

63

ACTIVE DATABASES, BUSINESS RULES AND REACTIVE AGENTS –

WHAT IS THE CONNECTION?

Kornelije Rabuzin, Mirko Maleković, Miroslav Bača
University of Zagreb

Faculty of Organization and Informatics, Varaždin

{kornelije.rabuzin, mirko.malekovic, miroslav.baca}@foi.hr

Abstract: These three technologies were and still are mainly treated separately. Since not
much work has been carried out in defining and combining them together, we are going to
present what has been done and put accent on what could be done. Namely, they rely upon
similar paradigms and concepts, as will be shown later on, and can be treated as
complementary technologies. In this paper we will show that reactive agents react
according to some set of business rules and active databases can be used as a suitable
means for implementing business rules and in those way reactive agents as well. Since
reactive agents have been well defined, recent improvements in the fields of active
databases technology and especially business rules provide the reason to consider the
benefits to be achieved from combining these fields.

Keywords: business rules, ADBMS, active database, agents, reactive agents

1. INTRODUCTION

Although the relational model has been used for over 30 years, the development and

use of new technologies, object oriented programming, real time systems etc. has resulted

in emergence of different kinds of database systems, among which are also active database

management systems (ADBMSs). ADBMS is a conventional database system capable of

reacting to some events of interest which can occur within the database, or outside it. To

understand how this works in practice, the basic concept on which an ADBMS relies – the
concept of ECA, or active rules (ECA stands for Event-Condition-Action) – needs to be

considered. According to it, when certain events occur (ON EVENT), and some conditions

are fulfilled (IF CONDITION), some actions are performed automatically (THEN

ACTION). These actions are performed without any need for the user's intervention. At the

conceptual level people often talk about ECA rules; these rules are mostly implemented

using triggers in some concrete ADBMS (more on ECA rules can be found in [0], [0] and

[0]).

 Another topic to be considered is business rules, which make a very important

component of a business system. Unlike the generally accepted definition of ADBMSs,

there is far less agreement on this topic. As a result, there are lots of different approaches

and definitions of this term, which make it hard to determine what business rule really is.

UDC:004.8

Original scientific paper

K. Rabuzin, M. Maleković, M. Bača: Active databases, business rules and reactive agents...

64

Some of those definitions are going to be presented in the chapter about business rules, but
at this point it needs to be said that they are a very important part of a business system
because they influence the way business is run. Business rules can be found in many
different forms; they can be written down in a manual, or implemented in form of computer
programs, i.e. applications, used for running business. What is important is that business
rules can be changed very often due to the complex environment in which a business
system operates.

The last thing which has left for the introduction part is the term "agent". We have to
say that this term was a buzz-word for a long time; but nowadays this term has been defined
and many MultiAgent Systems (MASs) have been built and put into operation. We can say
that systems which are capable of making decisions about actions they are to perform are
treated as agents. Due to their properties like autonomy, mobility, reactivity and some
abilities like communication, coordination and cooperation, agents are able to solve some
complex problems and they can exhibit very complex behaviour; that is why there are many
fields where agents are used (they can buy and sell some goods, find some information and
so on). Although several different kinds of agent have been identified, we have accepted the
classification according to which deliberative and reactive agents exist. These two types of
agents will be explained later, but for now we will just say that reactive agents are very
important because reactive behaviour is very often the best solution and a necessity in
certain cases.

Since active databases and reactive agents rely upon the concept of reactivity, and
taking into account that active databases have certain advantages compared to programs
written in a programming language, we think that the concept of reactivity and these
advantages make them suitable for reactive agent's implementation. On the other side,
reactive agents have to obey some business rules when achieving a goal. So we have come
to a question whether business rules – and what types of them – can be written within the
active database.

One has to have in mind that business rules technology is declarative technology as
well as active databases technology and writing a lot of programming code is a procedural
approach; since both technologies are declarative, therefore we think it is suitable to use
active database in order to implement a reactive agent and indirectly some set of business
rules which this agent obeys. Of course, environment may be and usually is very dynamic
and there is a possibility that business rules which determine the behaviour of some agent
have to be changed very often; so it is easier to change something where you state what has
to be done instead of something where you state how to do it. So the assumption about
writing different kinds of business rules in active databases can be fully established.

Inasmuch as the term 'business rules' has been redefined, determining whether
business rules – and what types of them – can be written in form of triggers, as well as
analysing problems which may arise in the process when implementing reactive agents,
presents a new challenge. The rest of this paper is organized as follows: Section 2 deals
with ADBMSs, Section 3 describes business rules, Section 4 deals with agents (especially
reactive agents), Section 5 discusses the combination of these technologies and Section 6
provides the conclusion.

2. ACTIVE DATABASE MANAGEMENT SYSTEMS

It has already been mentioned that ADBMSs have the capability of reacting
automatically to certain events, which can occur within a database or outside it. An event
can be defined as a state change of interest which requires intervention. From the point of
view of ADBMSs these events of interest can be divided into two categories: simple and
complex events. Simple events are the basic database operations like INSERT, UPDATE or

Journal of information and organizational sciences, Volume 29, Number 1 (2005)

65

DELETE, or time events, which can be divided into absolute, periodic and relative events.
Transaction events (for example, the beginning or the end of a transaction), method events
(used in active object-oriented DBMSs) and abstract events are also treated as simple
events. Complex events consist of one or more simple events connected with logical
operators, but there are also special kinds of complex events like REPEAT, SEQUENCE or
NEGATION. For example, if you have simple events E1 and E2, then E1∧E2 or E1∨E2
represents a complex event. There are lots of techniques of discovering events. The more
different kinds of events can be recognized, the better. More on different kinds of events
can be found in [0], [0] or [0]. Generally speaking, event requires proper reaction. This
reaction can be trivial, but mostly it is not. Since events can indicate the fact that certain
business rules are broken, corrective actions need to be performed. Simple and complex
events are very useful when trying to implement a reactive agent.

The event part of the active rule determines when the rule should be considered, the
condition part determines whether the action part of the rule should be executed, and the
action part of the rule represents the actions to be executed. The active rule is triggered
when the event specified in the event part of that rule occurs. The triggered rule does not
have to be executed; this depends on condition evaluation. Each ADBMS has a language,
which is used for trigger specification (definition), and has an execution model, which
determines how the rules are going to be executed. For example, Rock and Roll system's
rule syntax can be found in [0], while PostgreSQL trigger syntax presented in [0] is:

CREATE TRIGGER name { BEFORE | AFTER } {event [OR ...]}

ON table FOR EACH { ROW | STATEMENT }

EXECUTE PROCEDURE func (arguments)

Active databases are used in a lot of different areas, as can be found in [0]. They are
used for performing simple tasks (for example, automatic reordering) as well as some rather
complex ones (for example, in aircrafts, medical applications, etc.). Due to the increasing
awareness about what active rules can do, papers have recently been published presenting
how active rules can be used for maintaining XML files or in combination with OLAP
systems, as can be found in [0] and [0], respectively, or in workflow management, as can be
found in [0].

There are several arguments justifying the use of ADBMSs. First of all, it is cheaper to
build such an application and its performances are better, at least when a small number of
triggers is involved. Secondly, such an application is smaller and easier to maintain.
Thirdly, they are an instance of declarative approach and, according to [0], "the trend has
clearly always been away from procedural and toward declarative – that is, from how to
what".

An ADBMS relies on a passive DBMS. Therefore, while building an ADBMS, a
normal database system has to be extended in order to support active functionality; different
kinds of events have to be detected, transaction management has to be improved because of
different models of active rules execution, etc. In order to support this functionality, a
passive DBMS can be extended using integrated, layered or application oriented approach
as presented in [0] and [0].

When it comes to ADBMS performance, the awareness of what an ADBMS can do is
just as important as the possibility to measure that performance. Perhaps some other active
system could yield better results, or some bottlenecks could be discovered; that is why
some tools have been introduced. One of the first tools used for performance measurement
was Beast in the SAMOS project; later used was Objective. More on these tools can be
found in [0] and [0], respectively.

K. Rabuzin, M. Maleković, M. Bača: Active databases, business rules and reactive agents...

66

As it has been already mentioned, when an event occurs, the condition is evaluated and

then some actions are executed, provided that condition evaluation was successful.
However, it is sometimes useful to postpone the condition evaluation or action execution so
that they are not performed immediately, which explains why several different rules
execution models exist. Thus the condition does not have to be evaluated or the action
executed immediately after the event has been detected and the condition evaluated, but
some time can pass in between. As a result, the condition can be evaluated at the end of the
triggering transaction or the action can be executed in a new transaction, which does not
depend on the triggering one. More on different execution models can be found in [0] and
[0]. Different execution models are implemented using nested transactions (i.e. triggering
and triggered transactions). More on transactions can be found in [0]. A technique for
modelling applications in active object oriented DBMS has been presented in [0].

Another important question concerning ADBMS is the static analysis. Namely, it has
been discovered that triggers sometimes do not exhibit the desired behaviour and the
system behaviour is generally not predictable. It is possible that triggers trigger one another,
so that the result is not always as expected. Redundant rules can also exist, and the
sequence of rule firing is not always predictable. Therefore several approaches (triggering
graph, activating graph, meta-rule analysis, etc.) for rule termination analysis and redundant
rules check have been introduced, as can be found in [0], [0] and [0]. More about ADBMSs
can be found in [0] and [0].

3. BUSINESS RULES

Although business rules have been gaining much attention lately, there is still no
general agreement about what business rule really is, which explains why so many different
definitions of this term exist. The fact that these definitions are rather dissimilar makes it
hard to explain what business rule really is. The differences among those definitions may
arise from different points of view, as will be shown later. Some of the definitions are listed
below:

According to [0], business rules are defined as "the set of conditions that govern a

business event so that it occurs in a way that is acceptable to the business (or customer)."

According to the Business Rule Group (BRG) in [0], a business rule is "a statement

that defines or constrains some aspect of the business. It is intended to assert business
structure or to control or influence the behaviour of the business."

Ross has defined business rule in [0] as "a directive intended to influence or guide

business behaviour".

According to [0], business rules are "… the data rules which cannot be easily

represented within a database."

Since many different definitions of this term exist, there are also many different

classifications available. According to Date, as presented in [0], business rules can be
classified into three main categories:

1. Presentation rules
2. Application rules
3. Database rules.

Journal of information and organizational sciences, Volume 29, Number 1 (2005)

67

Presentation rules determine how data is going to be presented. Application and

database rules are hard to distinguish. According to Date, "it is hard to draw a sharp
dividing line between database rules and application rules". He has divided application and
database rules into constraints and derivations. Constraints are divided into state
constraints (defining the legal state or values of the database), transition constraints
(defining legal changes from one state to another) and stimulus/response constraints (the
combination of an event and action), while derivations are divided into computations (some
formulae) and inferences (they infer additional facts).

Ross has presented the following classification of business rules in [0]:

1. Rejectors
2. Projectors
3. Producers.

Rejectors simply reject any event likely to cause violation to occur; producers produce

some other events whereas producers never reject, but calculate or derive something (new
facts) for the end user. Producers and projectors can be subdivided.

BRG has divided business rules into:

Picture 1: Business Rule Types

Their classification has been described as follows: "A structural assertion is a

statement that something of importance to the business either exists as a concept of interest
or in relationship to another thing of interest. An action assertion is a statement that
concerns some dynamic aspect of the business. It specifies constraints on the results that
actions can produce. A base fact is a fact that is a given in the world and is remembered
(stored) in the system. A derived fact is created by an inference or a mathematical
calculation from terms, facts, other derivations, or even action assertions [0]". These types
can be subdivided.

It is evident that there are lots of different definitions and classifications of the term
'business rule'. In this paper only some of them have been selected. One can say that
business rules are a very important component of a business system because they have
influence on activities to be performed and the system as a whole. More about business
rules or classifications mentioned can be found in [0], [0] and [0]. The concept of fuzzy
business rules, which relies upon fuzzy logic, has been presented in [0].

K. Rabuzin, M. Maleković, M. Bača: Active databases, business rules and reactive agents...

68

4. REACTIVE AGENTS

First we need to define and explain what an agent is, and then we are going to define a
reactive one. The term "agent" has been (and still is) used very much and some very simple
but also some extremely complex systems were treated and delineated as agent systems:

An agent is a computer system that is situated in some environment, and that is capable

of autonomous action in this environment in order to meet its design objectives [0].

Agents are autonomous, persistent (software) components that perceive, reason,
communicate and act in someone’s favour, influencing its environment [0].

It's important to notice that different types of agents were introduced during the years;

one can find terms like "desktop agent", "deliberative agent", "reactive agent", "vivid
agent", "hybrid agent", "mobile agent" and so on; we have accepted the classification
according to which two types of agents can be distinguished: deliberative and reactive; now
we will define these two types.

One of the most popular architectures concerning agent systems is so called
Belief/Desire/Intention (BDI) architecture. This architecture describes and determines the
agent's behaviour according to information an agent possesses, goals which needs to be
performed and reasoning about these goals and available information. Beliefs are sets of
facts which represent the agent's knowledge about the environment. Goals are expressed as
conditions over some interval of time and are described by applying various temporal
operators to state descriptions; plans describe how an agent should react when certain facts
are added to its belief database, or when it newly acquires certain goals [0]. This described
architecture is an example for deliberative agents. So, deliberative approach subsumes
reasoning based upon some knowledge base using some deduction technique. Some
relationships between knowledge operator, belief operator, and desire operator in MASs are
described in [0].

But researchers have come to the conclusion that reactivity is also a very important
feature an intelligent agent should possess. Reactive paradigm became popular especially in
autonomous robotics. It is hard to determine to what degree should an agent be reactive and
to what deliberative, because this depends on lot of factors (tasks, architecture, application
domain and so on) [0]. Reaction is used when there is no time for reasoning which is time
consuming [0]. Reactive is suitable for dynamically changing environments performing an
immediate response to some changes which have been recognized and perceived.

So, reactive agents react to the changes which have occurred and have been registered,
and require some action (some events may occur, but actions are not needed). They don’t
possess the memory and internal state. In order to make experience and solve problems,
they have to store information and remember. Reactive agents don't know anything about
their environment so they don't possess any models of the environment which surrounds
them. Reactive agents operate in presence and they will or will not react to certain stimuli
[0]. We are not going to discuss the cooperation, coordination and communication, or
issues like mobility or security; we refer to [0, 0, 0].

Although some people think (or thought) that "reactive agents" don't deserve much
attention, it has been discovered and shown that many purely reactive agents can exhibit
rather complex behaviour. A good example is a colony of ants; by following just a few
simple rules the whole community exhibits very complex behaviour: they are able to find
the food, to attack other ants and so on. The behaviour of a reactive agent is represented as
a cycle with the following steps in [0]:

Journal of information and organizational sciences, Volume 29, Number 1 (2005)

69

i) observe any input at time T,
ii) (optionally) record any such input,

iii) match conditions of condition-action rules with the inputs,
iv) (optionally) verify any remaining conditions of the rules using information in the

knowledge base, using for steps (iii) and (iv) a total of R units of time,
v) select an atomic action which can be executed at time T+R+2 from the

conclusions of rules all of whose conditions are satisfied,
vi) execute the selected action at time T+R+2, and (optionally) record the result,

 cycle at time T+R+3.

The connection between active databases and reactive agents is that both are able to
perceive the environment and have to react to these changes, as has been already stated.
Since the concept of reactivity is common to both fields, now we are going to see what can
be done when combining these fields together.

5. IMPLEMENTATION

We can tell that reactive agents behave according to some set of rules and perform
some actions on behalf of the creator. So, from this person's point of view, agents are
operating according to this person's rules which are in fact business rules. So the connection
between these three technologies is as follows: on the one side, active databases can be
used for reactive agent's implementation and, on the other side, reactive agents operate
according to some set of business rules. So, as can be concluded, if we want to implement a
reactive agent within the active database, the indirect question in fact is whether different
kinds of business rules can be implemented within the active database. Of course, this is not
the only important question, but it is a crucial prerequisite for the successful
implementation of a reactive agent within the active database. Having stated that it is easier
to change the defined triggers instead of the written code in a programming language, the
following step was to determine whether it is possible to implement a certain class of
business rules which determine the agent's behaviour using an ADBMS instead of an
application solution.

An attempt to compare agents and active databases was made; the result is presented in
the Table 1. It is important to say that authors have put accent on BDI architecture and not
on reactive agency and a lot of work has been done since than in active database theory
field concerning different kinds of event, advanced transaction management, rule's actions
and so on which offers new possibilities; that is why we want to discuss this idea any
further. If somebody is more interested, we refer to [0].

Table 1: Active Database vs. Agent System [0]

 Active Database Agent System

 Events Events

Event Predicate Invocation Condition

Condition Context Condition Rules

Action Plan Body

Plans

 User Transactions Intrinsic Goals

 Database Facts Beliefs

 Update procedures Goal-invoked plans

 Integrity Constraints and Triggers Event- or Fact-invoked plans

As a model for defining business rules Date-s classification has been adopted. A class

of business rules has been defined dictating under which conditions a student can take an
exam at the Faculty of Organization and Informatics in Varaždin. As an idea a paper where

K. Rabuzin, M. Maleković, M. Bača: Active databases, business rules and reactive agents...

70

virtual university architecture is implemented using agents, as is presented in [0], has been
very helpful. This class contains about 20 business rules, which, according to Date's
business rules classification, fall into different types (presentation rules not being relevant
in this context), and was implemented in form of an application which is actually used for
exam registration. The question to be dealt with was whether it is possible to write (i.e.,
implement) all these business rules in an ADBMS instead of using an application version of
these rules and what the advantages of such an approach would be. In determining whether
such implementation was feasible, we intended to make the best use of the benefits offered
by the ADBMS, and see which problems may arise in the process. Business rules could be
grouped and these groups implemented by means of reactive agents. For instance, here is a
list of some business rules:

R1: A student cannot take an exam if he has not enrolled on the course.

R2: An exam registration must be done at least 7 days before the exam is held.

R3: A student cannot register for the same exam on the same date twice.

R4: Registration of an exam a student has already passed is not valid.

R5: The exam registration date must be prior to the date when the
 exam was passed.

For their implementation PostgreSQL (an object-relational ADBMS) has been chosen.

We have defined the set of triggers to be used as a means of implementing the class of
business rules, and their behaviour was tested on real data. Since in this kind of application,
called a 'notification application', action parts of triggers are mainly used to notice and raise
exceptions, it was impossible for the rule execution not to be terminated. PostgreSQL has
been tested and it has been detected that recursive rule execution can cause the system to
restart. Thus one has to be very careful when recursion in triggering or activating graph
occurs. Here is an example of a simple trigger which ensures that R5 is fulfilled (certain
trigger definitions being huge):

CREATE TRIGGER Date_Checks BEFORE INSERT OR UPDATE ON exams
FOR EACH ROW EXECUTE PROCEDURE date_check();

This trigger uses the function date_check(), which has the following definition:

CREATE FUNCTION date_check() RETURNS opaque as '

BEGIN
 IF new.reg_date>new.pass_date THEN

RAISE EXCEPTION '' The registration date is posterior to the date on
which the exam is passed!'';

END IF;
RETURN NEW; END;'

 LANGUAGE 'plpgsql';

The defined business rules class has been successfully implemented in PostgreSQL,
although some problems concerning active functionality of the selected system have arisen.

Journal of information and organizational sciences, Volume 29, Number 1 (2005)

71

When implementing reactive agents within the active database, many different types of
events presented in active databases theory could be used in order to detect changes of
interest; but we had some problems. Firstly, the ADBMS selected can detect only a small
number of events, both simple and complex. If you need to detect some other complex
events, it has to be programmed manually. Secondly, triggers management is definitely not
a strong feature of PostgreSQL; triggers can be enabled or disabled, but they will be
triggered whenever an event specified in the event part of the trigger occurs. Thirdly,
different models of rules execution are not supported; the execution of some rule parts
cannot be postponed. Nevertheless, one subset of the business rules defined was
implemented without any problems, i.e. referential integrity. Finally, the actions which can
be performed as a reaction to some event are also limited. These problems could perhaps
have been avoided if another ADBMS had been selected.

Although the active database theory has developed significantly, practical solutions do
not keep the pace with the theoretical results. There is an obvious gap between theory and
practice. PostgreSQL is not the only system to have shown certain flaws in functionality,
other systems have too. Thus if we had chosen another ADBMS, some other problems
would probably have arisen due to the gap mentioned above. Nevertheless, we have come
to the conclusion that it is easier to implement the defined business rules (reactive agents)
using triggers since fewer variables are needed and the code to be written is shorter and
easier to maintain, providing a more obvious solution. As a result, network traffic has also
been reduced.

6. CONCLUSION

The aim of this paper was to determine and see whether active databases are a suitable
means for implementation of reactive agents; indirectly this question was reformulated and
as a prerequisite we had to see if it is possible to write different kinds of business rules
within the active database. Namely, reactive agents act according to some set of business
rules which have to be implemented when we try to build a reactive agent; all activities
performed by an agent must obey certain business rules. The same concept on which
reactive agents and active databases rely on and the idea of a virtual university have
influenced on the set of business rules we have chosen. We have defined a class of business
rules based on Date's classification of business rules. This class of business rules has been
successfully implemented in an ADBMS PostgreSQL, although some problems requiring
caution have been identified during the implementation phase and there are certain flaws in
its functionality. Having checked the active features of some other ADBMSs, a conclusion
can be drawn that although the active database theory has developed significantly, practical
solutions do not keep the pace with the theory. So implementation problems have occurred,
but were successfully resolved using some extended features of already mentioned
ADBMS. The selected ADBMS is a restricted version of what could be called a 'full
ADBMS'. Some active features, currently not supported in the selected ADBMS, would
certainly make the implementation phase of some business rules, and thereby reactive
agents, much easier. Therefore working with such a full ADBMS offering all the active
features available at present would present yet another challenge. It is worth emphasizing
that, from ADB point of view, a very big challenge is to design a full ADBMS. When
discussing MAS in the context of reactive agents, business rules and active databases,
issues like security, circumvented business rules and system design are still open and will
be explored in future papers.

K. Rabuzin, M. Maleković, M. Bača: Active databases, business rules and reactive agents...

72

REFERENCES

[1] Andler, S. F., J. Hansson (1998): Active, real time, and temporal database systems,
Springer, Berlin

[2] Bailey, J., A. Poulovassilis, P. T. Wood (2002): Analysis and optimisation of event-

condition-action rules on XML, Computer Networks, vol. 39, no 3, pp. 239-259
[3] Bassiliades, N., I. Vlahavas (1997): DEVICE: Compiling production rules into event-

driven rules using complex events, Information and Software Technology, vol. 39,
no 5, pp. 331-342

[4] Casati, F., M. Fugini, I. Mirbel (1999): An environment for designing exceptions in

workflows, Information Systems, vol. 24, no 3, pp. 255-273
[5] Cetintemel, U., J. Zimmermann, Ö. Ulusoy, A. Buchmann (1999): OBJECTIVE: a

benchmark for object-oriented active database systems, Journal of Systems and
Software, vol. 45, no 1, pp. 31-43

[6] Chakravarthy, S. (1995): Architectures and monitoring techniques for

 active databases: An evaluation, Data & Knowledge Engineering,
 vol. 16, no 1, pp. 1-26
[7] Date, C. J. (2000): What not how – the business rules approach to application

development, Addison Wesley, Reading
[8] Dinn, A., N. W. Paton, M. H. Williams (1999): Active rule analysis and optimisation

in the rock & roll deductive object-oriented database, Information Systems, vol. 24,
no 4, pp. 327-353

[9] Dittrich, K. R., H. Fritschi, S. Gatziu, A. Geppert, A. Vaduva (2003): SAMOS in

hindsight: experiences in building an active object-oriented DBMS, Information
Systems, vol. 28, no 5, pp. 369-392

[10] Eriksson E. Hans, Penker Magnus (2000): Business modelling with UML: business

patterns at work, John Wiley & Sons, Canada
[11] Henry Hexmoor (2003): Evolution of Agent Architectures, W. Truszkowski,
 C. Rouff, M. Hinchey (Eds.): WRAC 2002, LNAI 2564, pp. 469-470, 2003.,

Springer-Verlag Berlin Heidelberg
[12] Ingo Stenge,Udo Bleimann and Jeanne Stynes (2003): Social insects and

 mobile agents in a virtual university, Campus-Wide Information Systems,
 vol. 20, pp. 84-89
[13] Jacek Malec (2001): On Augmenting Reactivity with Deliberation in a Controlled

Manner, M. Hannebauer et al. (Eds.): Reactivity and Deliberation in MAS, LNAI
2103, pp. 76-91, Springer-Verlag Berlin Heidelberg

[14] Jacques Ferber (2001): Multiagenten-Systeme, Eine Einführung in die Verteilte

Künstliche Intelligenz, Addison-Wesley
[15] James Bailey, Michael Georgeff, David Kemp, Davin Kinny, Kotagiri

Ramamohanarao (1995): Active databases and agent systems – a comparison,
Proceedings of the second international workshop on rules in database systems,
Lecture notes in computer science 985, pp 342-356, Athens, Greece

[16] Kangsabanik, P., R. Mall, A. K. Majumdar (1997): A Technique for Modelling

Applications in Active Object Oriented Database Management Systems, Information
Sciences, vol. 102, no 1-4, pp. 67-103

[17] Koschel, A., P. C. Lockemann (1998): Distributed events in active database systems:

Letting the genie out of the bottle, Data & Knowledge Engineering, vol. 25,
 no 1-2, pp. 11-28

Journal of information and organizational sciences, Volume 29, Number 1 (2005)

73

[18] Lam, K.-Y, G. Law, V. Lee (2000): Priority and deadline assignment to triggered

transactions in distributed real-time active databases, Journal of Systems and
Software, vol. 51, no 1, pp. 49-60

[19] Maleković, M., M. Čubrilo (2003): Knowledge, Belief, And Desire In Multi-Agent

Systems. CD Proceedings, The 7th IEEE International Conference on Intelligent
Engineering Systems, INES 2003, pp. 100-103.

[20] Martin Riedmiller, Andrew Moore, Jeff Schneider (2001): Reinforcement Learning

for Cooperating and Communicating Reactive Agents in Electrical Power Grids, M.
Hannebauer et al. (Eds.): Reactivity and Deliberation in MAS, LNAI 2103, pp. 137-
149, 2001., Springer-Verlag Berlin Heidelberg

[21] Montesi, D., E. Bertino, M. Bagnato (2003): Refined rules termination analysis

through transactions, Information Systems, vol. 28, no 5, pp. 435-456
[22] Montesi, D., R. Torlone (2002): Analysis and optimization of active databases,

 Data & Knowledge Engineering, vol. 40, no 3, pp. 241-271

[23] Pai, A. V., R. F. Gamble, R. T. Plant (1999): Using KBS verification techniques to

demonstrate the existence of rule anomalies in ADBs, Information and Software
Technology, vol. 41, no 10, pp. 627-638

[24] Paton, N. W. (1998): Active rules in database systems, Springer, New York
[25] Robert Kowalski, Fariba Sadri (1997): An Agent Architecture that

 Unifies Rationality with Reactivity, Department of Computing, Imperial College
[26] Rosane Maria Martins, Magali Ribeiro Chaves, Luci Pirmez and Luiz Fernando Rust

da Costa Carmo (2001): Mobile agents applications, Electronic Networking
Applications and Policy, vol. 11, no 1, pp. 49-54

[27] Ross, R. G. (2003): Principles of the business rule approach,
 Addison Wesley, Boston
[28] Saygin, Y., Ö. Ulusoy, S. Chakravarthy (1998): Concurrent rule execution in active

databases, Information Systems, vol. 23, no 1, pp. 39-64
[29] Tan, C.-W., A. Goh (1999): Composite event support in an active

 database, Computers & Industrial Engineering, vol. 37, no 4, pp. 731-744
[30] Thalhammer, T., M. Schrefl, M. Mohania (2001): Active data warehouses:

complementing OLAP with analysis rules, Data & Knowledge Engineering, vol. 39,
no 3, pp. 241-269

[31] V. Marik et all. (2002): Multi Agent Systems & Applications, Springer-Verlag Berlin
Heidelberg

[32] ***: Building a Business Rules System, <http://www.dmreview.com>
[33] ***: Defining Business Rules ~ What Are They Really?,

<http://www.businessrulesgroup.org/first_paper/br01c0.htm>
[34] ***: Doorsey, P.: What are business rules?,

<http://www.dulcian.com/BRIM%20Documents/What%20Are%20Business%20Rul
es.htm.>

[35] ***: PL/pgSQL - SQL Procedural Language,
<http://www.postgresql.org/docs/7.2/static/plpgsql.html>

