

estimation based on evaluation of the eigenvalues of the monodromy matrix depends only on 

the position of points 1 , 2 , …, L  in which the system undergoes a stiffness change (Fig. 3) 

and estimation of stability is influenced only by the differences between the approximate and 

exact positions of the points 1 , 2 , …, L . Increasing of number of harmonics N decreases 

average difference between the approximate and the exact solution and in this way increases 

the probability of more accurate determination of points 1 , 2 , …, L . 
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Figure 8. a) Differences of effective amplitudes  
Ndiffpx  (the a branch of the amplitude-frequency 

plot from Figure 7) obtained with N = 7, 12, 15, 18, and 30, and b) corresponding plot of maximum 

modulus of the eigenvalues of the monodromy matrix  max max ,N   . 

a) 

b) 
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Figure 9. The spectrum of the time domain response for 0,179  (branch a in Fig 7). 

CONCLUSIONS 

Response and dynamical stability of oscillators with discontinuous or steep first derivative of 

restoring characteristic is considered in this paper. For that purpose, a simple single-degree-

of-freedom system with piecewise-linear force-displacement relationship subjected to a 

harmonic force excitation is analysed by the method of piecing the exact solutions (MPES) in 

the time domain and by the incremental harmonic balance method (IHBM) in the frequency 
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domain. The stability of the periodic solutions obtained in the frequency domain by IHBM is 

estimated by the Floquet-Lyapunov theorem. 

The considerable advantage of using this piecewise-linear model is in the possibility of 

expressing monodromy matrix exactly as a product of matrix exponentials, what is not 

possible for a general non-linear function. In this way, the inaccuracy of evaluating 

monodromy matrix can be caused only by insufficient precision of numerical determination 

of the times in which the system changes stage stiffness region, and by numerical procedures 

of evaluation matrix exponential and product of matrix exponentials. On the other hand, local 

solutions of differential equation (1) are known explicitly inside each of the stage stiffness, 

and can be repeatedly matched at x b  and x b  , to obtain a global solution of (1) in the 

time domain. Piecing together of these local solutions is not directly possible, because the 

times of flight in each stage stiffness region cannot be found in a closed form. But, the 

matching of local solutions can be numerically done very easily. Only approximation done by 

applying this procedure is in the precision of numerical determination of times in which the 

system changes stage stiffness region (x = b, x = –b). 

Obtained frequency response characteristic is very complex and includes multi-frequency 

response for a single frequency excitation, jump phenomenon, multi-valued and non-periodic 

solutions. Determining of frequency response characteristic in the time domain by MPES is 

exceptionally time consuming, particularly inside the frequency ranges of co-existence of 

multiple stable solutions, where many combinations of initial conditions have to be examined 

for obtaining complete frequency response characteristic. In the frequency domain, IHBM is 

very efficient and very well suited for obtaining wide range frequency response 

characteristics, parametric studies and bifurcation analysis. On the other hand, neglecting of 

very small harmonic terms (which in-significantly influence the r.m.s. values of the response 

and are very small in comparison to other terms of the spectrum) can cause very large error in 

evaluation of the eigenvalues of the monodromy matrix, and so they can lead to incorrect 

prediction of the dynamical stability of the solution. Moreover, frequency ranges inside 

which the procedure of evaluation of eigenvalues of the monodromy matrix does not 

converge with increasing the number of harmonics included in the supposed approximate 

solution are detected. 
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ODZIV I DINAMIČKA STABILNOST VIBRACIJSKIH SUSTAVA 
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POVRATNE KARAKTERISTIKE 
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SAŽETAK 

U radu su razmatrani odziv i dinamička stabilnost vibracijskih sustava koji imaju prekinutu ili strmu prvu 

derivaciju povratne karakteristike. U tu svrhu je analiziran jednostavni vibracijski sustav s jednim stupnjem 

slobode gibanja i karakteristikom krutosti koja se sastoji od linearnih segmenata koji je uzbuđen s harmonijskom 

silom. Odziv sustava je u vremenskoj domeni dobiven s metodom povezivanja egzaktnih rješenja po 

segmentima (MPES), a u frekvencijskoj domeni s inkrementalnom metodom harmonijske ravnoteže (IHBM). 

Procjena stabilnosti periodičnih rješenja dobivenih u frekvencijskoj domeni korištenjem IHBM izvršena je 

primjenom Floquet-Lyapunovog teorema. Dobiveni graf funkcije povećanja je vrlo složen i sadrži 

višefrekvencijske odzive uzrokovane jednofrekvencijskom uzbudom, tzv. skokove amplitude, te višestruka i 

neperiodična rješenja. Određivanje grafa funkcije povećanja u vremenskoj domeni s MPES izuzetno je 

dugotrajno a to je najizraženije u područjima frekvencija u kojima postoje višestruka stabilna rješenja. IHBM, s 

kojom se odziv sustava određuje u frekvencijskoj domeni vrlo je efikasna i dobro prilagođena metoda za 

određivanje cjelovitog grafa funkcije povećanja, kao i za parametarsku i bifurkacijsku analizu. S druge strane, 

zanemarivanje vrlo malih harmonika (koji neznatno utječu na srednju vrijednost i efektivnu amplitudu odziva i 

koji su vrlo mali u odnosu na ostale harmonike u spektru) može uzrokovati vrlo velike pogreške u određivanju 

vlastitih vrijednosti prijenosne matrice i tako dovesti do pogrešne procjene dinamičke stabilnosti rješenja. 

Štoviše, uočena su frekvencijska područja unutar kojih postupak određivanja vlastitih vrijednosti prijenosne 

matrice ne konvergira s povećanjem broja harmonika uključenih u pretpostavljeno približno rješenje. 
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dinamička stabilnost, graf funkcije povećanja, nelinearne vibracije, sustav linearan po segmentima 


