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INTRODUCTION 

In the last decades macro system theory has been extended to economic systems, see [1 – 3]. 

The crucial role here is played by the concept of resource value for a subsystem and the 

concept of exchange kinetics that is based on the differential of resource's value estimate by 

two economic systems. This technique makes it possible to determine the optimal behaviour 

of an economic intermediary operating in an irreversible economic system. In this framework 

economic intermediary is similar to a heat engine in thermodynamics. It controls its intensive 

variables (prices it orders to buyers and sellers). A direct economic exchange is always 

irreversible. However an exchange via an intermediary can be reversible, if the price for a 

resource used by an intermediary is intuitively close to resource's value estimate by a 

subsystem. In this case the rate of exchange will be intuitively close to zero. It is worth noting 

that if an exchange with the given rate is carried out via an intermediary then its 

irreversibility is lower than irreversibility of a direct exchange. If the duration of exchange or 

its rate is constrained then the problem of finding what are the prices an intermediary has to 

order to buyers and sellers in order to obtain maximal profit. 

We denote the cash holding of an intermediary as M and the value of its assets as F. 

PROFITABILITY AND CONDITIONS OF MINIMAL DISSIPATION 

We denote profitability as the maximal amount of cash that can be extracted from the system 

subject to given conditions. The system is denoted as a number (possibly one) of economic 

intermediaries and their environment. The constraints here play an important role. They can 

include the constraints on the final states of some of the economic agents, conditions for the 

intensive variables of the system, constraints on the exchange duration and others. These 

constraints reduce the profitability. If a system does not have an environment with constant 

estimates this definition of profitability will still be valid. 

The problem of finding the profitability does not have a solution for some systems without 

constraints. For example, profitability for a system with more than one economic reservoir 

(market) is unlimited, because an intermediary operating between them can generate an 

infinite profit. Note that profitability for a system with one reservoir, given initial state of an 

intermediary and no constraints on the duration of exchange represents an economic analogy 

of exergy in thermodynamics, which is widely used in engineering. 

Let us consider an economic system with k economic agents. Each agent has resource’s inventory 

Ni (i = 1, 2, …., k) and cash holding Mi. Resource's value estimate pi depends on Ni and Mi. 

Economic reservoir (system with constant resource value estimate p) can be one of subsystems. 

We assume that the system is closed with respect to resources. When there is contact between 

i-th and j-th subsystem then resource and capital flows between them nij and mij occur. 

Resource flow is directed from the system where its estimate is lower to the system where 

this estimate is higher. The capital flows in the opposite direction. 

If a system contains an intermediary (economic agent) then its objective is to organize 

resource exchange in such a way that it extracts capital M from the system. We will assume 

here that economic subsystems cannot exchange resources directly but only via an exchange 

though an intermediary. This intermediary regulated this exchange by setting up the prices for 

buyers and sellers. It controls this price setting to maximise M. The flows of buying and 

selling depend on the price c, offered by the intermediary to the -th subsystem and on the 

resource i value estimate for this subsystem pi. Thus, 

 ni = ni(pi, ci), ni = 0, p = c, sign(ni) = sign(p  c).  
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We denote the flow directed to the intermediary as positive and from it as negative. The flow 

is a monotonically increasing function of ci. The intermediary does not produce anything, it 

just resells what it purchased earlier. 

It is clear that the flow of capital 

 
i

iiiνiνννν ),(),( cpnccpm .  

The evolution of resource and capital inventories in the -th subsystem is described by the equations 

 ),(  cpnN ii  , Ni(0) = Ni0.  

 
i

cpncM ),( iiiνiν
 , M(0) = M0.  

As a rule, estimates pi(N, M) monotonically decrease when Ni increases and M is fixed. 

These estimates also are non-decreasing functions of M for fixed N. 

Next we will calculate how much money can be extracted by an intermediary over an infinity 

period and over a finite period of time for a system that includes economic reservoir and 

which lacks it. 

PROCESS DURATION IS NOT CONSTRAINED 

System with one reservoir 

The profit from reselling of a resource can be only extracted if initially the system is in a 

non-equilibrium state. That is, if vectors of resources' estimates p(0) for different subsystems 

have different values. The trading stops in equilibrium when estimates for all subsystems 

become equal to reservoir's estimates 

 0),( ii pNMp  , (i = 1, …., n and  = 1, …, m). (1) 

The maximum of the extracted profit corresponds to a minimum of the combined capital of 

the economic intermediary and reservoir 

 



m

M
0

min


 . (2) 

To achieve that objective, the intermediary buys resource using the lowest prices (estimates) 

from economic subsystems with estimates of the i-th resource below pi
0
, and resells it using 

the highest prices (estimates to economic subsystems with estimates higher than pi
0
. Both 

buying and selling processes are reversible and the increment of the combined wealth 

function is equal zero. The initial stocks of capital of economic subsystem is given and the 

increment of the capital of economic reservoir is 

 
 


m k

i

iii pNNM
1 1

00 )]0([


 .  

We have m  n conditions (1), and m reversibility conditions to find the state of the system in 

equilibrium 

  SNMSNMS  )]0(),0([),( ,  = 1, …, m. (3) 

Equations (1) and (3) determine the equilibrium stocks of resource and capital. The extracted 

capital is equal to the difference between combined final and initial capital of the system 

minus reservoir’s capital increment 

 


 
m

MMME
1

0])0([


 . (4) 
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System without reservoir 

In this case the condition of equilibrium (1) still holds but the vector of equilibrium estimates p
0
 

is unknown. It is to be found form the condition that intermediary does not accumulate resource 

 



m

ii NN
1

0)]0([


 , i = 1, …, n. (5) 

The system (1), (3), (5) determines (m + 1)n subsystem’s state variable in equilibrium. 

Naturally, equilibrium in a system with an intermediary 0N , N  is different from equilibrium 

for direct exchange. The maximum of the extracted capital is 

 


 
m

MME
1

])0([


 . (6) 

Example 

We consider an economic system which consists of an economic reservoir, a passive 

economic subsystem with finite capacity and an intermediary. Subsystem’s wealth has the 

following form 

 S = M
1/3

N1
1/2

N2
1/6

.  

The initial inventories of both resource and capital are 

 M(0) = 150, N1(0) = 20, N2(0) =30.  

and the equilibrium prices for economic reservoir are 

 p1
0
 = 5, p2

0
 = 2.  

The equilibrium states of subsystem equilibrium estimates are found from (1) and (3). The maximal 

amount of capital extractable from the system is determined by (4) and is equal to M = 20,95. 

Suppose that reservoirs’ prices are scaled with the coefficient k. The dependence of E(k) is 

shown in Figure 1. Let us emphasise that unlike the case of direct contact, the equilibrium 

state does not depend on the exchange kinetics for an exchange via an intermediary. 

 

Figure 1. The dependence of intermediary's profit on the economic reservoir's price scale. 
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LIMITED DURATION OF EXCHANGE 

We assume that the duration of exchange  is given. In this case an intermediary is forced to 

increase the prices offered to sellers above the equilibrium estimates pi. It is also forced to 

reduce the prices it offers to buyers below equilibrium estimates. This leads to an irreversible 

losses and reduces the amount of capital it is able to extract from the system. The maximal 

possible value of this capital E turns out to be lower than E1. Their difference 

 E = (E - E) > 0,  

describes the irreversibility of the trading. 

We shall call the capital loss above the capital loss in equilibrium (reduction in system's 

profitability) the capital dissipation 

  = n(p, c)(p – c). (7) 

For scalar exchange the dissipative losses are determine as 

 S() = 



0

d)( tt =  



0

d))(,( tcpcpn . (8) 

Condition of optimality for trading 

We consider an exchange between an intermediary and a finite-capacity economic subsystem. 

We want to find out how to control the price offered to buyers c in order to sell in given time 

 the given amount of resource N and to obtain the maximal price for it. It is clear that the 

optimal prices offered to the sellers would obey to the same conditions. In both case the 

capital of the finite-capacity subsystem M() must be minimal possible. 

The problem takes the following form 

 
)(

min)(
tc

MM   . (9) 

subject to 

 NNNN Δ)( 0   . (10) 

 c
N

M


d

d
. (11) 

  
0

]),,([

d
d

0
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N
cMNpn

N
t 



. (12) 

We can substitute the independent variable dt with dN using the kinetic dependence 

 
t

N

d

d
 = –n(p, c),  

on the interval (0, ) with a non-zero flow n. In the problem (9) – (12) it is required to find 

such function c*(N) that the increment of the economic intermediaries capital is minimal. 

The conditions of optimality of this problem are given by the Maximum principle. It is 

formulated in terms of the problem’s optimization Hamiltonian 

 
]),,([

1

cMNpn
cH   .  

The maximum principle consists of the equations of motion, the equation for the adjoint variable 

 
]),,([

)/(/

d

d
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M

H
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


 


, 0)( N , (13) 
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and the condition on maximum on c of the Hamiltonian (which is a convex and differentiable 

function) 

 0
]),,([

/
2









cMNpn

cn

c

H
 .  

After eliminating  using (13) we obtain the condition of optimality for trading condition of 

minimal dissipation for resource exchange 

 0
]),,([

)/(/

),(

/
22










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cMNpn

Mpcn

cpn

cn

dN

d
. (14) 

which determines c(N, M) up to the constant. This constant is to be found from the equality (12). 

If resource estimate p depends on its stock N only (∂p/∂M = 0), then the condition (14) 

becomes simpler 

 const
),(

/
2




cpn

cn
. (15) 

Thus for 

 n(p, c) = (c – p), (16) 

from (15) it follows that the optimal price for given finite time  is 

 




NN
NpNNc


 )(),(* . (17) 

and the profit from trading is 

 




2

0 )(
)()(

NN
NENE


  . (18) 

where E is the capital from trading for infinite long period    using equilibrium prices 

c(N) = p(N). The function E() is shown in Figure 2. For  < 0
 = N

2
/(E) the intermediary 

is forced to charge the seller less than it charges the buyer. For  < 20
 the average rate of 

profit e() = E()/ is maximal and equal to 

 

2

0

0 )(

4
* 












 

NN

NNE
e


. (19) 

 

Figure 2. Dependence of trading profitability of its duration. 
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A given rate of trading flow corresponds to each  . In particular the flow which corresponds 

to  = 0
 occur when trading is not profitable. For a liner dependence of flow of price estimate 

differential the rate of exchange flow that maximizes profit is two times higher than the rate 

of non-profitable, equilibrium trading. 

For the above considered example the irreversible losses are 

 



 2

0

0

2 )(
d)]()([),(

NN
tNcNpNE


  ,  

thus 

   




0

d))(,()(),()()( tcpcpnNENENEE . (20) 

Equation (20) holds for an arbitrary n(p, c). Indeed after substitution of dt with dN the 

integral in (8) can be rewritten as follows 

  

N

N

NNNcNpNENENE

0

d)],()([)()()( 0  .  

The capital extracted is 

 

N

N

NNNcNE

0

d),(),(  , 

N

N

NNpNE

0

d)()( . (21) 

Equation (20) follows from comparing these two equations. Thus, the optimal trading processes 

are minimal dissipation processes and the condition (14) is the condition of minimal dissipation. 

Extracting maximal profit in a system with a few intermediaries 

We assume that an intermediary operates in a system that is closed with respect to resource. 

Intermediary facilitates the exchange between subsystems in order maximize the amount of 

capital it extracts from the system. The problem here can be decomposed into the problem of 

optimal trading by an intermediary with a single subsystem. The trading is optimal if the 

price c and the estimate p obey the conditions of minimal dissipation (14), (15) for any 

moment when trading takes place. The trading volumes Ni for each of m subsystems are to 

be chosen optimally. The following condition holds 

  
 


m

i

m

i

ii NN
1 1

0 . (22) 

We can view a reservoir as one of subsystems with the estimate p- that is independent on its 

stocks of resource and capital. Therefore for any dependence n(c, p-) the optimal price c for 

trading on this market must be time independent. 

Thus, the problem of extracting maximal capital from a closed microeconomic system in a given 

time is reduced to a two staged process. During the first stage m problems (9) – (12) about the 

optimal trading with each of the subsystems with given initial and final resource stocks (Ni0 

and Ni) are solved. During the second stage the optimal Ni are found from the condition 

 



m

i
N

ii
i

NE
1

max),( . (23) 

subject to (22). The optimality conditions for the problem (22) and (23) take the form 

 




i

ii

N

NE ),(
,   i = 1, …, m,  
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with  to be found from (22). 

After taking into account (21) we obtain 

 )(d
),(

),(
),(

0

iii

N

N i
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i

ii NcN
N

NNc
NNc

N

NE i

i












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


 . (24) 

The first term in the right hand side is the optimal price at time . The second term is the 

correctional one. It is determined by the averaged sensitivity of the optimal price to the 

volume of trading. The condition of the optimal choice of trading volumes takes the form 

 )( ii Nc  ,   i = 1, …, m. (25) 

Example 

Consider the system where for each subsystem 

 pi = hi/Ni. (26) 

 )(),( iiii pcpcn  . (27) 

Suppose that trading time is not constrained. From (21) and (26) we get 

  

i

i

N
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i

i
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i
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N
h

N

N
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)( ,  

with i = 1, …, m in previous equations. For time-constrained exchange after integrating (21) we obtain 

 



i
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i

i
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N

N
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2

0

0

)(
ln),(


 . (28) 

The condition (25) for the optimal choice of Ni takes the form 

 







i

ii

iiii

NN
NpNc 02)()( . (29) 

The problem becomes much simpler when all subsystems have constant estimates p = const. 

The condition of optimality (29) then is reduced to the equations 
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2

2 0 


 i

i

i

i
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p



. (30) 

From (22) it follows that  is equal to the averaged value of resource estimate 
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
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 (31) 

after substitution of *

iN  into (28) we obtain Ei(, 
*

iN ) – the maximal amount of capital that 

can be extracted from the system in given time . The profitability of the system is 

 



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After taking into account (31) we obtain for estimates that are independent from resource’s stocks 
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 )(
4

22*  ipE


 .  

In most of the cases the estimates are reduced when resource stock increases and profitability 

is a monotone convex function of trading (purchasing) time. 

CLASSIFICATION OF RESOURCE-EXCHANGE LAWS BY THEIR 
MINIMAL DISSIPATION CONDITIONS 

The law of resource exchange for an economic system is determined by the function n(x, u). 

The conditions of minimal capital dissipation, (14) and (15), are expressed in terms of this 

function. In this section we will demonstrate that it is possible to single out classes of 

exchange kinetics that have similar optimal trading regimes. 

CONDITION CONSTANT DISCOUNT IS OPTIMAL 

This problem has the form 

 
c

tpcnI mind),(
0

 


.  

subject to constraints 

 

.)0(),,(

,0,d),(
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0

NNpcnN

nNtpcn








.  

The estimate p(N) here is the given function. The conditions of optimality for this problem 

have been obtained above. 

Let us find n(p, c) for which the optimal trading price c for any moment of time t is equal to 

the estimate of this resource in the subsystem P up to a constant ((p, c) = c – p = const). From 

the above-derived conditions of minimal dissipation it follows that for an irreversible exchange 

 .const
),(

1
2







c

n

cpn
F , n(c, p) = 0, c = p. (32) 

It was shown that in order for the optimal discount to be constant it is necessary and 

sufficient that the following equation holds 

 
p

c
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p

c

nnpnn

ncnn

F

F











2

2 2

. (33) 

This condition determines the exchange kinetics for each dependence  of the optimal price 

on resource estimate. 

From (33) it follows that constant optimal discount corresponds to such dependencies n(p, c) that 

 
)()(1

)(
),(

pcMpR

pcM
pcn




 . (34) 

Here M(c – p) and R(p) are arbitrary functions of p and c – p, and M(0) = 0. We denote this 

discount as c – p = . The expression (34) takes the form n(c, p) = ()/[1+R(p)()]. Because 

  



0

d),( Ntpcn .  
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N
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This condition determines the optimal discount . The irreversibility of the trading is 

described the integral 

 NtpcnE δΔd),(δ
0

 



.  

The average dissipation (average trading costs) is 

 



NE δΔ




 . (36) 

Equations (35) and (36) determine irreversibility of trading for any function n(c, p) of the form (34). 

CONDITION WHEN OPTIMAL FLOW IS CONSTANT 

The condition of optimality (32) is reduced to the condition that the flow n(p, c) on the 

optimal solution c*(p) is constant when the left hand side of (32) depends on n only 

 )],([),( cpncpF  ,  

where () is an arbitrary function, or, which is the same, when ∂n/∂c is some function of n 

 *)],([*),( cpncpn
c

n
c 




, p. (37) 

The following statement holds: the optimal trading is the constant flow trading if and only if 

the resource exchange can be represented in the following form 

 )()(),( pcMpcpcn  . (38) 

Here, M() is an arbitrary non-negative function of price differential. The optimal dependence 

c*(p) is determined by the condition 

 


N
npcMpc


 *)*()*( . (39) 

EXAMPLE 

We define 

 )(arctg),( pcpcn  , c > p.  

Since (38) holds for this function, the optimal dependence of the price on time c*(t) is 

 


N
Nptc


 tg*)()(* ,  

and the optimal profit 
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N

NtN



 0)(* .  

The optimal exchange flow is constant and equal to N/. Proof: from (37) it follows that 
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c
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


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where r() is an arbitrary function. We get the equation for n 

 0)(  pc nprn ,   n(p, c) = 0,   p = c. (40) 

The characteristics equation is 
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 1c , )(prp  .  

We get 

 tctc  0)( ,   (p) = t – t0,  (41) 

where (p) is an arbitrary differentiable function such that d/dp = –1/r(p). After elimination 

of t from (41), we get the first integral of the equation (40) 

  00)( ctcp  const.,  

thus the common solution is 

 n(c, p) = M[(p) – c].  

After taking into account that n(p, c) = 0 for c = p we obtain the class of resource exchange 

laws (38) for which it is optimal to trade using constant exchange flow. 

TRADING WITH A NUMBER OF SUBSYSTEMS WITH PRICE 
DISCRIMINATION 

In previous text we considered the problem when an intermediary was able to offer different 

prices to different buyers and sellers. In some cases it cannot do that but has to offer the single 

price to all buyers and another single price to all sellers. Naturally this reduces its profit. 

We denote the prices offered to sellers and buyers as c1(t) and c2(t) correspondingly. The 

composition of trading partners for an intermediary is determined by exchange laws. All 

subsystems at any moment of time t  [0, ] can be divided into three category: sellers (from 

the intermediary) (pi(t) < c1(t)); buyers (pi(t) > c2(t)); and neutral. The intermediary does not 

contact them because it is not profitable for it (c1(t)  pi(t)  c2(t)). 

This problem becomes much simpler when subsystems are reservoirs (have constant 

estimates). In this case c1, c2 and pi are constants that maximise the profit. 

The dependence of the exchange flow on c1 can be written as 

 


 
j

i pcnpcn
1

11 ),(),(


 , (42) 

where summing is done on all reservoirs with estimates lower than c1. Similarly 

 


 
n

i cpnpcn
1

22 ),(),(


 . (43) 

Here pi is the minimal estimate higher than c2. The rate of profit must be maximal 

 
21 ,

1122 max)],(),([
cc

pcncpcncs   , (44) 

subject to non-accumulation of resource by the intermediary 

 npcnpcn   ),(),( 21 . (45) 

Equation (45) allows us to express c1 and c2 in terms of n. Substitution of these dependencies 

in (44) leads to unconditioned optimisation problem with respect to n. Substitution of its 

solution n
*
 back into c1

*
 and c2

*
 determine division of the reservoirs into buyers sellers and 

neutral non traders. 

Let us specify the dependencies n 

 )(   pcn  ,  

and rewrite (45) as two equalities 
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 
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 ,  
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 )( 2 .  

After denoting 
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,  

we obtain 
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2
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1
1

iA

niM
inc

jA

jMn
jnc





 . (46) 

The objective (44) takes the form 

 max)],(),([ 12  jncincns . (47) 

For fixed n the values of i and j are to be found from the conditions of maximum of c2 and 

minimum of c1, respectively. 

The condition of minimum of c1 on j yields 

 
 

  jj p
jA

jMn
p 


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1

1
1 . (48) 

Similarly, for maximum of c2 on i we get 

 
 
  1
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


 ii p

iA

niM
p . (49) 

The maximum of (47) on n, subjected to (46), (48) and (49) determines the maximal rate of 

capital extraction in a system with common prices. For a convex s we obtain 

    
*

21**

1
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2 ,,
nn

n

c

n

c
njncinc















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


 . (50) 

For two economic agents (j = 1, i = 2) the problem becomes very simple. The optimal prices offered 

by an intermediary to buyers and sellers at any moment of time t obey the following equations 

 
 

 21

21211
1

2

2
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




ppp
c , 

 
 21

21122
2

2

2










ppp
c ,  

and the limiting rate of profit extraction is 

  
 
 21

2

1221*

4 








pp
ts .  

If resource estimates p for both economic agents depend on time then the optimal solution 

c1
*
(t) and c2

*
(t) is determined by these equation for every moment of time t. 

Trading in a competitive market: Let us consider the system where a number of economic 

intermediaries compete to trade with a single finite-capacity economic subsystem in a given 

time (Figure 3). We assume that resource estimate p depends only on its stock N and does not 

depend on the subsystem’s capital. We assume that function p(N) is known. 

The expenses 
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Figure 3. The structure of an economic system with a number of economic intermediaries 

and a finite-capacity subsystem. 

   
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iii dtpcpcnS min,
1 0

 




. (51) 

are, for the given trading volume, 

   iii Ndtpcn 


0

, , i = 1, …, m. (52) 

The stock of resources is described by 

  
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i

ii pcn
dt
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, ,   
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0 . (53) 

We denote 

 



m

i

iNab
1

  

and substitute the resource stock N as a new independent variable. The problem then takes the form 
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, i = 1, …, m, (55) 

 
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1
. (56) 

The Lagrange function of the problem (54 – 56) is 
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
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iiii npcn

L

1 1
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

. (57) 

The necessary conditions of optimality become 
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Thus, for all i the following conditions hold 
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 , i = 1,…, m, (58) 

For given dependence p(N) these conditions, jointly with (55) and (56), determine the optimal 

solution of the problem c(N). 

INTERMEDIARY OPERATING BETWEEN TWO FINITE-CAPACITY 
SUBSYSTEMS 

Until this point we considered trading in a closed economic system. We will now consider 

trading in an open system in a stationary or cyclic regime. 

Economic reservoirs with constant prices 

We consider the system with intermediary which maximizes its profit by trading with two 

economic reservoirs. It can establish contacts with reservoirs in turn by controlling not only 

prices it offers but also the timing of contact. Or intermediary can contact both reservoirs 

simultaneously and trade continuously. We denote the prices (estimates) of two reservoirs as 

p1 and p2, with p1 < p2. Exchange kinetics is given by 

   ppppg , . (59) 

The estimate p here can take to values, p1 and p2, and the prices offered by the intermediary 

for buying and selling p are the unknowns. 

Maximal rate of profit 

The objective of the intermediary is to achieve maximal rate of capital extraction per cycle. 

Sequence of buying and selling 

We now consider the case when intermediary buys and sells from each of the reservoirs 

(markets) in sequence. The rate of profit is 

     max,,
1

0

  pppgdtpppg
T

N

T

. (60) 

The intermediary here sells on the second market everything it buys on the first market, 

     0),,
1

0

 ppgdtppg
T

T

. (61) 

This is an averaged nonlinear programming problem with one constraint (61). The Lagrange 

function of the corresponding non-averaged problem is 

    ppgpppgL ,,  . (62) 

We denote L as L
0
 for p = p

0
. We require that each of L

0
 attains maximum on p, and get 
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 

    0,
,

 ppgp
dp

ppdg
v

v  , v = 1, 2. (63) 

These equations determine the basic values p
*
( p , ). Their substitution into L

0
 yields 

L1
*
( 1p ¸ ) and L2

*
( 2p ¸ ). The optimal *

 is determined by the condition 

  


 minmax * vv
v

pL . (64) 

Thus, the optimal prices for buying and selling are 

  1**

1 , ppp  ,  2**

2 ppp  .  

Note that 11 pp   and 22 pp  . 

Suppose that  in (59) depends only on the reservoirs estimate. That is, for p  = 1p ,  = 1 

and for p  = 2p ,  = 2. Then L takes the form 

      ppppL .  

The conditions (63) become 

     0 ppp vv  , v = 1, 2,  

and 
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p
p , v = 1, 2. (65) 

Substitution of these p into L gives 
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 (66) 

Since p1
*
 > 1p , p2

*
 < 2p , the function L2

*
 decreases when  increases. At the same time L1

*
 

increases. The minimum on  of the maximum of these two function is attained at the point 

where L1
*
 = L2

*
: 

          2211

*

2

*

1 ppLL .  

The functions L1
*
 and L2

*
 are shown in Figure 4. Their maximum is denoted with bold line. 

The minimum of maxi[L1
*
()] on  is achieved at *

. Therefore, 

 

Figure 4. Characteristic dependence of maximum on p1 and p2 of the Lagrange function. 
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Substitution of (65) (67) into (61) gives 
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Thus 
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for 1 = 2, 
*
 = ( 21 pp  )/2. The optimal prices for buying and selling are obtained after 

substitution of *
 into (65). For 1 = 2 
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The rate of profit here is 
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3

3
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2 





pp

pp
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p
 .  

This is lower than 0 = 12 / pp  - 1, for reversible buying and selling at reservoir prices. 

The limiting rate of capital extraction is 
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with *
 to be found form (67). 

One of possible constraints is the average over the cycle flow of capital spent by the 

intermediary to buy resource. This flow is given by the formula 

   1111 , ppgpU  . (70) 

For (59) 
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If the flow of capital is constrained, eg. U ·U
max

 < U
*
, then the intermediary has to add the 

equality (70) into its optimization problem as an additional constraint. Its profit N here will be 

lower than N
*
. If U

max
  U

*
 then it does not make sense for an intermediary to spend all its 

capital and it will use only its fraction equal to U
*
. Maximum of N here corresponds to the 

maximal rate of profit. 

Simultaneous buying and selling 

For continuous trading the intermediary has to select the prices it offers to buyers and sellers 

p1 and p2 in such a way that it rate of profit 

    11112222 ,, ppgpppgpN   (72) 

is maximal subject to selling everything it buys 

     0,, 222111  ppgppg . (73) 
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This is a standard nonlinear programming problem. Its solution gives the conditions for 

optimal prices 
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If g = ( p  - p) ( = 1, 2), then the condition (74) takes the form 

 2211 22 pppp  .  

This condition jointly with (73) 

    222111 pppp   ,  

allows us to obtain the optimal buying and selling prices 
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The rate of profit is 
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It is easy to see that if  are equal then *N  is two times higher than N
*
 in (69). This is 

natural because the exchange flows are the same and selling takes place during half of the 

cycle. If 1  2 then *N /N
*
 < 2. 

Vector exchange 

When intermediary contacts reservoirs in turn and there is no constraint of the rate of 

spending the problem (60), (61) takes the form 

  
pp

n

i

iii ppgpN
,

1

max, 


,   0, ppg i , i = 1, …, n.  

This is an average nonlinear programming problem with n constraints. The number of its 

basic solutions does not exceed n + 1. In order to solve it we first solve an auxiliary problem 

    
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 minmax,
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1
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iii pppgL 


,  21, ppp  .  

This problem becomes much simpler if L turns out to be strictly convex on p. The prices 

offered by the intermediary here can be found by solving equations 

    





n

i

jvii

v

i ppgp
p

g

1

0, ,   j = 1, 2,   v = 1,…,n.  

If gi = gi( ip , pi), the problem with vector resource can be decomposed into n independent 

sub-problems similarly to (60) and (61). All the results derived above hold. Note that (67) 

holds here for every i, and the expression (69) for N* contains sum on i. Each term in this 

sum is positive. The profit rate can be found here using the formula 
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iiii pppg
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,

 .  

The same is true for the problem where intermediary contacts reservoirs simultaneously. 

The characteristic features of vector exchange become important when the rate of capital 

spending is constrained below the value which corresponds to N
*
. This case is considered in 

the next paragraph. 

Intermediary operating between two finite-capacity economic subsystems. 

In intermediary trades with finite-capacity subsystems instead of markets-reservoirs then the 

prices it offers must depend on time. The problem of obtaining the maximal profit here in a 

given time is decomposed into three problems: the problem of optimal trading (optimal 

buying and optimal selling) with a single subsystem, and the problem of adjusting of the 

optimal buying and optimal selling by selecting optimally their common parameters. 

It is important here that buying and selling here obeys the condition of minimal capital dissipation. 

We consider a cycle where resource is first bought by the intermediary and is then sold by it. 

We denote the capacities of two subsystems with which the intermediary trades as C1 and C2. 

These parameters link the stock of resource with its estimate by the subsystem pi(t) (i = 1, 2). 

The estimates are defined as (dpi/dt)Ci = - dNi/dt. The price of the intermediary is denoted 

as p(t). Furthermore, i (i = 1, 2) are the durations of contact between intermediary and two 

sub-systems. It is required here to find such 1 and 2 that the total duration of the trading 

cycle was equal to the given . The other control variable here is the volume of trading N. 

Intermediary maximises its profit per cycle 
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subject to constraint 
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Suppose the exchange kinetics is linear 
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Here from the conditions of minimal dissipation it follows that for each of the half-cycles it is 

optimal to maintain the constant flow of resource. As the result the equilibrium prices for 

buying and selling are 
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
 ,  2,0 t . (84) 

The price offered exceeds p1
*
(t) by 1 = N/(11) and is 2 = N/(22) below p2

*
(t). Thus, 

the prices offered by the intermediary for buying and selling are 
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Substitution of the dependencies (85) into the objective (78) allows calculating the dependence 

of profit on 1, 2 and N, and to find its maximum on these variables subject to (79). We get 
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The first term corresponds to the profit from equilibrium exchange. The second term 

describes losses due to finite time and capacities. 

Quantities 1 and 2 are found by solving the problem 
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Its solution can be reduced to the condition 
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which gives 
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The optimal trading volumes N is found by maximizing I on N subject to (88) 

 
 

 



























1221

21

21

12*

11
2

11






CC

pp
N . (89) 

The maximal profit is 
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The longer is the cycle the lower is the rate of profit N
*
 = I

*
/. 

For simultaneous buying and selling 1 and 2 should be chosen in such a way that the 

following condition holds for any   [0, ] 

     



0

222

0

111 ,, dtppgdtppg . (91) 

When 1 and 2 increase, the flow of resource in the optimal process decreases. Since the total 

amount of traded resource N during its buying and selling is the same, as a rule 1  2. In 

particular, for linear exchange kinetics, (91) becomes an equality 1 = 2 = . The prices 

offered to sellers and buyers obey (85), and the profit is given by (86) and (85) after 

substituting 1 and 2 with . The optimal profit is 



Optimal processes in irreversible microeconomics 

121 

 























2121

12*

11112

CC

pp
N



, (92) 

 
 























2121

2

12*

11
2

114

CC

pp
I



. (93) 

Limiting rate of profit 

If profit M is below I
*
, then the intermediary may want to achieve this profit using minimal 

amount of its capital. The problem becomes 
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 (94) 

This problem is very similar to the previous problem. The same conditions of minimal 

dissipation must hold here for half-cycles of buying and selling. 

The problem of adjusting these half-cycles takes the form 
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This gives the same expressions for the optimal 1
*
 and 2

*
 as above in the problem (87). The 

optimal volume of buying is 
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Substitution of N
*
() into (95) gives equation for *

. 

Constraints on the rate of spending 

If intermediary is constraint on how much it can spend buying his stock then it is optimal for 

it to maximize its profit N subject to the given expenses. Since the profit rate is defined as 

 
U

N
 ,  

the problem is equivalent to maximization of  subject to fixed U or N. 

Consider a cycle when intermediary-monopolist contacts in turns with two markets and the 

exchange kinetic is given by (82). The problem of optimal trading here takes the form 

      max1111122222  ppppppN  , (96) 

with constrained expenses 

   max

11111 UpppU    (97) 

and non-accumulation of the resource by the intermediary 

    22221111 pppp   , (98) 

with 1 + 2 = 1, i  0, i = 1, 2. 
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The condition (97) can be rewritten in the following form 

        11

2

22222

2

111 22 pppppppp   . (99) 

This condition jointly with (97), (98) determines p1, p2, 1 and 2. 

If buying and selling occur simultaneously then the cost constraint uniquely determines p1 

and p2 and the optimal profit N. For (82) we get 
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Optimal choice of trading composition 

If an intermediary can trade in a number or resources (vector exchange) then it can optimise 

its performance by controlling both prices offered and composition of its trading 
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Here Ui are the expenses from purchasing i-th resource. The dependence of Ni on Ui is 

determined by (100) and (101) after substitution of Umax into them. 

If Ni(Ui) are strictly convex functions and their derivatives at the coordinate origin are 

infinitely large, the optimal Ui are positive and obey equations 

 
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, i = 1, …, n.  

After taking into account (100) and (101) they take the form 
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with ni ,...1 , iiiii Uppp 1

2

111 /25,05,0   and 



n

i

i UU
1

max . 

Solution of the system (103) determines the optimal composition of the resources for buying 

and their optimal prices. 
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