
Interdisciplinary Description of Complex Systems 2(1), 1-11, 2004 

*Corresponding author, η: moreau@lptl.jussieu.fr; +33 1 4427 5947; 
T. 16-15, 5ème étage, case 121, 4, Place Jussieu, 75252 Paris Cedex 05 

A KINETIC MODEL OF THE 
MUSCULAR CONTRACTION 

B. Gaveau1, M. Moreau2, * and B. Schuman2

1Laboratoire Analyse et Physique Mathématique, 
 Paris, France 
2Laboratoire de Physique Théorique des Liquides, 
 Paris, France 

 

SUMMARY 

In this article, we build a self consistent mean field deterministic model for the muscular 
contraction. The two main variables are the number of free myosin heads and the number of 
myosin heads attached to the actin, just after attachment. The model is natural in the sense 
that it respects the physico-chemical natural constraints. We calculate the stationary state, 
prove that it is stable and calculate the efficiency. 
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INTRODUCTION 
The metabolic process of a cell transforms chemical energy stored in bonds of 
various nutrients, either into other form of chemical energy, or into various forms of 
mechanical energy for transport of metabolites inside a cell, or communication 
between cells. Many forms of transport take place through membranes, or along 
special structures inside the cytoplasm. The muscular contraction is of the last 
category: it transforms the chemical energy stored in the phosphate bond of ATP in 
mechanical energy of the motion of a large protein called actin. The general character 
of this transformation is now well understood, at least in a qualitative manner, and is 
described in many text books (see [1, 2]). The first mathematical treatment of this 
process was given by Hill (see [3], for the first model, as well as [4], [5] and Hill's 
textbook for a more general theory of the conversion of chemical free energy into 
other forms of free energy [6]). More recently, there has been a renewed interest for 
mathematical models of molecular motors, as they are now called. These models 
follow the fundamental idea of Hill, namely that a certain degree of freedom can 
transit between two different form of free energy through a chemical reaction (see [7] 
for a recent review and references, as well as [8], [9], and also [10] for other type of 
mesoscopic motors like thermal ratchets). Nevertheless, certain of these models 
present difficulties of a mathematical nature, or difficulties concerning biochemical 
rate constants or of statistical nature. In a previous publication [11], we have 
introduced a detailed microscopic model, taking into account the actual fluctuations 
of the number of myosin heads which are attached to the actin filament. We have 
studied, in particular, the correlation between the number of heads which are attached 
to the actin filament and the actual force which is exerted on the actin molecule. 

In this article, we define a new and simple model: this model is a self-consistent mean 
field theory of the muscular contraction. It can be described by three processes, two 
of them being of chemical nature, one of them being of a mechanical nature 
describing the motion of the actin. The total work and the efficiency can be calculated 
exactly. This model describes a different regime from [11], namely the case of an 
intermediate regime where the muscle is loaded and starts to contract, but not enough 
so that the spring reaction is important. It is much simpler than our previous model 
[11], but it also takes into account, although schematically, the chemical reactions of 
attachment and detachment of a myosin head in a plausible way. 

The contents of this article are as follows: in section 2, we recall the biochemical 
description of the muscular contraction, in particular, we distinguish four phases. Only 
one of them will be the subject of this article. In section 3, we describe the self consistent 
kinetic model. We prove that it is natural, in the sense that it respects the natural 
physico-chemical constraints, calculate its stationary state and prove that it is stable (see 
section 4). We compute the work and the efficiency in section 5 and finally we discuss 
the various assumptions and intrinsic limitations of our model in the conclusion. 

DESCRIPTION OF THE MUSCULAR CONTRACTION 
A muscular cell is a specialized cell which expresses certain types of proteins which 
are able to transform chemical free energy into mechanical energy. The two essential 
proteins species which allow this transformation are a large rigid protein called actin 
and a shorter one called myosin which contains two articulate parts. The actin is 
attached to the wall of a sarcomer which is a compartment of the muscular cell. The 
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moving arm of the myosin can attach to the actin and then exerts a dragging force on 
the actin inducing the contraction of the sarcomer. The actin molecules and the fixed 
parts of the myosin molecules are arranged in separate parallel bundles. The moving 
arms of the myosin molecules spring out of the bundles of myosin. The arms are 
constituted of a linear peptidic chain surrounded by a global protein called the head of 
the myosin, which can attach to the actin. Many myosin heads can attach to a given 
bundle of actins (see Fig. 1 and ref. [1, 2]). 

 
Figure 1. The interaction between the actine and the myosine heads molecules. 

The myosin head has also a catalytic function for the hydrolysis of ATP (adenosine 
triphosphate) in ADP (adenosine diphosphate) + P (phosphate) with the release of an 
important amount of energy when the phosphate bond is broken (at normal 
temperature and neutral pH, the free energy released is about 30 kJ/mol). The 
molecule ATP and its phosphate bond are the essentially universal storage of energy 
which is used in the metabolism of all living organisms (see ref. [1, 2]). 

We describe now the various states and phases of the contraction of a muscular cell. 

1st phase. The unloaded cell at rest. 
At rest, the myosin heads cannot attach to the actin molecules. Indeed, there is another 
protein called the troponine which blocks the sites of attachments on the actin, 
preventing the attachment of the myosin heads. The myosin arms can rotate and when 
the corresponding head is not attached, the angle θ between the fixed part of the myosin 
and the moving part takes its equilibrium value which is about  π/2. Moreover, in this 
phase, the myosin head carries on a special site a dissociated ADP+P. 

2nd phase. The effect of a nervous impulse. 
The excitation of a muscle cell by a nervous impulse induces a release of the 
neurotransmittor acetylcholin, which allows ions Ca2+ to enter the cell, diffuse and inhibit 
the troponine which was blocking the attachment sites of the actin molecules for the 
myosin heads. The details of this process do not concern us here. But as a consequence, 
the myosin heads can now attach to an attaching site of the actin molecules. 

3rd phase. The cycle of the myosin head (see Fig. 2). 
Let us consider now a free myosin head equipped with its ADP+P which is in its 
equilibrium position, the angle between the fixed part of the myosin and the arm 
being π/2. This is step 1. 

The myosin head together with its ADP+P attaches to a site of the actin forming a 
strong covalent bond, while the ADP+P detaches from the complex (step 2). Now, the 
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Figure 2. A myosine head has attached in position 0 to the actine and exerts a dragging 
force f0. The ADP leaves the myosine head, and the myosine head reaches its new 
equilibrium position 1. An ATP attaches to the myosine which is then detached from the actine. 

arm of the myosin is no more in its equilibrium position. The potential acting on the 
angle θ is such that the new equilibrium position of this angle, when the myosin head 
is attached to the actin, is π/6. So the myosin arm starts to rotate to reach this new 
equilibrium value. But as it is rigidly attached to the actin, it drags the actin inducing 
a contraction of the cell (step 3). During this motion of the myosin head coupled to 
the actin, an ATP molecule can attach to the myosin head and destabilize the bond 
between the actin and myosin head so that the myosin head is detached from the actin 
(step 4) and comes back to its free equilibrium position, while catalyzing the 
hydrolysis of the ATP molecule in ADP+P coming back to step 1. The myosin head 
equipped with the ADP+P molecules is ready for another cycle. 

In each cycle, the actin moves by about 10 nm. One molecule of ATP is consumed, 
one molecule of ADP and a phosphate residue P are released. 

4th phase. Coming back at rest. 
Finally, this cyclic motion of the myosin head stops when the neural firing stops: the 
neurotransmitter is no more released, the influx of the ions Ca2+ stops, and the 
troponine which was inhibited, is disinhibited and blocks again the site attachment of 
the myosin head on the actin filaments. 

In this article, we are interested in the third phase, when the attachment sites of the 
myosin heads on actin filaments are not blocked. On a given actin filament, there are 
many attachment sites (of the order of 103) and a corresponding number of myosin 
heads can reach the attachment sites, and when attached, can drag the actin filaments. 

The cyclic motion of a myosin head is converted in the linear motion of the actin 
filament (and the contraction of the muscle), exactly as in a standard engine, where 
the cyclic motion of the piston is converted to a linear motion. 

The main difference with a standard engine is that there are many "pistons" dragging 
the actin filament and causing the mechanical motion. 

We can consider the attachment times of the various myosin heads, as well as the 
detachment times of the myosin heads as independent random variables, essentially 
exponentially distributed. On the other hand, the myosin heads which are attached to 
the actin filament have, while they stay attached, the same velocity, which is the 
velocity of the center of mass of the actin filament. 
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Following the analysis of Hill [1, 6], we assume that the potential energy of the angle 
θ between the fixed part of the myosin and the moving arm is 
1. a given function V(0)(θ) with a minimum at θ (0) ≈ π/2 when the myosin head is not 

attached to the actin. 
2. another given function V(1)(θ) with a minimum at θ (1) ≈ π/4, when the myosin 

head is attached to the actin (see Fig. 3). 

The potential energy V(1)(θ) is the potential energy of the angle θ of an attached 
myosin head, if it was alone. Its derivative is essentially the force exerted by the 
attached myosin head on the actin, if that myosin head were alone. 

If we assume that all the free energy of the phosphate bond is released in mechanical 
energy, the force that a myosin head exerts on an actin filament is about 

F ≈ ∆G/d ≈ 0,5⋅10-19/10-8 ≈ 0,5⋅10-11 N/molecule. 

 
Figure 3. The cycle of the myosine head. This displays also the levels of energy with  ε > f0d. 

A SELF-CONSISTENT MODEL FOR THE ACTIN MOTION 
We denote by M the total number of myosin heads. We simplify the description by 
assuming that the given myosin head can be in three different states (see Fig.3). 
(i) unattached myosin heads, the number of which is denoted [My] 

(ii) attached myosin heads with an angle θ close to the angle θ(0); The number of 
these heads is denoted [AcMy]0. When a head is in this state, it exerts a dragging 
force f0 on the actin filament. 

(iii) attached myosin heads with an angle θ close to the equilibrium value θ(1). The 
number of these heads is [AcMy]1. When the head is in this state, it exerts 
dragging force f1 on the actin filament. 

We assume that, when the myosin head is detached, it relaxes to equilibrium instantly 
in the potential V(0). 

Obviously, one has the conservation law 
 [My]+[AcMy]0+[AcMy]1 = M. (1) 

One can describe the cyclic motion of the myosin head using three types of transitions. 
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(i) a reaction of attachment of the myosin head (with the ADP+Pi complex to the 
actin at an angle close to θ(0), and the corresponding reaction of detachment of 
the myosin head which has received an ATP. These reactions are written 

 (My)      (AcMy)0. (2) 
Notice that 0k  is essentially proportional to the concentration of ATP and we 
assume that 00 << kk . 

(ii) a reaction of detachment of the myosin head which is attached to the actin at an 
angle close to θ(1) (the myosin head has just received an ATP molecule) and a 
corresponding reaction of attachment of the free myosin head to the actin at an 
angle close to θ(1) 

 (AcMy)1      (My). (3) 

Notice here that k1 is essentially proportional to the concentration of ATP and 
that 11 << kk . 

The notations are chosen so that jj << kk , j = 0, 1. 

(iii) a mechanical transition, when the attached myosin heads transits from an angle 
close to θ(0) to an angle close to equilibrium θ(1) or vice versa 

 (AcMy)0      (AcMy)1. (4) 
Now, each attached myosin head has the same velocity v which is the velocity of the 
center of mass of the actin filament. So, the rates of the transitions in (4) are given as 
follows (see Fig. 3): 
a) if v > 0, the (AcMy)0 is converted to (AcMy)1 and the corresponding rate is 

 0mech110 ]AcMy[=)AcMy]([
d
d

=
d
v

t
ω . (5) 

where d is an average distance of displacement of the center of mass of the actin in 
this transition (see Fig 3). 
b) if v < 0, the (AcMy)1 is converted back to (AcMy)0 and the corresponding rate is 

 1mech101 ]AcMy[=)AcMy]([
d
d

=
d
v

t
ω . (6) 

Notice that ω01 < 0. We can summarize both equations (5) and (6) by defining 

mech1 )]AcMy([
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We still have to determine the law of motion of the actin filament. The total force on 
the center of mass is given by 
 F + f0[AcMy]0 + f1[AcMy]1, (8) 
where F is the total exterior force, which includes the load of the muscle and a 
spring-like force which tends to bring back elastically the muscle (or the walls of the 
sarcomer) to their positions in the absence of neural firing and of external load. 
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We assume a high friction limit for the motion of the center of mass of the actin 
filament, namely the velocity v of the center of mass (and consequently of the 
attached myosin heads) is proportional to the total force given by Eq.(8). 

The equation of motion is thus 
 α⋅v = F + f0[AcMy]0 + f1[AcMy]1, (9) 
where α is a friction coefficient. 

The state of the myosin evolves according to the following (non linear) differential 
equations deduced from Eq. (2 - 4) 

 0010 ]AcMy[+]My)[+(=]My[
d
d

kkk
t

, (10) 

 ω-]AcMy[]My[]AcMy[
d
d

0000 kk
t

−= , (11) 

together with Eq. (9) and the definition of ω in Eq. (7). 

Here we have used the obvious result that 

ω
tt
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d
d
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d
d
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mech
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Moreover, we can eliminate [AcMy]1 using the conservation law (1). 
 [AcMy]1 = M - [My] - [AcMy]0. (12) 
Eq. (11) is non linear, due to the term -ω and Eq. (7) for ω, when we eliminate v in 
term of the concentration [AcMy]j, using the equation of motion Eq. (9). 
Nevertheless, because ω is 0 if v is 0, the second member of Eq. (11) is a continuous 
function of the concentration, although its derivatives are discontinuous for v = 0. 

In the following calculations, we take 
 f1 = 0. (13) 
We eliminate v from Eq. (9) with f1 = 0 and we determine [AcMy]1 using Eq. (12), then 
 ω = (α⋅d)-1(F + f0[AcMy]0){Θ(v)[AcMy]0 + Θ(-v)(M - [My] - [AcMy]0)}. (14) 
Define 
 x = [AcMy]0;      y = [My], (15) 
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We can renormalize these equations using 
K = k0 + k1 + 1k  *t  = Kt 

*
jk  = kj/K *

jk  = jk /K 

dKα
F

F =*  
dKα
f

f 0*
0 =  

so from Eq. (16) and (17), one deduces 
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 )()( *
0

* xfFv +Θ=Θ . (21) 
Then, 
 0 ≤ *

1
*
0 + kk  ≤ 1, (22) 

and we shall assume that 
 F ≤ 0, f0 ≥ 0, (23) 
(see Fig 2. for the sign convention). 

STATIONARY POINTS AND STABILITY 
In this section, we study the stationary points of the system of Eqs. (19) and (20). The 
discussion is standard except for the presence of the Heaviside function. We also suppress 
the * in Eqs. (19) and (20). Whatever is the sign of v, the equation Eq. (17) gives 
 )(ˆ 10 xMkxky −+= , (24) 
for a stationary point ( x̂ , ŷ ). 

First, we assume that the corresponding velocity v̂  is positive. Then, the stationary 
solution ( x̂ , ŷ ) satisfies Eq. (24) and the stationary equation corresponding to the 
equation Eq. (20) for v > 0, namely, 
 0=ˆ+ˆ)ˆ+( 000 xkykxxfF . (25) 
Combining with Eq. (24), one sees that there is only one positive solution for x̂ . We 
assume that the velocity v̂  is positive or 
 0>ˆ+ 0 xfF . (26) 
A standard analysis shows that the stationary point ( x̂ , ŷ ) is an attractor. 

It can also be proved that, under the natural hypothesis of Eq. (25), if one assumes the 
condition (26), there is no stationary solution with a negative velocity, and that 
condition (26) is equivalent to the inequality 
 0≤|| MfF . (27) 
This condition is natural: it means that the external force –|F| (which is negative) has 
its modulus less than the maximal force Mf0 which can be exerted by all the myosin 
heads on the actin filament. This maximal force is exerted when all the myosin heads 
are attached to the actin filament, in configuration 0, so that the force is Mf0 in this case. 

Finally we have proved that the stationary points satisfies the physical condition 
 Myx ≤ˆ+ˆ , (28) 
and that, during the evolution, the state of the system stays in the physical region 

x ≥ 0, y ≥ 0, x + y ≤ M, 
and it is attracted towards the stationary state ( x̂ , ŷ ). 

WORK AND EFFICIENCY 
The work per unit time, which can be extracted from the system is w = |F| v̂  in the 
stationary state, which can be written as 
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vxfvxfFw ˆˆˆ)ˆ( 00 ++−= . 
Now the stationary velocity v̂  is given by Eq. (9) 

 )ˆ(1ˆ 0 xfF
a

v += , (29) 

so 
 2

0 ˆˆˆ vvxfw α−= . (30) 
Now the work w0 per unit time of the force exerted by the myosin heads is 
 xvfvfw ˆˆ]AcMy[ˆ 0000 == . (31) 
From the first equation (1) for the stationary state, one has 

ykxxfF ˆˆ)ˆ( *
0

*
0

* =+  
so that restoring normal units and using Eq. (29) 

ydkxv ˆˆˆ 0=  
and thus from Eq.(31) 
 ydkfw ˆ000 = . (32) 

On the other hand, the consumption of ATP's energy per unit time is the rate of 
detachment k1[AcMy]1 multiplied by the energy of one molecule of ATP, say ε, so 
the consumption of ATP's energy per unit time is 

e = k1[AcMy]1ε. 
We use the fact that in the stationary state, Eq. (10) gives 

]My)[(]AcMy[ 1011 kkk += , 
so 
 εykke ˆ)( 10 += . (33) 
The efficiency is thus the quotient of w by e 
 εykke ˆ)( 10 += . (33) 
Notice that in our approximation f0⋅d is the work of the force f0 of an individual myosin 
head when it transits from configuration 0 to configuration 1, and thus it is obviously 
less than ε (see Fig 3.), so in Eq. (34), the term (f0d/ε)⋅k0/(k0 + k1) is less than 1. 

The second term of Eq.(34) represents the loss of efficiency due to friction. Thus, 
Eq. (34) gives the following, simple upper bound for the muscle efficiency: 

R <
10

0

+ kk
k

. 

DISCUSSION AND CONCLUSION 
The model of muscular contraction that we have presented in this article is extremely 
simple: it is a deterministic kinetics with two degrees of freedom, essentially the 
number of unattached myosin heads and the number of attached myosin heads before 
they release to their equilibrium position. Nevertheless, this model respects the 
obvious physicochemical constraints, reaches a unique stationary state, and captures 
the main features of the biochemistry of muscular contraction. The parameters in the 
model are control parameters which depends of other parts of the metabolism of the 
cell and its environment, namely 
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(i) the concentration of ATP which is assumed to be given in our model and is the 
main control parameters for the state of detachment of the myosin heads and 
provides the energy, 

(ii) the level of neural firing, and then the concentration of Ca2+ ions which is the 
main control parameters of the rates of detachment of the myosin heads on the 
actin filament. 

In particular, the level of firing controls the stationary velocity v̂  of the actin 
filament, through the parameter k0 (rate of attachment) and the total number of sites 
of the actin which are available for an attachment of a myosin heads, so that this is a 
control of the number M of "effective" myosin heads. 

The number M can be such that F + f0⋅M is very small, so that in this case, although 
M can be large, the resulting velocity v̂  is negligible: this is the case of a 
concentration with no net work of the force F. 

We have neglected many components of the metabolism of the muscular cell. Firstly, 
we have neglected the global spring force on the muscle, so that our model can 
represent a muscle starting to contract after being loaded and reaching quickly an 
asymptotic velocity, which obviously cannot be maintained for ever and is 
counteracted by the spring force tending to bring back the muscle to its rest 
conditions. A fully microscopic model was introduced in [11] and solved using a 
Markovian approximation. However, in order to include specific chemical reactions 
in the model, all fluctuations effects have been neglected in the present paper. 

Another fact is that ATP is the universal energy source of the cell. As a consequence, 
it is also used to get rid of the waste products of the contraction of the muscle, 
including lactate, and also to keep the pH in physiological bounds. These two 
chemical components are at the origin of the muscular fatigue and should be taken 
into account in more refined calculations. 
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KINETIČKI MODEL KONTRAKCIJE MIŠIĆA 
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SAŽETAK 
U ovom radu izgrađujemo samosuglasni, deterministički model srednjeg polja za opis kontrakcije mišića. 
Dvije glavne varijable su broj glava miozina i broj glava miozina pričvršćenih za aktin, neposredno 
nakon pričvršćenja. Model je prirodan u smislu da zadovoljava prirodne fizikalno-kemijske uvjete. 
Određujemo stacionarno stanje, dokazujemo da je stabilno i određujemo učinkovitost. 
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kontrakcija mišića, kemijska kinetika, učinkovitost 
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