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SUMMARY 

A problem on extreme performance of microeconomic system with several firms is 
considered. Each firm aspires to increase the profit. Flows of the good between the firms 
determine the structure of the system. So, sequential structure corresponds to intermediaries 
(dealers) operating in the market, parallel structure corresponds to competition in the market. 
The system at issue is an open economic system because of presence of external flows from 
the sources described by a distribution of the value of the good. The problem is solved for the 
basic structures: maximal profit and corresponding prices are found for each firm. 
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INTRODUCTION 
Research of behaviour of the economic agents buying and selling the goods in the 
market is one of primary goals of microeconomics. Analogies between exchange 
processes in economic systems and heat- and mass exchange processes in 
thermodynamic systems are promising methods of such research [1]. Irreversible 
microeconomics [2 - 4], using analogies to finite-time thermodynamics [5], allows 
one to solve problems of optimal control of the prices in irreversible processes of 
resources exchange. Some open microeconomic systems either without a firm or 
containing the only firm are examined in [3, 6]. A firm means a subsystem managing 
the prices and taking money - a basic resource - from a system. The analysis of firm 
of complex structure is given in [7]. 

Further the open microeconomic systems consisting of several firms are considered. 
Such systems take place in the competitive markets, at presence of intermediaries 
(dealers), at economic independence of divisions of the enterprise and in other cases. 

STATEMENT OF A PROBLEM 
Let us consider the open microeconomic system consisting of n firms-intermediaries, 
buying and selling a scalar resource. If the system represents the firm buying and 
selling a resource to the environment then the system is a homogeneous system. In 
the opposite case, when the system consists of several firms which sell a resource 
each other and to the environment then the system is a complex system. Each of firms 
in complex system may operate the prices of sale of a resource and aspires to receive 
the maximal profit. Let us consider a stationary mode at which streams in system do 
not change in time. For this mode we shall determine intensity of resources flows, the 
prices of sale of the goods for each of firms and compare the total profit taken from 
the system, with the profit of a homogeneous firm. 

The solution of this problem will be carried out for the linear functions of a supply 
and demand describing the resources exchange between the system and its 
environment (markets). 

HOMOGENEOUS FIRM 
First we describe a problem on maximal profit determination for a homogeneous firm 
exchanging a scalar resource with an environment, representing the distributed 
market with known density of distribution of value v (marginal rate of substitution 
between the goods and money) f(v) (Fig. 1). As the firm in a stationary mode can not 
accumulate a stock of the goods, intensities of input and output flows of the goods 
should be equal. Let us denote this flow intensity as g. Then the profit of firm is 
 ϖ = (p1 – p2)⋅g. (1) 

Control variable is the price of sale p1. The price p2(p1) is determined from equality of 
input and output flows of the goods. The flow g depends on the chosen price p1 too. 

FORMAL STATEMENT OF A PROBLEM 
The problem at issue to determine such price of sale of the goods that the profit of 
firm should be maximal: 
 ϖ = [p1 – p2(p1)]⋅g(p1) → 

1

max
p

. (2) 
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Figure 1. A homogeneous firm working in the distributed market. 

ALGORITHM OF THE SOLUTION OF THE PROBLEM 
1. To determine dependencies p2(p1), g(p1) from the condition of equality of input 

and output flows intensities. 
2. To substitute these dependences in (1) and to solve the obtained problem. As a 

result of the solution we find values p*, p2
* = p2(p1), g* = g(p1) and value of the 

maximal profit ϖ*. 

Let intensity of purchases of the goods be determined by firm as following 
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where β is a constant factor. Value ∫
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vvf  represents a part of the market x(p2) 

carrying out sale of the goods, and 

 ∫∫
22

∞-∞-
2 d)(d)(=)(

pp

v vvfvvvfpm   

is the expectation of the goods value at this part of the market. Therefore (3) can be 
rewritten as 
 )]()[(ˆ 122 pmppxg v

(−= β . (4) 
Similarly, 
 ])(ˆ)[(ˆ 111 ppmpxg v −= α , (5) 
where α is a constant factor, x̂ (p1) is a part of the market carrying out purchase of the 
goods, m̂ (p1) is the expectation of the goods value at the part x̂  of the market. 
Equating the right parts (4) and (5) and expressing p2 we find dependence p2(p1). 

EXAMPLE 1 
Let value v has the uniform distribution in segment [0, p0]. Then 
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Intensity of the goods flow is equal to 
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whence we express p2: 

 )()( 1012 pppp −⋅=
β
α . (8) 

With the account of (7) and (8) we rewrite the problem (2) as following 
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The solution of this problem is the control price 
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and corresponding to this price values 
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where 

 .)/(661),( βαβαβαβαξ −+=   
So, at α = β[ξ(α, β) = 1] optimal prices are p1

* = 2p0/3, p2
* = p0/3, the flow intensity 

corresponding to these prices is g* = α⋅p0/18, and maximal profit of the firm is ϖ* = α⋅p0
2/54. 

EXAMPLE 2 
Let the spectrum of distribution of the value v be set }ˆ,{ vv( , and supply and demand 
functions at p1, p2 ∈ \in }ˆ,{ vv(  are given in a linear form 

 )( 2 vpg (−= β , (12) 

 )ˆ( 1pvg −= α . (13) 
Equating (12) and (13), we receive dependence p2(p1): 

 vpvp (+−= )ˆ( 12 β
α . (14) 

Accounting (13) and (14) we write down problem (2) as 
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which solution looks like 
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Values p2
*, g* and ϖ* corresponding to the optimal solution are: 
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At α = β 
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that coincides with the solution received in [8]. 

If the spectrum of distribution of values of the goods can be divided into two subsets 
V1, V2, such that p1 < min V1, p2 > max V2, the solution of problem (2) for a system 
like (15), (16) at 
 ]|[ˆ],|[ 12 VvvMvVvvMv ∈=∈=( .  

SERIES STRUCTURE 
Let us consider the problem on determination of limiting possibilities of resource 
exchange process in a complex (non-homogeneous) economic system. The solution 
of the problem depends on the structure of the system. We consider two simple 
structures, which are the basic structures for any complex system. These are series 
and parallel structures. 

First, let us consider series structure. The elementary case of series structure is 
shown in Fig. 2. 

 
Figure 2. Consecutive structure of complex microeconomic system. 

FORMAL STATEMENT OF THE PROBLEM 
Each of firms solves a problem on determination of the sales price to maximize its profit: 
 

2

max)( 131 p
ppg →−=ϖ , (17) 
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Restrictions imposed on the solution set are supply and demand functions 
 )( 31 pfg = , (19) 

 )( 12 pfg = . (20) 
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ALGORITHM OF THE SOLUTION OF THE PROBLEM 
1. To fix value p2. Solving problem (18) and (19) we receive dependences p3(p2), 

g(p2), ϖ2(p2). 
2. To solve problem (17) and (20) accounting the found dependence g(p2). As a 

result of the solution we find the optimum values p2
*, g*, ϖ1

*. 
3. To substitute values p2

*, g* in the dependences received on a first step of 
algorithm. Doing so we find p3

* and ϖ2
*. 

EXAMPLE 3 
As in previous example we set supply and demand functions in a linear form (12), (13): 
 )ˆ( 3pvg −= α , (21) 

 )( 1 vpg (−= α . (22) 
Then problem (18) has the form: 
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Its solution p3
* = ( v̂  + p2)/2, and the goods flow corresponding for this solution is 

g(p2) = (α/2)( v̂  − p2). Expression of price p1 through the received dependence g(p2) 
and substitution g(p2) and p1(p2) leads to the following form of problem (17): 
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Solving this problem we find p2
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Having substituted (24) in the received dependence p3
*(p2), we find 
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and the total profit of the firms 
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Value ϖ* is less than profit of one firm working in the same markets calculated 
according to (16). Dependences of the profit extracted from the system with respect 
of number of the firms and ratio α/β are shown in Fig. 3. 
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Figure 3. Dependence of the total profit of firms in system with series structure:
a) homogeneous system, b) complex system with two, c) three, d) seven firms. 

Note that there exists asymmetry of series structure: the first firm can choose the 
prices of sale of the resource, and receives more money than the second firm 
determining intensity of the resource exchange. 

PARALLEL STRUCTURE 
Let us consider the system of parallel structure consisting of two firms, exchanging a 
scalar resource with the markets (Fig. 4). Each of firms aspires to maximize the profit 
by controlling of the prices of output resources flows. 

 
Figure 4. Complex microeconomic system with parallel structure. 

FORMAL STATEMENT OF A PROBLEM 
The problem at issue is to determine the prices of the goods sale providing the 
maximal profit of each of the firms working in the market: 
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subject to supply 
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and demand for resources 
 ),ˆ( 121101 pvfgg =− , (30) 

 ),ˆ( 222202 pvfgg =+ , (31) 
where v( i, v̂ i (i ∈ {1, 2}) are values of resources in the markets. 

ALGORITHM OF THE SOLUTION 
1. Assuming the price p0 to be fixed to solve problem (27), (29) and (31). As a result 

of the solution we receive dependences *
21p (p0), *

22p (p0), g0(p0). 
2. Using the received dependence g0(p0) to solve problem (26), (28) and (30). We 

find optimum price strategy of the first firm *
01p , *

11p , *
12p , and its maximal profit. 

3. To substitute value p0
* in dependences found on the first step of the algorithm. 

We find price strategy of the second firm and its maximal profit. 

The received solution can be compared to limiting opportunities of one firm working 
in the distributed markets of raw material and finished commodity with sets of 
possible values { 1v( , 2v( } and { 1v̂ , 2v̂ } accordingly. 

EXAMPLE 4 
Let curves of a supply and demand be given in a linear form: 
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At the fixed value p0 we solve a problem 
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We receive: 

 
.

2
)(

2
ˆ

;
2

;
2

ˆ
)(;

2
)(

022
0

20
2

02
022

02
021

βααβ
β

+
−

+
=

−
=

+
=

+
=

pvv
g

vp
g

pv
pp

pv
pp

((

(

 (33) 

It is convenient to note the weighed average values of a resource in the markets as 
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In this notation the problem has the form 
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and its solution is 

 0201
*
0 3

2
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= vvp , (35) 
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Substituting the found value p0
* (35) in (33) we find the optimal prices and flows 

intensities for the second firm: 
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Finally, substituting these optimum values in expressions for the profit (32) and (34), 
we find total value of the profit extracted from the system: 
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Comparison of values of the profit calculated by (36) and the profit of the appropriate 
homogeneous system at α = β for various values of differences ∆v1 = 1v̂  − 1v(  and 
∆v2 = 2v̂  − 2v(  is shown in Fig. 5. 

 
Figure 5. Increment of the profit ∆ϖ in system of parallel structure due to the prices 
diversification as a dependency on differences of the goods values in the markets. 

CONCLUSIONS 

The elementary structures of complex systems can be used for modelling the complex 
microeconomic systems consisting of series and parallel structures. 

It is necessary to note, that series connections between firms result in reduction of the 
profit although parallel structure may result in increase of the total profit due to the 
prices diversification. 
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KRAJNJE MOGUĆNOSTI IZMJENE 
RESURSA U SLOŽENOM, OTVORENOM, 

MIKROEKONOMSKOM SUSTAVU 
S.A. Amelkin

 Institut Programiranih Sustava Ruske Akademije Znanosti 
 Pereslav-Zaleskij, Rusija 

SAŽETAK 
Razmatran je problem krajnjih mogućnosti mikroekonomskog sustava s nekoliko tvrtki. Svaka tvrtka 
teži povećanju dobiti. Tokovi dobara između tvrtki određuju strukturu sustava. Stoga sekvencijalna 
struktura odgovara posrednicima (engl. dealers) koji djeluju na tržištu, a paralelna struktura tržišnom 
natjecanju. Sustav u problemu je otvoreni, ekonomski sustav zbog eksternih tokova iz izvora opisanih 
raspodjelom vrijednosti dobra. Problem je riješen za osnovne strukture i za svaku tvrtku određene su 
najveća dobit i odgovarajuće cijene. 

KLJUČNE RIJEČI 
otvoreni mikroekonomski sustavi, optimalne cijene, serijske i paralelne strukture 
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