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ABSTRACT

Based on the requests from architects, we developed a
system which allows to interactively design and subdivide
flexible triangular surfaces. Due to economical reasons the
number of different types of building elements should be
small. For that reason we only use equilateral base tri-
angles of unique size with the possibility of subdivision.
To allow to interactively move vertices and to ensure con-
stant edge length we use force-directed methods instead
of inverse kinematics. This paper describes the data struc-
ture, the algorithm and the influence of subdivision on the
kinematic flexibility of the mesh.

Key words: subdivision, uniform 1-to-4 split, flexible
mechanism, force directed algorithm

MSC 2000: 00A67, 65D17

Interaktivno modeliranje i razdioba fleksibilnog

mehanizma jednakostranǐcnih trokuta

SAŽETAK

Prema zahtjevima arhitekata razvijamo sustav koji dozvo-
ljava interaktivnu tvorbu i razdiobu fleksibilne triangulirane
plohe. Broj različitih sastavnih dijelova iz ekonomskih ra-
zloga treba biti mali. Zbog toga koristimo samo sukladne
jednakostranične bazne trokute s mogućnošću razdiobe.
Kako bismo dozvolili interaktivno kretanje vrhova i osi-
gurali konstantnost duljine bridova umjesto inverzne kine-
matike koristimo metodu upravljanja silom. Rad opisuje
strukturu podataka, algoritam i utjecaj razdiobe na kine-
matičku fleksibilnost mreže.

Ključne riječi: razdioba, uniformna 1-4 podjela, fleksibilni
mahanizam, algoritam upravljanja silom

1 Introduction

In order to design the booth of the University of Applied
Arts Vienna at the Vienna Fair 20111 (see Figure 1), the
Department of Geometry was asked how to interactively
model a surface consisting of equilateral triangles of dif-
ferent sizes. This surface, covered with sound-absorbing
material (see Figure 2), was floating above the booth like
a cloud and was therefore called Acoustic Cloud by re-
sponsible architect Juliana Herrero. For the arrangement
of the triangles she required a tool which allows her to
individually subdivide triangles of the mesh and to inter-
actively move vertices while keeping the side lengths of
the triangles constant. This yields a triangular mechanism
whose kinematic behavior – to our knowledge – can not
be simulated with existing software packages. Just as well,
the theoretical solution of the task is almost impossible.
Therefore, we developed a tool which attempts a numeri-
cal solution by using force-directed methods. In this paper
we present the algorithm and discuss the kinematic restric-

tions which come along with the subdivision of the surface.
Depending on the subdivision levels of adjacent triangles
subdivision can enhance flexibility or not, as can be seen
from the example depicted in Figure 6 and Figure 9.
Before we will describe our algorithm in Section 2 we
will review related work. However, since this paper is
mainly concerned with the practical application of a force-
directed algorithm to a kinematic problem, we will re-
strict us to a short overview. Usually, force directed al-
gorithms are associated with the drawing of graphs, where
they are used to position the nodes of the graph in an aes-
thetically pleasing way by assigning forces to edges and
nodes. Historically, the work of Tutte [9] can be considered
as one of the first force-directed algorithms. Tutte only
used springs of ideal length zero and no repulsive forces.
Eades [3] and Fruchterman and Reingold [4] used spring
forces, similar to those in Hooke’s law. Both methods ap-
ply repulsive forces between all nodes and attractive forces
to nodes connected by edges. However, force-directed
algorithms have been applied to other domains as well.

1The Vienna Fair is an international contemporary art fair focusing on Central and Eastern Europe. http://www.viennafair.at
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Figure 1: The booth of the University of Applied Arts Vi-
enna at the Vienna Fair 2011. (Photo by Virgil
Widrich)

Figure 2: A close-up of the Acoustic Cloud. (Photo by
Virgil Widrich)

Examples include the work of Quinn and Breuer [8] who
describe a force-directed method to place components on
printed circuit boards. Provot [7] used a force-directed al-
gorithm to simulate the behavior of cloth by approximat-
ing it by a deformable surface composed of a network of
masses and springs. Djidjev [1] published a force-directed
method to smooth unstructured triangular and tetrahedral
meshes. Recently, Gruber et al. [5] described a method
which optimizes given grids with rectangular topology on
an arbitrary parametric double-curved surface in regard to
orthogonality and, optionally, locally almost constant grid
size.

2 Algorithm

2.1 Basic Data Structure

In the following we consider an initial equilateral triangu-
lar mesh M = (V,T ) where V is a set of vertices and T is

Figure 3: Subdivision of a triangle with a 1-to-4 split.

a set of equilateral non-subdivided (Level 0) triangles with
side-length a. At this point we should stress that equilat-
erality is not a necessity and the algorithm can be easily
adapted to arbitrary triangular meshes. Additionally a set
of edges E is stored. Basically, a vertex v is defined by
its position in R

3 and an edge e = (v0,v1) connects vertex
v0 with v1. An edge also stores references to its adjacent
triangles n0 and n1. Note, that a triangle is only consid-
ered adjacent if both vertices v0 and v1 are corners of the
triangle.
A triangle t = (v0,v1,v2) is defined by the three corners
v0, v1 and v2. Furthermore, references to the three edges
e0 = (v0,v1), e1 = (v1,v2) and e2 = (v2,v0) are stored.
These data structures are shown in Appendix A in List-
ing 1, Listing 2 and Listing 3 along with further variables
which will be described later.

2.2 Subdivision

For subdivision we use a uniform 1-to-4 split, which di-
vides a triangle ti at subdivision level i into four triangles
ti+1
0 , ti+1

1 , ti+1
2 and ti+1

3 as depicted in Figure 3. The 1-
to-4 split is a commonly used method for subdivision and
remeshing of triangles, e.g., Loop subdivision [6] and But-
terfly subdivision [2] both use 1-to-4 refinement. To re-
cursively traverse the hierarchy it is necessary that ti stores
pointers to these four child triangles which in turn have to
store a pointer to their parent ti. The level itself is also
stored in the data structure of the triangle.
A uniform 1-to-4 split introduces new vertices vc0, vc1 and
vc2 at the center of the edge ei

0, ei
1 and ei

2 of ti. These
vertices are only added to V if a vertex with the same
coordinates does not already exist. We will refer to ei

j,
j ∈ {0,1,2} as the support edge of vc j and to vc j as the
center vertex of ei

j.

Further, each edge ei
j, j ∈ {0,1,2} will be divided into two

parts ei+1
j1 and ei+1

j2 . ei
j stores references to these two child

edges which in turn store a pointer to their parent ei
j. Also,

ei
j stores a pointer to the corresponding center vertex vc j.

These six edges are added to E along with the three new
edges ei+1

new0, ei+1
new1 and ei+1

new2 of ti+1
3 . In the following we
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Figure 4: Two inflexible center vertices vk,vl (red) of a
subdivided triangle t induce a further inflexi-
ble vertex vm (yellow).

Figure 5: An example for propagation of inflexibility: 1.
the two inflexible vertices v1 and v2 will cause
va to become inflexible. 2. va together with
the already existing inflexible vertex v3 induce
a further inflexible point vb.

will call an edge e0 with only one neighboring triangle (ei-
ther n0 or n1) a border edge.

2.3 Kinematic Restrictions

Different subdivision levels between adjacent triangles re-
strict the movability of the mechanism in certain ways, i.e,
just because an edge has been subdivided it does not mean
that it is allowed to fold at its center vertex.

2.3.1 Inflexible Vertices

We will refer to a vertex as flexible if the corresponding
support edge is allowed to fold, otherwise inflexible. All
vertices which are corners of a triangle at level 0 are flexi-
ble. The flexibility of vertices vc j, j ∈ {0,1,2} introduced
during subdivision is algorithmically determined by per-
forming the following test. If there already exists a vertex
v∗ with the same coordinates then v∗ is marked as flexible.
Otherwise, we check if the corresponding support edge e j
is a border edge. If it is, vc j is flexible, if it is not vc j is
inflexible. In other words, a center vertex v with support
edge e is inflexible if and only if one of the adjacent trian-
gles of e is subdivided, otherwise v is flexible.

Figure 6: An example of a 3D mechanism. Different
subdivision levels result in inflexible vertices
(shown in red and yellow). Such vertices pre-
vent folding of their support edge and there-
fore restrict the movability of the mechanism
in regard to interactive displacement.

2.3.2 Induced Inflexible Vertices

However, the test in Section does not capture all kinematic
restrictions because it does not take into account the con-
figuration of the neighborhood. Certain configurations can
cause a propagation of inflexibility through the mesh, in
other words, inflexible vertices can induce further inflexi-
ble vertices what we therefore call induced inflexible ver-
tices in the following. To detect these induced inflexible
vertices we run a second test after the above mentioned
test.
If a triangle t is subdivided and two of the three center
vertices vk and vl of its edges are inflexible (as shown in
Figure 4) then the third center vertex vm also becomes in-
flexible because of the following reason. If vk is inflexible
then the corresponding support edge ek is not allowed to
fold, the same holds true for vl and its support edge el .
Therefore the edge ekl between vk and vl is also rigid, even
if the sub-triangles of t are further subdivided. ek and el
together with ekl as a distance piece between them make
the triangle t rigid.
The introduction of an induced inflexible vertex can lead
to further induced inflexible vertices. A simple example is
shown in Figure 5. To handle this possible series of reac-
tions, the test has to be repeated until no further induced
inflexible vertices are found. Figure 6 shows a 3D exam-
ple of a surface with different subdivision levels and the
different types of inflexible vertices.

2.4 Force-directed Placement

An important feature of the tool is that the surface can be
interactively modeled by moving vertices. Since a theoreti-
cal calculation with inverse kinematic of such a mechanism
is almost impossible, we attempt a numerical solution with
force-directed methods. The iterative force-directed algo-
rithm is responsible for arranging the vertices in a way that
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Figure 7: In order to keep the distance between two in-
flexible vertices v0 and v1 constant, their dis-
placements have to be applied twice to the cor-
responding vertices vlever0 and vlever1 instead
to v0 and v1.

guarantees that edges keep their predefined ideal length.
In case of equilateral triangles the idealLength = 0.5i

· a,
where i is the subdivision level of the edge and a is the
side length of a level 0 triangle. However, the set of edges
E contains more information than necessary for the simu-
lation. Therefore, we derive a minimal set of edges F ⊆ E
which completely describes the flexible mechanism.

To determine the edges of F , we initially loop only through
edges e which do not have a parent2. In order to decide
which parts of the edge hierarchy of e belong to F , we
start the following recursive process. If e does not have
any children, the edge itself belongs to F . Otherwise, we
check if the center vertex of e is inflexible in which case
e is also part of F . However, if the center vertex is flexi-
ble then the process is repeated recursively for e = ec0 and
e = ec1 where ec0 and ec1 are the two child edges of e.

For each vertex v a displacement vector vdisp is stored
which is set to zero at the beginning of each iteration.
Afterward, the algorithm loops through each edge e =
(v0,v1) ∈ F and calculates the deviation ∆ from the actual
edge length ∆ = eideal −‖v01‖ where v01 = vpos

1 − vpos
0 . If

v0 is flexible then d := ε ·∆ ·
v01

‖v01‖
is subtracted from vdisp

0 ,
where ε > 0 is a small constant. Similarly d is added to
vdisp

1 if v1 is flexible.

No displacement is added to inflexible points because their
position has to remain at the center of their rigid support
edge. This calculation will be performed later. However, if
both vertices of an edge are inflexible, as depicted in Fig-
ure 7, a problem arises because the edge would not have
the effect of a distance piece anymore. We solved the prob-
lem by transferring the edges’ distance keeping force onto
other suitable vertices. Let e0 be the support edge of v0,
e1 the support edge of v1 and t the triangle which contains
e0 and e1. Further, let e2 be the third edge of t. Then the
displacements caused by e will be applied twice to the cor-
responding vertices vlever0 and vlever1 of e2.

Figure 8: An example for the planarity condition of an
(induced) inflexible vertex v with support edge
e and adjacent triangles t0 and t1: The left
image shows the subdivision level of triangles
and the flexibility of vertices. The right image
shows the trapezoids implied by v for t0 (red)
and t1 (orange). The corners of each separate
trapezoid together with v have to be coplanar.
The different sizes of the trapezoids are a result
from the different subdivisions at both sides of
e. The smaller orange trapezoid allows folding
the mesh at the dotted line, which would not be
the case if the three adjacent level 2 triangles
would have been chosen for the trapezoid.

Once all edges have been processed the aggregated dis-
placement of each vertex is added to its position. Finally,
the calculation of the position of inflexible vertices is per-
formed. This calculation has to be carried out in a hier-
archical top to down manner to make sure that the center
vertex of the parent of an edge f is already at the right po-
sition before calculating the position of a possible center
vertex of f .
These steps are summarized in Listing 4 in Appendix A.

2.4.1 Planarity Condition and Convergence Speed

Because the algorithm described above only takes edge
lengths and not planarity into account it will converge
slowly to the solution. However, an (induced) in-
flexible vertex will not only make its support edge
rigid but will also make parts of the surface pla-
nar. We take advantage of this theoretical fact to im-
prove the converge speed of the algorithm. Let us
assume that v is an (induced) inflexible vertex with
e being its support edge and let ti

0 and ti
1 be the adjacent

triangles of e at level i. In the following let us consider
ti
0 to be subdivided (the same process is performed for ti

1
if it is subdivided). Figure 8 shows a possible configura-
tion. Inside the hierarchy of ti

0 we search for three triangles
incident to v with the following properties:

1. All three triangles are on the same subdivision
level m

2. There is no higher level k > m which fulfills condi-
tion (1), i.e., m is maximal2Note, that this are not only edges on subdivision level 0.
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Figure 9: An example of a mesh with subdivisions up to level 2 which was designed with the described tool (level 0 =
green, level 1 = blue and level 2 = red). Whereas triangles on subdivision level 0 and 1 have high flexibility,
the level 2 triangles – as chosen in this example – have no further influence on the kinematic behavior of the
mechanism. Inflexible vertices are shown in red and induced inflexible vertices are colored yellow.

All vertices of these three triangles have to be coplanar, be-
cause the support edge e of v can be thought of as a frame
joint for the two triangles ta and tb as seen in Figure 8. To-
gether with the remaining triangle tc they form an isosceles
trapezoid. v stores these vertices in an array called trape-
zoidVertices0 in the data structure. After displacement of
the vertices in the force-directed algorithm, the vertices of
this array are orthogonally projected onto their regression
plane. This procedure increases the speed of the algorithm
considerably.

2.4.2 Termination Condition

The steps outlined above are repeated iteratively until all
displacements are below a certain threshold, mathemati-
cally vdisp < ε ∀v ∈V .

3 Operations

An important aspect in the development of the system was
interactivity. Users should be able to easily work with the
mesh in order to facilitate the design process. Therefore

all operations can be performed with a single mouse click
together with keyboard shortcuts.

The system allows to append edges of side length a to cor-
ners of level 0 triangles. If adding a new edge yields a new
base triangle (i.e., a triangle at subdivision level 0) then
this triangle is automatically added to T . Only edges with
no adjacent triangles can be removed. Existing triangles
– independent of their subdivision level – can be subdi-
vided with a 1-to-4 split, as described in Section 2.2. When
deleting a triangle two cases can occur: If a triangle ti with
i = 0 (base triangle) is deleted then edges not adjacent to
any remaining triangles are deleted automatically as well.
In case i > 0 all four triangles of the parent triangle from ti,
including edges and vertices which are no longer part of a
remaining triangle, are deleted in order to guarantee a well-
defined subdivision hierarchy. Dragging a vertex with the
left (right) mouse button moves it horizontally (vertically).
Once the position of a vertex changes the arrangement of
the mesh has to be recalculated which is handled by the
force-directed algorithm described in Section 2.4.
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4 Conclusions

In this paper we described a tool to interactively design tri-
angular mechanisms by extending the mesh, subdividing
triangles, and moving vertices (Figure 9 shows an exam-
ple). Although we restricted ourselves – due to the initial
artistic concept – to equilateral triangles it should be noted
that the algorithm can be easily modified to general trian-
gles.
To simulate the kinematic behavior of the mesh we used an
iterative force directed algorithm. As it turned out, subdivi-
sions must not necessarily increase the flexibility, because
in many cases inflexibility propagates quite easily. This
means that subdivision has to be applied well-considered
in order to raise flexibility. From a designer’s point of view,
this may be very restrictive. In general the flexibility can
be improved if one allows small deviations from the ideal
edge length. Experiments showed that ignoring the pla-
narity condition (see Section 2.4.1) and allowing for the
edge length to deviate only by 1% from its predefined ideal
length, increases the flexibility already considerably.

A Data Structures and Pseudo Code

struct sVertex

{

float [3] position ;

float [3] displacement;

bool flexible ;

bool inducedInflexible;

sEdge *supportEdge ;

Array <sVertex *> trapezoidVertices0;

Array <sVertex *> trapezoidVertices1;

};

Listing 1: Vertex data structure

struct sEdge

{

sVertex *v0;

sVertex *v1;

sVertex *center ;

sEdge *c0; // child 0

sEdge *c1; // child 1

sEdge *parent ;

sTriangle * n0;

sTriangle * n1;

float idealLength ;

int level;

};

Listing 2: Edge data structure

struct sTriangle

{

sVertex * v0;

sVertex * v1;

sVertex * v2;

sEdge* e0;

sEdge* e1;

sEdge* e2;

sTriangle * c0; // child 0

sTriangle * c1; // child 1

sTriangle * c2; // child 2

sTriangle * c3; // child 3

sTriangle * parent ;

int level;

};

Listing 3: Triangle data structure

foreach (sVertex v)
v. displacement = (0,0,0);

foreach (sEdge e) {

float [3] l = e.v0.position - e.v1.position ;

float ∆ = e.idealLength - l.length ();

l. normalize ();

if (e.v0.flexible == true)

e.v0.displacement += -ε*∆*l;
if (e.v1.flexible == true)

e.v1.displacement += ε*∆*l;

if (e.v0.flexible == false &&

e.v1. flexible == false) {

// find lever0 and lever1 , see Fig . 6

lever0 .displacement += -2*ε*∆*l;
lever1 .displacement += 2*ε*∆*l;

}

}

foreach (sVertex v)

v. position += v. displacement;

calcPositionOfInflexiblePoints ();

foreach (trapezoid t) {

Plane regPlane = calcRegressionPlane(t);

foreach (Vertex v in t.vertices )

regPlane .orthoProject(v);

}

Listing 4: Pseudocode for the force-directed algorithm
from Section 2.4
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