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Abstract: This paper presents some interesting aspects of the rich world of computer 
modelling and problem solving. After discussing basic model building principles attention 
is devoted to several modelling methods aimed for solving different types of problems. 
These are methods for modelling of optimisation problems, dynamic systems with random 
characteristics, knowledge, uncertain phenomena, systems with graph structure, learning, 
as well as cooperation and competition. Basic characteristics of these methods and 
examples of their application are given.  
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1. INTRODUCTION  

For the last five decades computer modelling was used as a powerful approach for 

representing and solving complex problems. Since a variety of problems were waiting to be 
solved, diverse modelling and problem solving approaches were developed. Some of the 

typical problems that were modelled have been: finding the optimal production plan, 

solving a travelling salesman problem, designing airports and assessing their performances, 

management of workforce education in organizations, and finding best strategies for 

playing business or social games.    

Efforts directed at solution of these problems resulted in creation of a rich and 

interesting computer modelling world. Computer modelling methods originated from 

various disciplines such as operations research, artificial intelligence and mathematics. 

Some of these methods are (Winston, 1991; Michalewicz and Fogel, 2002) optimisation 

methods (like linear programming, genetic algorithms and multiple criteria optimisation), 

simulation methods (including discrete simulation and system dynamics), transportation 

models, project management, expert systems, neural networks, genetic algorithms, fuzzy 
logic, theory of graphs and theory of games.  

We don’t intend to present taxonomy of computer modelling methods here, or to 

describe computer modelling methods in detail. Instead, we will demonstrate some of the 

methods aimed for solving different type of problems. For each of these methods we will 

see for what kind of problems the method is appropriate, outline how the method functions, 

and describe some interesting problems that are being solved by the method.  

In section 2 we describe basic facts about models and principles of model building. In 

section 3 we present optimisation modelling, and in section 4 simulation modelling of 
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dynamic systems with random characteristics is presented. Section 5 describes modelling of 
knowledge while section 6 is devoted to modelling of uncertainties. Section 7 discusses 
systems with graph structure. Section 8 describes modelling of learning, while section 9 
presents modelling of competition and cooperation. Finally, section 10 offers some 
conclusions.  
 
2.   ABOUT MODELS AND PRINCIPLES OF MODEL BUILDING 

        
MODELS  

Models are approximate representation of systems used to facilitate better understanding 
of system functioning, making changes in systems or managing systems. The fact that 
models are approximations is not undesirable. Just the opposite, it is rational since models 
need to include only the most important objects and relations of real systems in order to 
provide understanding of how these systems function. Moreover, for the model to be useful, 
it must address a specific problem (Sterman, 1991).  

Why do we need computer models? Experiments “in vivo” are expensive and require a 
lot of time. Repeating such experiments may even be impossible. On the other hand, mental 
models are too simple since human can take only a few factors in account because of the 
limitation of our working memory.   

Models can serve several purposes: the can be used as tools for understanding how 
system is functioning, as problem solving tools (for obtaining qualitative or quantitative 
results), tools for helping communication between system experts and modellers, and tools 
for gaining “artificial experience” by working with the model (rather than with the system).  

Graphical models have shown to be of specific value because of their two-dimensional 
nature and ability of human visual system to easily grasp object and relations represented 
graphically. As an example, Petri nets are used for problem representation in discrete event 
simulation (Reisig, 1985), and they not only describe system operation but can also be used 
to run simulations.  
 
PRINCIPLES OF MODEL BUILDING 

Experience in model building led to several principles that should be followed in order 
to achieve sound modelling results (Pidd, 2004). First of all, it is important that models 
include only relevant parts of real systems that influence system behaviour. This means that 
the boundary that divides a system from its environment should be carefully set. Models 
should neither be too complex nor too detailed. If they are too complex, it would be 
difficult to understand and validate them. However, models should neither be too simple, 
i.e. they must not leave out objects or relations essential for understanding of system 
behaviour.  

Model should be divided into rather simple modules with well defined functions, since 
this enables model building and validation to be much easier. In model building one should 
start with small models, and then adding complexities. Logical and quantitative validation 
of models (and their parts) has to be done throughout the whole period of model 
development.   
 
3.  OPTIMISATION MODELLING  

Optimisation modelling (Winston, 1991) deals with seeking for the best solution of 
problems that include some constrained resources. Quality of the solution is measured by 
the objective function. An example problem is optimisation of a production system that 
produces several types of products. We may want to find such a production plan (i.e. 
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amount of production of each type of product) which doesn’t spend more resources than 
available and gives the highest possible profit.     

Many optimisation methods were developed, each for a specific kind of optimisation 
problem. The most popular method is by any means linear programming where both the 
objective function and the requirement for resources by different products are linear 
functions of quantity of products of different types. Solution of a linear programming 
problem includes a production plan, optimal value of objective function, as well as 
sensitivity analysis which investigates changes in model output as a consequence of 
changes in a single problem parameter. For example, if we have some additional  funds that 
could be invested in the production, sensitivity analysis help us to find which resource is 
the best candidate for investment if we want to get the highest possible increase of profit.  

Linear programming, as well as other optimisation methods, is used for solution of 
complex real problems of large dimensions. For example, optimisation of daily re-planning 
of production, refinement and transportation of various oil fractions tends to have thousands 
of variables and tenths of thousands of constraints.  

Among the numerous variants of linear programming are integer programming where 
variables have integer values and transportation problem where we look for the cheapest 
transportation scheme for transporting some goods from one group of centres (e.g. 
manufacturing centres) to another group of centres (e.g. stores).   

Genetic algorithms (Goldberg, 1989) are able to deal with optimisation problems that 
are not linear, that have many local optima and whose objective functions have 
discontinuities. An example of a problem that cannot be solved by linear programming is a 
travelling salesman problem in which a salesman has to travel to a number of cities and 
then to return home. The goal here is to find the shortest or cheapest route for the salesman.  

Genetic algorithms are parallel search algorithms. They start with an initial population 
(“generation”) of randomly selected “chromosomes” that consist of “genes”. Chromosomes 
contain properties of objects under investigation, while fitness function is used to measure 
the quality of chromosomes and thus to help in selection of chromosomes. Next generation 
of “chromosomes” is formed using a random but structured exchange of information by 
crossover between the most successful chromosomes that “survive” from the previous 
generation. New generations of chromosomes have a fair chance to possess chromosomes 
with increased value of fitness function. Search for optimal solution finishes when no 
further chromosome improvement is made. Although genetic algorithms are heuristic 
algorithms that don’t guarantee that the optimum will be found, they typically come quite 
close to the optimum value.     

In optimisation problems we often have to deal with multiple criteria that have to be 
taken into account, like profit maximization, high resource usage, or increasing of the 
market share. One group of methods developed for solution of such problems are multiple 
criteria decision making (MCDM) methods. One of the most popular MCDM methods is 
analytical hierarchy process (Saaty, 1990), a method based on ranking of alternatives using 
a hierarchy of criteria and alternatives.    
 
4.  MODELLING DYNAMIC AND RANDOM SYSTEMS 

We will use simulation modelling as a representative of dynamic and random systems 
modelling approach. These systems consist of objects that mutually interact and thus cause 
change of system state in time. They typically include random variables which lead to 
system behaviour that is very difficult to predict. Two main representatives of simulation 
modelling are discrete simulation and system dynamics.  

Discrete simulation is used for a detailed analysis of queuing systems (Seila et al., 
2003). An example of such system is an airport where passengers arrive with baggage and 
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have to pass through check-in, body check control and boarding, possibly also a passport 
control. Their baggage is following a somewhat different route, but finally it has to reach 
the same flight. Simultaneously planes are landing and passengers leave them, possibly 
passing thorough a passport control, and wait for their baggage that has to be unloaded and 
sent to the passenger building. Both passengers and baggage have occasionally to wait in 
queues for various service resources.  

System behaviour is described in a discontinuous way, as a sequence of different events 
(i.e. instantaneous changes of system state) and activities. Simulation models imitate real 
systems and processes, while objects in a model represent objects from real systems or 
processes with their properties. Discrete simulation models typically contain input random 
variables, like entities interarrival times or service times. Random variables are reproduced 
in simulation by random number generation and their transformation into required 
distributions.  

As soon as at least one input variable is random, interaction between objects result in 
random behaviour of dependent variables (e.g. queuing length or queuing time). Multiple 
simulation experiments have to be accomplished in order to obtain statistical properties of 
output variables. Analysis of these experiments cannot be done with traditional statistics 
since simulation typically contain autocorrelated variables. Therefore, specific statistical 
methods were developed that deal with analysis of simulation output variables.   
 Distribution of output variables obtained by simulation enables obtaining information 
that helps in designing systems (e.g. determining the space required for queuing) or 
determining values of important system performances (e.g. queuing time or usage of system 
resources). Discrete simulation also gives answers on various “what-if” questions, and 
enables visual analysis of system behaviour via animation of simulation.  

Influence of random phenomena on system behaviour is very difficult to predict, so 
without repetition of simulation experiments it would be virtually impossible to guess about 
performances of such systems. For example, even the use of similarly shaped distributions 
of input variables may result in quite different values of system performances (Law and 
Kelton, 1999).  

System dynamics enables modelling of dynamic systems with feedback, and achieving 
appropriate control of such systems (Sterman, 2000). Feedback means that the variable is 
influencing itself through the chain of causes and their effects. Positive feedback leads to 
exponential growth or decrease, while negative feedback leads to stabilization around 
equilibrium state. An example of a system with feedback is birth and death process in some 
population, where a number of new births and new deaths in a year are proportional to 
population size. Higher population leads to higher birth rate per year and therefore to 
further increase of population (positive feedback loop). In the same time, higher population 
leads to higher death rate per year and so to decrease of population (negative feedback 
loop). Overall behaviour of population size depends on relative magnitudes of fertility and 
mortality rates.  

Systems with a goal (e.g. a goal of attending certain number of flats in a town or region) 
tend to stabilize around the goal value, either by growing, by decreasing, or by fluctuation 
around the goal. Systems that contain several feedback loops have a complex behaviour 
that is virtually impossible to predict intuitively. 

System dynamic models are not as detailed as discrete simulation models since they 
aggregate events and represent them as quasi continuous flows. For example, arrival of 
parts to a stock consists of a sequence of discrete events representing arrivals of separate 
parts to a stock. In system dynamics these arrivals are modelled as continuous inflow of 
parts. Processes that are modelled in system dynamics describe various resources that 
transit from one to another state.  
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StarLogo simulation system (Resnick, 1994) enables modelling and simulation of large 
decentralized systems consisting of many individuals. These individuals obey certain 
behaviour rules. These rules describe how an individual interacts with its neighbours. As a 
consequence, the behaviour of the whole system is emerging. An example of a system 
modelled with StarLogo is simulation of a colony of ants searching for a food. When an ant 
finds a piece of food, it carries the food back to the nest and is dropping a chemical while it 
moves in order to help other ants finding this piece of food. Evaporation of this chemical is 
also simulated, so when all the food is collected smell of the chemical becomes weaker and 
weaker. Animation of simulation demonstrates the changes and movements in the system, 
while graphs show changes of values of variables of interest over time.    

StarLogo is based on the so called turtle graphics that uses a “turtle” which is moving 
around the plane following some programmed commands. StarLogo extends the turtle 
graphics approach by using hundreds of turtles rather than just one. Moreover, these turtles 
can interact with one another, and also interact with their environment. The area on which 
turtles are moving is made up of “patches” that can have different properties (this area is 
actually a two-dimensional cellular automaton).     
 
5.  MODELLING KNOWLEDGE 

Knowledge modelling is an important part of artificial intelligence, and especially of 
expert systems (Negnevitsky, 2002). In order to be used by expert systems, knowledge has 
to be represented in a formal way. Some of the knowledge representation formats that have 
been developed are production rules, decision trees, frames and semantic nets.  

Expert systems are computing systems that tend to achieve the same abilities of 
expertise in a narrow domain as human experts. Expert systems consist of a knowledge 
base, fact base and inference engine. Knowledge base contains knowledge from a certain 
area, fact database contain facts about the object that is analysed (e.g. a company), while 
inference engine carries out reasoning that uses both knowledge base and fact database. 
Reasoning may start with facts and include proving rules, depositing their conclusions as 
new facts, etc., until all possible new facts are derived. Alternative approach to reasoning is 
to start from some hypothesis and to try to prove it via rules in knowledge base – for those 
rules whose conclusion matches the hypothesis reasoning process tries to prove their 
conditions, etc., until we either prove the hypothesis or not.   

Another important feature of expert systems is their ability to explain solutions that 
were found during the reasoning process. Explanation ability is important since it shows 
humans how expert system came to a conclusion, and this transparency helps humans in 
accepting expert systems as a valid tool for reasoning.  
   Typical tasks of expert systems are diagnosis of malfunctions (e.g. human diseases), 
configuration of complex objects (e.g. computer systems), or planning a sequence of 
actions (e.g. planning robot actions). One example of successful expert systems is 
Prospector, an expert system for mineral exploration. After geological characteristics of 
suspected deposit were given to the system, it makes an assessment of the suspected 
mineral deposit. In 1980 this system identified a molybdenum deposit near Mount Tolman 
in US. Drilling performed at the site confirmed the deposit exists and was worth over one 
hundred million US dollars.  
 
6. MODELLING UNCERTAINTIES  

Both data and knowledge can be uncertain. Uncertain data arise when we either cannot 
measure data more precisely or when description of data contains uncertainty. For example, 
we say that somebody has a “low” salary. Uncertain knowledge is knowledge that cannot 



 
V. Čerić: The rich world of computer modelling and problem solving 

 18 

describe some phenomenon precisely, but rather includes some uncertainties in description. 
For example, we may say that good manager will give an enterprise “a good chance” to 
survive.    

Various methods were developed for working with uncertainties, like probability, 
Bayesian reasoning, uncertainty factors or fuzzy logic (Negnevitsky, 2002). We will 
present here main ideas of fuzzy logic, a method that successfully deals with systems that 
include uncertain behaviour. Fuzzy logic is based on the fact that humans use imprecise 
language to describe facts or rules, and we use these approximations to do classification. 
For example, when we say “high salary” we don’t precisely say how high this salary is, and 
we imply that high salary is a category that includes certain class of salaries.  

Fuzzy logic doesn’t suppose that the range of “high salary” has to be fixed (e.g. between 
4 and 5 thousands Euros a month) because in that case only a small differences in salary 
may lead to a conclusion that somebody has high salary with 4010 Euros per month and 
somebody else has a middle range salary with 3995 Euros a month. Instead, it supposes that 
object can belong to a category with certain degree. Moreover, one object can belong to 
several categories with different degree of membership - e.g. a salary of 3900 Euros could 
belong to “high salary” category with degree of membership 0.85, and to a “middle range 
salary” category with degree of membership 0.35. So, there is an overlap between 
membership functions (degrees of membership) for different categories. Sets with such 
characteristics are called fuzzy sets. 

Fuzzy variables can be used in knowledge representation, e.g. a rule may declare that 
“IF a candidate for credit has a high salary THEN credit risk is low”. Here “high salary” 
and “low credit risk” are fuzzy variables. Expert systems with fuzzy variables are simpler 
and have fewer rules than traditional expert systems, and knowledge expressed with fuzzy 
variables is more intuitive and closer to the way expert think. In fuzzy logic condition of a 
rule can be fulfilled to a certain degree, and a rule can be activated to the degree its 
condition is fulfilled. In expert systems with fuzzy rules all rules are activated 
simultaneously, and only those rules that are fulfilled to a nonzero degree are influencing 
the final value of output variables.  

Fuzzy logic has many applications like in expert systems in business, medical or legal 
domain. They have also been used in transmission in cars, in fuzzy automatic focusing in 
video cameras or in air conditioners to control temperature. One of the best known 
examples is its use in Sendai Subway in Japan where fuzzy rules are used to control its 
speed of cruising, braking and switching.     
 
7.   MODELLING SYSTEMS WITH GRAPH STRUCTURE    

Theory of graphs (Ore, 1990), that originated in 18th century, was able to help in 
solving various real problems, Until very recently graph theory was oriented in studying 
properties of graphs of limited size. However, in the last 5-6 years interest arose in studying 
properties of huge graphs that have grown through some evolutionary process (Hayes, 
2000a; Hayes, 2000b).  

For example, it was recently shown that the “diameter” of the Web at the time when it 
had about 800 million pages was 19. Web diameter is the shortest distance between the two 
most distant Web pages – the meaning of the term “distance” is the number of clicks 
needed to pass from one Web page to another one. Moreover, it was found that Web 
diameter is a logarithmic function of the Web size, and that a 10 times increase of Web size 
(number of Web pages) will cause increase of Web diameter from 19 to only 21. In order to 
study such giant graphs new computational techniques have to be developed.  

This phenomenon of relatively small size of giant evolutionary graphs was named a 
“small world graphs”. Another example of such graphs is a so called call graph, i.e. graph 
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that describes calls between different phones in a telephone network. A study of one one-
day call graph with more than 53 million vertices and 150 million edges has shown that it 
has one giant connected component whose size is almost 45 million vertices, i.e. 45 million 
telephones. The size of this huge connected component was found to be 20. Another 
interesting thing was found when studying complete graphs inside the entire call graph, i.e. 
graphs in which every vertex is joined to every other vertex. Each such complete graph 
describes a group of people that call each other at least once every day. It was found that 
there were about 14,000 complete graphs spanning as many as 30 vertices (i.e. group of 
people of size 30).  

Investigation of properties of “small world graphs” was the beginning into investigation 
of graph structure of such graphs. Mathematical models of such structures typically take the 
form of an algorithm for generating graphs with some statistical properties. Several models 
were proposed, and one of the successful models is a combination of a lattice and a random 
graph, where lattice are highly regular graphs in which every vertex is connected with just a 
few of its neighbours.   

         
8.  MODELLING LEARNING  

Learning is one of the key human abilities that help us to adapt to the environment and 
to perform well in our activities. This is the reason that modelling of learning was one of 
the important goals of artificial intelligence. Several modelling approaches were developed. 

Development of artificial neuron networks (Skapura, 1996) started from the very 
beginning of the contemporary computer history, but only in 1980th they got proper 
theoretically background and enabled solution of complex real world problems. Artificial 
neuron networks (ANNs) were developed with the idea to overcome the constraints of 
programming, i.e. to enable computers to learn without the need to be reprogrammed by 
humans. Recognition of manual written text, speech or human faces were among the hard 
problems that are almost impossible to solve efficiently with programming.  

ANNs are based on the principle of human brain operation, i.e. by simulation of a large 
number of very simple processors (neurons) connected with large number of 
interconnections. Neurons receive inputs that are generated as outputs by many other 
neurons, and neuron output may be input to a number of other neurons. Neuron activities 
are excited or inhibited by interconnections with other neurons. The whole brain thus works 
in a highly parallel way, with simultaneous actions of a huge number of neurons. ANN is a 
network of software simulated neurons located in input, hidden and output layers. Activity 
of the network is stimulated by a signal put on input layer of neurons. Each neuron then 
generates an output signal that is a function of the whole stimulation of that neuron, and 
these outputs become inputs for the next neuron layer. This process continues until neurons 
in output layer produce output signals that represent the answer of the ANN to the input 
stimulus. For example, we may stimulate the network with showing it some hand written 
letter (e.g. by scanning it), and as an output ANN presents the letter recognised during the 
process.  

On the neuron level, output signal of a neuron is formed in such a way that the neuron 
first aggregates all input signals it receives as a sum of products of inputs with weights of 
connections between networks. Weights of connections between neurons are computed 
when the ANN passes through the learning cycle. Neuron activation function is then used to 
compute the neuron output signal on the basis of its aggregated input. Various network 
geometries and neuron activation function are in use.  

There are two kind of learning, supervised and unsupervised learning. In unsupervised 
learning no guidance exists that tells the network in what classes to classify input signals, 
while in supervised learning class categories are defined in advance. Typical example of 
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supervised learning is recognition of hand written letters and digits, while an example of 
unsupervised learning is finding similar documents in a set of documents. During the 
learning process weights of interconnections between neurons change until the network 
learns to recognise the characteristics of the input sample with an acceptable recognition 
error.       

Another learning approach is machine learning. This method search through data and 
tries to find systematic statistical patterns or relationships. One group of machine learning 
methods called induction from examples enables extracting of knowledge from examples 
and forming rules or decision trees that accurately describe characteristics of data. The best 
known algorithm for induction from examples is an ID3 algorithm (Quinlan, 1982) that is 
using classification to learn essential features of a set of examples. The key problem in 
deriving the appropriate decision tree for a set of data under consideration is to find the 
variables that will separate the data into homogeneous groups, and will form as simple tree 
as possible. Learning is done with one part of data, while the rest of data is used for testing 
the obtained decision tree. Learning process shouldn’t overfit the decision tree to the 
specific data.  

The first program that demonstrated the ability of machine learning in playing games 
was Samuel’s checkers player (Samuel, 1959) for which several methods of learning were 
developed. This program, although it used IBM 704 machine with only 10K memory, 
magnetic types for long-term storage, and a cycle time of about one millisecond, was 
playing on a very high level. Further improvement of computer models for playing 
checkers was done by Jonathan Schaeffer and his colleagues who developed a program 
Chinook that is using so called alpha-beta search technique for analysing future moves. 
Chinook was the first program to challenge for a world championship. In a first mach 
played in 1992 with dr. Marion Tinsley, a person who had been a world champion for 40 
years and who lost just three games in all these years, dr. Tinsley won. However, in this 
match he suffered his 4th and 5th losses. In the match played in 1994 Tinsley had to 
withdraw from the match for health reasons after 6 draws, so that Chinook became the 
official world champion.    

Finally, an interesting method for so called concept learning was developed and 
incorporated into the Eurisco model by Douglas Lenat (Johnson, 1986). Eurisco is a 
program for discovering and developing heuristics, i.e. approximate methods for solving 
problems. An interesting fact is that heuristic approach was used in generating these 
heuristics. Newly generated heuristics were evaluated by observing how they work in 
practice, and heuristics that performed better got higher weights. Eurisco was successful in 
different applications, e.g. in generalization of 2-D integrated circuit junction design to 3-D 
in VLSI chip design. One interesting application was in playing a very complex futuristic 
war game called Traveller, where each player must build a fleet from a constrained budget 
and obeying extremely complicated rules (described in about 200 pages long manual). 
Basic concepts of the game were incorporated to Eurisco, and after that it played thousands 
of simulated battles used to collect data for evaluation of its fleet design heuristics. On the 
basis of this experience Eurisco formed a strange fleet of lightly armoured and heavily 
armed fast ships – however this strange fleet won every battle it played and became a US 
Traveller champion.  
 
9. MODELLING COMPETITION AND COOPERATION  

An important class of problems include simultaneous decisions of several people or 
organizations where each subject is making decisions in accordance with its own desires, 
but in the same time he must try to judge what decisions will the other side make. So each 
player must think about the strategies that other players will use, and should be aware that 
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other players also take care about the strategy he will use. Each subject must also decide 
with which other subjects he will cooperate or compete. These characteristics make these 
problems rather specific and complex.  

Such kind of problems is modelled by the theory of games (Davis, 1997). Each player 
in these “games” is seeking best strategies for himself under proposition that other players 
will use best strategies for themselves too. All players have information on how much they 
will gain or loose for each combination of decisions of all players. In each game we want to 
find what each player must do in order to optimise his scores, and what will be the outcome 
of the game (i.e. how much will each player gain or loose). 

Games that occur in reality and are treated by the theory of games are played in 
economy, business, social life, politics, military games, etc. Example of a business game is 
decision making of several competitive TV companies about what kind of TV program 
should be presented in what time period. Each company knows its strengths and 
weaknesses, as well as strengths and weaknesses of other companies. They also know how 
much will they gain or loose for all combination of decisions made by them and by other 
companies.  

There are a variety of classes of games. Here we will only discuss two person games. 
Two person zero sum games with equilibrium points are games where players have conflict 
interests, since one player gets what the other one looses. Combination of strategies of both 
sides is called an equilibrium strategy, while the outcome of these two strategies is called 
an equilibrium point. By playing his equilibrium strategy player can get at least the value of 
the game and prevent the opposite party to get more that the value of the game.    

However, many two person zero sum games don’t have an equilibrium point. Such 
games cannot be analysed by pure strategies but rather with mixed strategies. Mixed 
strategies are using randomness, e.g. some mixed strategy can use one pure strategy in 65% 
of cases and another pure strategy in 35% of cases - for each specific decision selection of 
strategy is done in a random way.  

In two person games where elements of cooperation appear both players have 
independent gains. In these types of games there is no universal accepted solution, i.e. there 
is no strategy that is clearly preferable to other strategies. Prisoner’s dilemma game is an 
excellent example of such games. In this game equilibrium point is not the best solution for 
both prisoners. On the other hand, the best solution is not an equilibrium one since for each 
prisoner it is better to change his decision – however, if both prisoners would make such 
change both would be in a worse situation than in an equilibrium solution! In such games 
important factors are degree of communication between players, threats and negotiation.  

Quite interesting empirical results on playing games were found (Axelrod, 1980). Here 
players familiar with the game are playing a series of the prisoner’s dilemma game. 
Surprisingly, it was found that the best long term strategy is to never defect unless your 
partner defects first. This strategy includes short memories of what happened, and plays 
nice with defectors that later stop defecting.   

Some cases of games played in nature were found too. One example is a cooperative 
game played by a small fish and its potential predator. Small fish eats parasites from the 
body and even the mouth of the large ones, while the large fish eats other smaller fishes. 
This works only if there is a consistent contact between the two fishes, and for that they 
must have an arranged meeting place (e.g. near he coast).   
 
10. CONCLUSIONS 

 A number of powerful computer modelling and problem solving methods were 
developed in its rather brief history. These methods and their variants were invented for 
modelling and solving of a variety of different problems like dynamic systems simulation, 
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linear and nonlinear optimisation, learning problems or competition problems. It was also 
found that a combination of these methods can give sound results. As an example, in the 
area of intelligent systems various combinations of methods like neural expert systems, 
neuro-fuzzy systems or evolutionary neural networks were developed and successfully 
applied in modelling of complex real problems.  

Some of these modelling methods arise from analogy with operation of nature or human 
brain. Neural networks thus imitated architecture and operation of human brain. Various 
evolutionary methods like genetic algorithms or genetic programming were inspired by 
natural evolution. On the other hand, ant colony optimisation method (Doringo and Sttzle, 
2004) was motivated by the collective behaviour of a group of species. However, although 
these analogies inspired the methods, a lot of research was needed in order that these 
methods become operational and efficient. As an example, neural networks needed several 
decades of hard work of many researchers to reach maturity and modelling power required 
for solving of complex real problems.  

As we have seen, computer models enabled solution of a wide range of complex 
problems. These are problems from various aspects of business, engineering or social life. 
Such solutions help in increasing efficiency of business, providing better or more stable 
solutions, or solving strategic problems.  

Since new type of problems appear with development of new technologies and with 
applications of these technologies to solution of various problems, new computer modelling 
methods or variants of current ones are being developed too. Thus there is no reason to 
expect that computer modelling will stop to provide us with new and exciting ideas and 
solutions.  
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