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Abstract: The aim of this paper is to show that σ–notation, based on the position-
ality principle, doesn’t just answer the question of equivalence of P and NP problem
classes, but also represents the key to the solution of (some) more general problems
from the domain of multivalued logics. However, the achievement of such an aim in
its full scope is hardly possible within the limits of this paper. Therefore, the following
plan shall be realized:

Firstly, the logic algebra fragment necessary for the solution of the P and NP
classes equivalence problem shall be expounded.

Secondly, the necessary symbols and definitions shall be introduced to show that
the calculations in the domain of the multivalued logic can be directly executed within
the framework of σ–notation.

Keywords: σ-notation, P=NP problem, SAT problem, multivalued logics.

1. INTRODUCTION

As it is known from [1], to prove the equivalence of the classes of problems mentioned
above, it would suffice that some (any) of the NP–complete problems can be solved
in time bounded by the polynomial of the dimension of the problem. Here we shall
consider the satisfiability problem in its classical formulation [1], which requires the
answer to the following question: is there a sequence of variable values, which makes
a given statement in CNF true? If the answer is positive, the statement in CNF is
called satisfiable, if it is negative — unsatisfiable (or contradictory); if, apart from the
recognition of satisfiability, the showing of the associated sequence of the propositional
variable values is also required, the problem is called a SAT problem. This particular
problem is going to be considered in the course of further explanation.

In 1971 S. Cook proved in [2] the SAT problem being NP–complete. In that way,
proving that some (any) of the SAT class problems can be solved in time bounded by
a polynomial of the dimension of the problem became sufficient for the proof of the
equivalence of P and NP problem classes.
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The SAT problem shall be solved by continous realization of conjuctions over dis-
juncts with the help of some special notation ([3]), whose necessary elements are
described below.

2. SOME SYMBOLS AND DEFINITIONS

Beside the binary number system Zh we shall use quaternary V h, octal Ah and hex-
adecimal Sh number system. In order to avoid repeated stating of the number system
the digits are written in, the symbol θ shall be used to display a binary zero, a θ̄ to
display a binary one. We are also introducing the following symbols

Zh ⇀↽ {θ, θ̄},
V h ⇀↽ {ν, τ, τ̄ , ν̄} ⇀↽ {θ θ, θ̄ θ, θ θ̄, θ̄ θ̄},
Ah ⇀↽ {ω, ↓, ⊕, /, /̄, ⊕̄, ↓̄, ω̄} ⇀↽ {θ ν, θ̄ ν, θ τ, θ̄ τ, θ τ̄ , θ̄ τ̄ , θ ν̄, θ̄ ν̄},
Sh ⇀↽ {0, 1, 2, 3, 4, 5, 6, 7, 7̄, 6̄, 5̄, 4̄, 3̄, 2̄, 1̄, 0̄} ⇀↽

⇀↽ {θω, θ̄ω, θ ↓, θ̄ ↓, θ⊕, θ̄⊕, θ/, θ̄/, θ/̄, θ̄/̄, θ⊕̄, θ̄⊕̄, θ↓̄, θ̄↓̄, θω̄, θ̄ω̄},

respecting the convention that a pair of literals–digits in the second pair of curly
brackets defines the corresponding literal-digit in the first pair of curly brackets.

Literals-digits from Zh, V h and Sh shall be used for writing binary vectors, which
shall be written in double angle brackets, a notation implicitly including the con-
catenation of literals-digits. For example, according to these principles, the following
holds: 〈〈θ̄ θ θ θ θ θ̄ θ̄ θ〉〉 = 〈〈τ ν τ̄ τ〉〉 = 〈〈16〉〉.

Double angle brackets are used for writing the vectors of the length 2n (that is, of
rank n), which are called finite σ–operators. At this the following convention shall be
respected: if 〈〈α〉〉— is some vector of rank k (length 2k), then the notation 〈〈αj〉〉
denotes that each coordinate of the vector
〈〈α〉〉 appears j times, and therefore vector 〈〈αj〉〉 has the rank j + k. The

notation 〈〈αi〉〉 denotes that the vector 〈〈α〉〉 appears 2i times in concatenation. In
that way, the notation 〈〈αi

j〉〉 — denotes a vector of the rank k + j + i, under the
condition that 〈〈α〉〉 — is a vector of rank k.

We would like to draw attention to the fact that the double angle brackets point
to the coordinates appearing in the exponential ammount, and also to the fact that
the upper, as well as the lower indices of a vector (or/and its coordinates) point to the
exponential character of the appearance, with the indices implied (if not given, they
equal zero).

Literals-digits from Ah are used for denoting the s–operator (see [3], pp. 25 and
26), but shall here be used only as /̄ and ↓̄ for denoting the bitwise conjuntion and
disjunction respectively.

In order to give the SAT problem a table form, we shall write disjuncts in the rows
of a table, so that the number of columns would equal the number of variables, and the
number of rows the number of disjuncts. The table shall be filled in the following way:
The literal with the smallest index i in the given disjunct we shall associate with τ̄i−1

if it equals xi, and τi−1 if it equals x̄i. This we shall enter in the (i− 1)–th column.
In the other columns, which appear on the right side of the (i− 1)–th column we shall
enter T in the j–th column, if xj+1 (T ∗ for the x̄j+1) appears in the disjunct.

The explanation of this form of the SAT problem shall be given later, at the begin
of paragraph 3.
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In connection with the tables we shall use the following terms:the length of the
row and rank of the row. The length of the row in the table with n columns
0, 1, 2, . . . , n− 1 and the beginning τi−1 or τ̄i−1 equals n− i + 1, while the rank
equals n− i− k + 1, where k — is the sum of M productions (which are implied) in
the row, i.e. the rank of the row equals the number of the literals appearing in the
disjunct.

By permuting rows and columns of the table, a standard shape of the table is
acheived, meaning that the columns are aligned from the left to the right, in order of
nondecreasing values of the expression E = ET ∗ ET∗ , where ET i ET∗ — represents
the corresponding number of appearances of T (including τ) in each column. The
rows in the table are aligned according to nondecreasing values of their length, the
same condition applying to the blocks (and their subblocks) of the subtable with the
rows of the same length, which means that the rows in the block (subblock) with the
beginning in the k–th row are aligned according to nondecreasing of their length, with
the exception of the k–th column.

3. NOTATIONS FOR THE SAT PROBLEM

The left part of the table 3 can serve as an example of stating the SAT problem by
using generating rules from the set

Q3 = {T, T ∗, M},

because the effect of every generating rule from the set Q3 on the given vector
〈αj〉, by definition transforms the same vector in the concatenation of two vectors, the
result being the double value of the dimension of the initial vector.

〈αj T 〉 = 〈αj θ̄j〉, 〈αj T ∗〉 = 〈θ̄j αj〉, 〈αj M〉 = 〈αj αj〉. (1)

Definitions (1) correspond to known definitions (see [3], p. 87).
If the values of logic algebra functions f(Xj) on the variable row Xj =

= (x1, x2, . . . , xj), can be represented by the vector 〈αj〉, that shall be represented
in the following way: f(Xj) ∼⇁ 〈αj〉.

Theorem 1 If the logic algebra function f(Xj) is represented by the vector 〈αj〉, then
the following functions, with the domain Xj+1, can be represented as following:

f(Xj+1) = f(Xj) ∼⇁ 〈αjM〉, f(Xj)↓̄xj+1
∼
⇁ 〈αjT 〉, f(Xj)↓̄x̄j+1

∼
⇁ 〈αjT

∗〉.

This theorem is a fragment of the theorem 14 (see [3], p. 90).
The creation of the SAT problem table in the production system Q3 can now be

considered explained and justified.
The application of the theorem 1 and equivalence (1) on each row of the SAT prob-

lem in the system Q3 makes it possible to notate every disjunction with an σ–operator
in the system V h, which is shown in the subtable of the same table 3.

The translation of the σ–operator table from the V h system in the Sh system is
realized in a relatively simple manner. It should suffice to keep in mind that for the
integers i ≥ 0 and j ≥ 0 the following equivalences apply:
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〈〈τ i
j+1〉〉 = 〈〈3i

j〉〉, 〈〈τ i+1〉〉 = 〈〈5i〉〉, 〈〈νj+1〉〉 = 〈〈0j〉〉,
〈〈τ̄ i

j+1〉〉 = 〈〈3̄i
j〉〉, 〈〈τ̄ i+1〉〉 = 〈〈5̄i〉〉, 〈〈ν̄j+1〉〉 = 〈〈0̄j〉〉.

(2)

If next to the equivalence (2) the following equivalences are considered

〈τ̄j T 〉 = 〈〈1̄j〉〉, 〈τj T 〉 = 〈〈2̄j〉〉,
〈τ̄j T ∗〉 = 〈〈4̄j〉〉, 〈τj T ∗〉 = 〈〈7j〉〉,

then it is possible to immediately move from the table in the Q3 production system
to the table in the Sh production system. In whichever way this is carried out, the
SAT problem table in the Sh system shall be represented by the subtable of the table
3.

4. CALCULUS FOR THE SAT PROBLEM

In [3] there is a detailed consideration of the logic calculus in the system V h. To
avoid repeating ourselves, here we shall concentrate exclusively on the calculus in the
Sh system for the SAT problem. That means that we have to concentrate on the
σ–operators in the Sh system.

At first it should be noticed that the table 1, which realizes the /̄ conjuction over
the pair of vectors (literals-digits) α and β from Sh (in the table 1 the angle brackets
around literals-digits are left out) holds.

The table 1 is used while applying the following obvious lemma

Lemma 1 If α, β ∈ Sh and 〈〈α〉〉 /̄〈〈β〉〉 = 〈〈γ〉〉, then
〈〈αj〉〉/̄〈〈βj〉〉 = = 〈〈γj〉〉, 〈〈αj〉〉/̄〈〈βj〉〉 = 〈〈γj〉〉 for j = 1, 2, 3, . . . .

Table 1

/̄ 1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 7̄ 7 6 5 4 3 2 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 7̄ 7̄
2 2 0 0 2 2 0 0 2 2 0 0 2 2 6̄ 7̄ 6̄
3 2 1 0 3 2 1 0 3 2 1 0 3 5̄ 7̄ 7̄ 5̄
4 4 4 4 0 0 0 0 4 4 4 4 4̄ 5̄ 6̄ 7̄ 4̄
5 4 5 4 1 0 1 0 5 4 5 3̄ 7̄ 7̄ 7̄ 7̄ 3̄
6 6 4 4 2 2 0 0 6 6 2̄ 3̄ 6̄ 7̄ 6̄ 7̄ 2̄
7 6 5 4 3 2 1 0 7 1̄ 3̄ 3̄ 5̄ 5̄ 7̄ 7̄ 1̄

1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 7̄ /̄

In the lemmas which are going to be presented in further exposition, it is important
to keep in mind (due to the use of the convention stated in paragraph 2) that the
following equivalences (where j ≥ 0 is an integer) always hold:

〈〈0j+1〉〉 = 〈〈0j0j〉〉, 〈〈1j+1〉〉 = 〈〈3j0j〉〉, 〈〈2j+1〉〉 = 〈〈3̄j0j〉〉, 〈〈3j+1〉〉 = 〈〈0̄j0j〉〉,
〈〈4j+1〉〉 = 〈〈0j3j〉〉, 〈〈5j+1〉〉 = 〈〈31

j 〉〉, 〈〈6j+1〉〉 = 〈〈3̄j3j〉〉, 〈〈7j+1〉〉 = 〈〈0̄j3j〉〉,
〈〈7̄j+1〉〉 = 〈〈0j 3̄j〉〉, 〈〈6̄j+1〉〉 = 〈〈3j 3̄j〉〉, 〈〈5̄j+1〉〉 = 〈〈3̄1

j 〉〉, 〈〈4̄j+1〉〉 = 〈〈0̄j 3̄j〉〉,
〈〈3̄j+1〉〉 = 〈〈0j 0̄j〉〉, 〈〈2̄j+1〉〉 = 〈〈3j 0̄j〉〉, 〈〈1̄j+1〉〉 = 〈〈3̄j 0̄j〉〉, 〈〈0̄j+1〉〉 = 〈〈0̄j 0̄j〉〉.
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Lemma 2 If ε ∈ Sh, then

〈〈3j+1〉〉 /̄ 〈〈εj+1〉〉 = 〈〈εj 0j〉〉, 〈〈3̄j+1〉〉 /̄ 〈〈εj+1〉〉 = 〈〈0j εj〉〉.
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Table 2

/̄ 11 21 31 41 51 61 71 7̄1 6̄1 5̄1 4̄1 3̄1 2̄1 1̄1

11 10 20 11 01 10 20 11 01 10 20 11 01 10 20
21 01 01 01 40 40 40 40 7̄0 7̄0 7̄0 7̄0 21 21 21

31 10 20 11 40 50 60 70 7̄0 6̄0 5̄0 4̄0 21
2̄0 1̄0

41 01 02 41 01 01 02 41 01 01 02 41 01 01 02
51 11 21 31 01 11 21 31 01 11 21 31 01 11 21

61 01 02 41 40 41 42 43 7̄0 7̄1 7̄2 7̄3 21
3̄1 3̄2

71 11 21 31 40 51 62 73 7̄0 6̄1 5̄2 4̄3 21
2̄1 1̄2

7̄1 01 01 01 04 04 04 04 07̄ 07̄ 07̄ 07̄ 7̄1 7̄1 7̄1

6̄1 10 20 11 04 14 24 34 07̄ 17̄ 27̄ 37̄ 7̄1 13̄ 23̄
5̄1 01 01 01 41 41 41 41 7̄1 7̄1 7̄1 7̄1 3̄1 3̄1 3̄1

4̄1 10 20 11 41 54 64 74 7̄1 6̄7̄ 5̄7̄ 4̄7̄ 3̄1 2̄3̄ 1̄3̄
3̄1 01 02 41 04 05 06 07 07̄ 06̄ 05̄ 04̄ 7̄1 02̄ 01̄
2̄1 11 21 31 04 15 26 37 07̄ 16̄ 25̄ 34̄ 7̄1 12̄ 21̄
1̄1 01 02 41 41 45 46 47 7̄1 7̄6̄ 7̄5̄ 7̄4̄ 3̄1 3̄2̄ 3̄1̄

Lemma 3 If ε ∈ Sh and 〈〈3〉〉 /̄ 〈〈ε〉〉 = 〈〈η〉〉, 〈〈3̄〉〉 /̄ 〈〈ε〉〉 = 〈〈µ〉〉, then

〈〈11〉〉 /̄ 〈〈ε1〉〉 = 〈〈η 0〉〉, 〈〈1̄1〉〉 /̄ 〈〈ε1〉〉 = 〈〈µ ε〉〉,
〈〈21〉〉 /̄ 〈〈ε1〉〉 = 〈〈µ 0〉〉, 〈〈2̄1〉〉 /̄ 〈〈ε1〉〉 = 〈〈η ε〉〉,
〈〈41〉〉 /̄ 〈〈ε1〉〉 = 〈〈0 η〉〉, 〈〈4̄1〉〉 /̄ 〈〈ε1〉〉 = 〈〈ε µ〉〉,
〈〈51〉〉 /̄ 〈〈ε1〉〉 = 〈〈η1〉〉, 〈〈5̄1〉〉 /̄ 〈〈ε1〉〉 = 〈〈µ1〉〉,
〈〈61〉〉 /̄ 〈〈ε1〉〉 = 〈〈µ η〉〉, 〈〈6̄1〉〉 /̄ 〈〈ε1〉〉 = 〈〈η µ〉〉,
〈〈71〉〉 /̄ 〈〈ε1〉〉 = 〈〈ε η〉〉, 〈〈7̄1〉〉 /̄ 〈〈ε1〉〉 = 〈〈0 µ〉〉.
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Table 3

/̄ 0 1 2 3 4 5 σ–oper. in V h σ–oper. in Sh Resulting conjunction

1 τ̄ T ∗ T 〈〈ν̄3 τ̄3 ν̄4〉〉 〈〈4̄3 0̄3〉〉
2 τ̄ T T ∗ 〈〈ν̄4 τ̄3 ν̄3〉〉 〈〈0̄3 1̄3〉〉 〈〈4̄3 1̄3〉〉
3 τ̄ T T 〈〈τ̄1

2 ν̄3 ν̄4〉〉 〈〈3̄1
1 0̄2 0̄3〉〉 〈〈3̄1

1 3̄2 1̄3〉〉
4 τ T ∗ T 〈〈(ν̄2 τ2)1 ν̄4〉〉 〈〈71

2 0̄3〉〉 〈〈22 42 1̄3〉〉
5 τ̄ T T ∗ 〈〈ν̄4 (τ̄2 ν̄2)1〉〉 〈〈0̄3 1̄1

2〉〉 〈〈22 42 3̄2 1̄2〉〉
6 τ T T ∗ 〈〈(ν̄3 τ2 ν̄2)1〉〉 〈〈(0̄2 2̄2)1〉〉 〈〈22 42 3̄1

2〉〉
7 τ̄ T T T 〈〈τ̄2 ν̄2 ν̄3 ν̄4〉〉 〈〈1̄2 0̄2 0̄3〉〉 〈〈22 42 3̄1

2〉〉
8 τ̄ T ∗ T ∗ 〈〈ν̄4 ν̄3 τ̄2

1 〉〉 〈〈0̄3 0̄2 3̄2〉〉 〈〈22 42 3̄2 01 3̄1〉〉
9 τ̄ T ∗ T 〈〈ν̄3 τ̄2

1 ν̄4〉〉 〈〈0̄2 3̄2 0̄3〉〉 〈〈22 01 21 3̄2 01 3̄1〉〉
10 τ T ∗ T ∗ 〈〈ν̄4 ν̄3 τ̄2

1 〉〉 〈〈0̄3 0̄2 32〉〉 〈〈22 01 21 3̄2 02〉〉
11 τ T ∗ T 〈〈(ν̄2 τ1

1 )1 ν̄4〉〉 〈〈(0̄1 31)1 0̄3〉〉 〈〈22 02 3̄2 02〉〉
12 τ T T 〈〈(τ1

1 ν̄2 ν̄3)1〉〉 〈〈(31 0̄1 0̄2)1〉〉 〈〈41 01 02 3̄2 02〉〉
13 τ T ∗ T ∗ 〈〈ν̄4 (ν̄1 τ̄1)2〉〉 〈〈0̄3 72

1〉〉 〈〈41 03 71 02〉〉
14 τ̄ T T 〈〈((τ̄1 ν̄1)1 ν̄3)1〉〉 〈〈(1̄1

1 0̄2)1〉〉 〈〈41 03 61 02〉〉
15 τ̄ T ∗ T ∗ 〈〈(ν̄2 ν̄1 τ̄1)2〉〉 〈〈(0̄1 4̄1)2〉〉 〈〈41 03 21 02〉〉
16 τ T T T 〈〈τ2 ν̄2 ν̄3 ν̄4〉〉 〈〈51 0̄1 0̄2 0̄3〉〉 〈〈0 1 03 21 02〉〉
17 τ T ∗ T ∗ T ∗ 〈〈ν̄4 ν̄3 (ν̄1 τ1)1〉〉 〈〈0̄3 0̄2 (0̄ 5)1〉〉 〈〈0 1 03 21 02〉〉

18 τ T T ∗ 〈〈ν̄4 (τ1 ν̄1)2〉〉 〈〈0̄3 2̄2
1〉〉 〈〈0 1 03 01 02〉〉

19 τ̄ T ∗ T 〈〈((τ̄ ν̄)2 ν̄3)1〉〉 〈〈1̄2 0̄2)1〉〉 〈〈 04〉〉
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Lemma 4 If ε ∈ Sh, then

〈〈1j+2〉〉 /̄ 〈〈εj+2〉〉 = 〈〈εj 0j 0j+1〉〉, 〈〈1̄j+2〉〉 /̄ 〈〈εj+2〉〉 = 〈〈0j εj εj+1〉〉,
〈〈2j+2〉〉 /̄ 〈〈εj+2〉〉 = 〈〈0j εj 0j+1〉〉, 〈〈2̄j+2〉〉 /̄ 〈〈εj+2〉〉 = 〈〈εj 0j εj+1〉〉,
〈〈4j+2〉〉 /̄ 〈〈εj+2〉〉 = 〈〈0j+1 εj 0j〉〉, 〈〈4̄j+2〉〉 /̄ 〈〈εj+2〉〉 = 〈〈εj+1 0j εj〉〉,
〈〈5j+2〉〉 /̄ 〈〈εj+2〉〉 = 〈〈(εj 0j)1〉〉, 〈〈5̄j+2〉〉 /̄ 〈〈εj+2〉〉 = 〈〈(0j εj)1〉〉,
〈〈6j+2〉〉 /̄ 〈〈εj+2〉〉 = 〈〈0j εj+1 0j〉〉, 〈〈6̄j+2〉〉 /̄ 〈〈εj+2〉〉 = 〈〈εj0j+1 εj〉〉,
〈〈7j+2〉〉 /̄ 〈〈εj+2〉〉 = 〈〈εj+1 εj 0j〉〉, 〈〈7̄j+2〉〉 /̄ 〈〈εj+2〉〉 = 〈〈0j+1 0j εj〉〉.
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Table 4
σ–definitions in pseudosymbols

1 λ1
4

⇀↽ 〈〈4̄3 0̄3〉〉

2 λ2
4

⇀↽ 〈〈0̄3 1̄3〉〉

3 λ3
3

⇀↽ 〈〈3̄1
1 0̄2〉〉, λ3

4
⇀↽ 〈〈λ3

3 0̄3〉〉

4 λ4
4

⇀↽ 〈〈71
2 0̄3〉〉

5 λ5
4

⇀↽ 〈〈0̄3 1̄1
2〉〉

6 λ6
3

⇀↽ 〈〈0̄2 2̄2〉〉, λ6
4

⇀↽ 〈〈 (λ6
3 )1〉〉

7 λ7
3

⇀↽ 〈〈1̄2 0̄2〉〉, λ7
4

⇀↽ 〈〈λ7
3 0̄3〉〉

8 λ8
3

⇀↽ 〈〈0̄2 3̄2〉〉, λ8
4

⇀↽ 〈〈 0̄3 λ8
3〉〉

9 λ9
3

⇀↽ 〈〈0̄2 3̄2〉〉, λ9
4

⇀↽ 〈〈λ9
3 0̄3〉〉

10 λ10
3

⇀↽ 〈〈0̄2 32〉〉, λ10
4

⇀↽ 〈〈 0̄3 λ10
3 〉〉

11 λ11
3

⇀↽ 〈〈(0̄1 31)1〉〉, λ11
4

⇀↽ 〈〈λ11
3 0̄3〉〉

12 λ12
2

⇀↽ 〈〈31 0̄1〉〉, λ12
3

⇀↽ 〈〈λ12
2 0̄2〉〉, λ12

4
⇀↽ 〈〈(λ12

3 )1〉〉

13 λ13
4

⇀↽ 〈〈0̄3 72
1〉〉

14 λ14
3

⇀↽ 〈〈1̄1
1 0̄2〉〉, λ14

4
⇀↽ 〈〈(λ14

3 )1〉〉

15 λ15
2

⇀↽ 〈〈0̄1 4̄1〉〉, λ15
4

⇀↽ 〈〈(λ15
2 )2〉〉

16 λ16
2

⇀↽ 〈〈51 0̄1〉〉, λ16
3

⇀↽ 〈〈λ16
2 0̄2〉〉, λ16

4
⇀↽ 〈〈λ16

3 0̄3〉〉

17 λ17
2

⇀↽ 〈〈(0̄5)1〉〉, λ17
3

⇀↽ 〈〈0̄2 λ17
2 〉〉, λ17

4
⇀↽ 〈〈0̄3 λ17

3 〉〉

Strictly speaking, the equivalences stated above suffice for the realization of all
conjuctions over disjunctions, notated by σ–operators in Sh system, in the SAT prob-
lem. However, for the sake of convenience, we shall write out lemma 2 (for j = 0) and
lemma 3 in the table 2 (the brackets are again implied).

Now we shall further expound the illustrated example from the table 3.
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The results of conjuction, showed in the last column of the table 3, are acquired
relatively simply, and gain a rather ”mechanical” character, under the condition of
introducing recursive definitions with the use of pseudosymbols λi

j , µi
j , ηi

j , . . . for σ–
operators in double angle brackets. We should pay attention to the fact that the
meaning of the symbols is somewhat different from the one stated at the beginning of
the paper: the lower index in the pseudosymbols points to the rank of the vector, the
upper— only to the index of the vector, i.e. λi, µi, ηi are in a fact i–th symbols, but
are all of the row j. The next to the last column of the table 3 is shown in the table
4, the first computations stating the following:
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1) µ1
4 = λ1

4 /̄ λ2
4 = 〈〈4̄3 0̄3〉〉 /̄ 〈〈0̄3 1̄3〉〉 = 〈〈4̄3 1̄3〉〉;

2) µ2
4 = µ1

4 /̄ λ3
4 = 〈〈4̄3 1̄3〉〉 /̄ 〈〈λ3

3 0̄3〉〉 = 〈〈µ2
3 1̄3〉〉,

µ2
3 = 〈〈4̄3〉〉 /̄ 〈〈λ3

3〉〉 = 〈〈0̄2 3̄2〉〉 /̄ 〈〈3̄1
1 0̄2〉〉 = 〈〈3̄1

1 3̄2〉〉;

3) µ3
4 = µ2

4 /̄ λ4
4 = 〈〈µ2

3 1̄3〉〉 /̄ 〈〈71
2 0̄3〉〉 = 〈〈µ3

3 1̄3〉〉,

µ3
3 = 〈〈µ2

3〉〉 /̄ 〈〈71
2〉〉 = 〈〈3̄1

1 3̄2〉〉 /̄ 〈〈72 72〉〉 = 〈〈22 42〉〉;

4) µ4
4 = µ3

4 /̄ λ5
4 = 〈〈µ3

3 1̄3〉〉 /̄ 〈〈0̄3 1̄1
2〉〉 = 〈〈µ3

3 η4
3〉〉,

η4
3 = 〈〈1̄3〉〉 /̄ 〈〈1̄1

2〉〉 = 〈〈3̄2 0̄2〉〉 /̄ 〈〈1̄2 1̄2〉〉 = 〈〈3̄2 1̄2〉〉;

5) µ5
4 = µ4

4 /̄ λ6
4 = 〈〈µ3

3 η4
3〉〉 /̄ 〈〈(λ6

3)
1〉〉 = 〈〈µ5

3 η5
3〉〉,

µ5
3 = µ3

3 /̄ λ6
3 = 〈〈22 42〉〉 /̄ 〈〈0̄2 2̄2〉〉 = 〈〈22 42〉〉,

η5
3 = 〈〈η4

3〉〉 /̄ 〈〈λ6
3〉〉=〈〈3̄2 1̄2〉〉 /̄ 〈〈0̄2 2̄2〉〉=〈〈3̄2 3̄2〉〉=〈〈3̄1

2〉〉; and so on.

In the subtable 3 (the last column of the table) the results of conjuctions are shown
(as the result of the application of the calculus explained above): in the i–th row the
result of conjuctions over σ–operators (from the next to the last row) starting with
the first and ending with the i–th. The σ–operator from the last column of the 17–th
row (separated from the rest)) therefore presents the result of conjuction of all 17
operators of the second-last subtable. The separated operator implies the subtable,
whose result it is, satisfiable, with the satisfiability achieved on the value rows of the
variables with the base ten indices 4; 42; 42, i.e. the rows:

(001000), (010101), (110101). (3)

We should notice that the table 3 (with the 19 rows shown in it) is contradictory,
because the resulting σ–operator equals 〈〈04〉〉.

In order to illustrate another important idea on this simple example, let us assume
that in the each row of the resulting table a maximum of R (in our example R = 4)
literals–digits can be entered (with or without indices), and that the problems in 3
should be solved with this limitation borne in mind. In that case the last subtable
from the table 3 would look as the first subtable of the table 5 (let us notice that the
rows would stay unchanged up to the eigth row). By looking at the 17–th row, we
reach the conclusion (based on the beginning of the separated operator) of satisfiability
confirmed by the row of the corresponding variable values (the first row in 3).
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If table 3 contains all 19 rows, then in the 19–th row of the table 5 the result is
gained, with which we are returning to the 8–th row to acquire the σ–operators shown
in the second subtable of the table 4. The result of the 18–th row tells us about the
problem being contradictory.
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Table 5

N oper. 1 N oper. 2

8 〈〈22 42 . . . 〉〉 8, 9 〈〈03 3̄2 01 3̄1〉〉
9, 10 〈〈22 01 21 . . . 〉〉 10, 11, 12 〈〈03 3̄2 02〉〉
11 〈〈22 02 . . . 〉〉 13 〈〈03 01 71 02〉〉

12, 13, 14, 15 〈〈41 01 02 . . . 〉〉 14 〈〈03 01 61 02〉〉
16, 17 〈〈0 1 01 02 . . . 〉〉 15, 16, 17 〈〈03 01 21 02〉〉

18 〈〈0 1 01 02 . . . 〉〉 18 〈〈04〉〉
19 〈〈03〉〉

Examinations and calculations illustrated on individual examples have a universal
character, which makes us conclude that in the general case the text of the resulting
σ–operator for the standardized table of the SAT problem cannot have exponential
growth. Let us name every σ–operator literal–digit with or without indices, different
from 〈〈0s〉〉, for s ≥ 0, significant component.

Then we shold look at the lemmas 1, 2 and 4 and the tables 1 and 2 (which are
sufficient to calculate conjuctions) and notice the following: a conjuction over two
significant components cannot generate more then two significant components. The
components 〈〈0s〉〉 are absorbtive, because of which their appearance cannot facilitate
a strong text growth. The volume of the text doesn’t even have to be estimated:
it should be noticed that for the solution of the SAT problem the acceptance of the
important idea stated below would be sufficient, with putting R = 2n in the general
case. In our example it would be necessary to put R = 12, but in that case there
would be no return (surplus), which was something we wanted to illustrate. All this
being said, the statement of the following conclusion becomes possible.

Theorem 2 The class of NP–complete problems is equivalent to the class P .

With this theorem we are bringing our fragment of the notation and logic calculus,
oriented on the SAT problem, to an end. Let us notice that, in case of necessity
of solving more general classes of problems from the logic algebra domain (such as
direct calculations demanded by logic problems, without reducing them to standard
representatives, then the Zegalkin systems, criptography problems, etc.) it would,
without major effort, be possible to widen the calculations to encompass the whole
operator system.

Op = {↓, ⊕, /, /̄, ⊕̄, ↓̄},

That shall, however, not be demonstrated in this paper. Instead we shall move on
to multivalued logic and show how the positionality principle can also be applied on
such cases.
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5. SYMBOLS AND DEFINITIONS FOR MULTIVALUED
LOGICS

Let PLk·m — be a symbol for positional multivalued logic, for integers k and m ≥ 2.
If k = m, we write PLk.
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In PLk·m let us assume that the arguments of the function f(x1, x2, . . . , xn)
belong to the set Ek = {0, 1, 2, . . . , k − 1}, and values to the set
Gm = {0, 1, 2, . . . , m− 1}.

The function f(x1, x2, . . . , xn) is completely stated if its table is stated, in which
the rows of arguments are notated as representations of numbers 0, 1, 2, . . . , kn − 1
in the k–ary number system, with increase of the digit position from left to the right
(attention has to be payed to the latter, since it is not an usual notation). The symbol
f is interpreted as mapping determined by the table, and the symbols x1, x2, . . . , xn

— as the names of the columns. Over the columns, as over the one variable functions,
unary operations are carried out, given by the permutations from the symetric group
Sk.

All that has been said presents a complete repetition of classic conventions, and
the mentioned positionality begins with the representations of f symbols with the
positional s– operators and column notations via σ–operators.

For PLk·m q–ary s–operators are vectors of the dimension q · k − 1 with the co-
ordinates from the set Gm. The numeration of the vector coordinates from left to the
right begins with index 0, whereby in the case of m ≤ 10 it is not necessary to separate
the coordinates with a comma. In all other cases comma is obligatory.

Example I. In the case of PL2 such binary, nontrivial s–operators are operators
from Op, the first three of them having the following form:

↓= 〈100〉, ⊕ = 〈010〉, / = 〈110〉.

As far as the next three s–operators are concerned, they emerge as a result of the
application of the operation of unary inversion:

— ⇀↽ (01):
/̄ = 〈001〉, ⊕̄ = 〈101〉, ↓̄ = 〈011〉,

which represents the transposition from the group S2.
Example II. In the case of PL3, binary nontrivial s–operators are operators from

the next two sets:

O
′
p = {〈00001〉, 〈00010〉, 〈00011〉, 〈00101〉, 〈00110〉,

〈01001〉, 〈00100〉, 〈01010〉, 〈01110〉},

O
′′
p = {〈00012〉, 〈00102〉, 〈00112〉, 〈00120〉, 〈00121〉,

〈00122〉, 〈01002〉, 〈01012〉, 〈01020〉, 〈01021〉

〈01102〉, 〈01112〉, 〈01120〉, 〈01201〉, 〈01210〉}.
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All the other nontrivial binary s–operators from PL3 emerge from the ones counted
in O

′
p and O

′′
p as the result of the application of the following unary operations (per-

mutations from the group S3):

− ⇀↽ (01), ¬ ⇀↽ (02), • ⇀↽ (12), →⇀↽ (012), ←⇀↽ (021) (4)

and the operation of conjugation (see [3] p. 29): (For the given vector
〈Rn〉 = 〈r1, r2, . . . , rn〉 conjugated with them is the vector 〈R∗〉 = 〈rn, . . . , r2, r1〉.
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If α is the symbol for the first vector from O
′′
p, we get:

α=〈00012〉, ᾱ=〈11102〉, ¬α=〈22210〉, •α=〈00021〉, →α=〈11120〉, ←α=〈22201〉,

α∗=〈21000〉, ᾱ∗=〈20111〉, ¬α
∗
=〈01222〉, •α

∗
=〈12000〉,→α

∗
=〈02111〉,←α

∗
=〈10222〉.

Example III. In PL2·3 binary nontrivial s–operators are vectors:

π = (012), π̄ = (102),
¬
π = (210),

•
π= (021),

→
π= (120)

←
π= (201) (5)

for which the following equivalences apply:

π =
¬
π
∗
, π̄ =

←
π
∗
,
•
π =

→
π
∗

.

Beside the vector (5), the application of unary operations (4) on Op
also results in vectors:

↓= /̄∗ = 〈100〉, ↓̄ = /∗ = 〈011〉,
¬
↓=

→
/
∗
= 〈122〉,

•
↓=

←
/
∗
= 〈200〉,

→
↓ =

¬
/ = 〈211〉,

←
↓ =

•
/∗= 〈022〉

and selfconjugated vectors:

¬
⊕= 〈212〉,

•
⊕= 〈020〉,

→
⊕= 〈121〉,

←
⊕= 〈202〉.

The application of simple, as well as the complex s–operator on the
vector argument is well known (see [3] pp. 25 – 26) and shall therefore
not be repeated here.

Now we shall say a few words about the column notation via σ–
operator. In a general case, when we are dealing with PLk·m, double
angle brackets are used to notate a vector of the dimension kn (i.e. of the
rank n, where the base k is defined through PL), which shall be further
referred to as σ–operators.

The following convention shall be upheld: if 〈〈α〉〉 — is a vector of
the rank h (dimension kh), then the notation 〈〈αj〉〉 denotes that every
coordinate of the vector 〈〈α〉〉 appears with the arity j (of the dimension
kj), because of which the vector α has the rank h + j. The notation
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〈〈αi〉〉 denotes that the vector 〈〈α〉〉 itself appears in the concatenation hi

times. In that way, the notation 〈〈αi
j〉〉— is a vector of the rank h + j + i,

under the condition of 〈〈α〉〉 — being a vector of the rank h.
Once again we shall emphasize that the double angle brackets point to

the coordinates appearing in the exponential frequency, as well as the fact
that the upper (as well as lower) vector indices (or/and its coordinates)
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point to the exponential character of the appeareance, and that the indices
are always implied (if not stated, then equal to zero).

In already discussed PLk·m the colums are:

xj
∼
⇁ 〈〈ρn−j

j−1 〉〉,
4
xj
∼
⇁ 〈〈

4
ρ n−j

j−1 〉〉, (6)

where the vector is 〈〈ρ〉〉 = 〈〈0, 1, 2, . . . , k − 1〉〉, and the unary opera-
tion 4 — one of the permutations from the symmetric group Sk.

A special case (see. [3] p. 100) for PL2 is:

xj
∼
⇁ 〈〈τ̄n−j

j−1 〉〉, x̄j
∼
⇁ 〈〈τn−j

j−1 〉〉,

where 〈〈τ〉〉 = 〈〈10〉〉.
In the case of PL3·m, in correspondance with (5) and (6), the following

holds:

xj
∼
⇁ 〈〈πn−j

j−1 〉〉, x̄j
∼
⇁ 〈〈π̄n−j

j−1 〉〉,
¬
xj
∼
⇁ 〈〈

¬
π n−j

j−1 〉〉,
•
xj
∼
⇁ 〈〈

•
π

n−j

j−1 〉〉,
→
xj
∼
⇁ 〈〈

→
π n−j

j−1 〉〉,
←
xj
∼
⇁ 〈〈

←
π n−j

j−1 〉〉.

Further, the calculations in PLk·m along the scheme, analog to the
scheme in paragraph 4 of this paper, should be explained in detail, but
such a task would be difficult to realize within the limits of this paper,
because of which this exposition shall be brought to an end by some
simple illustrating examples, shown in the table 6, where:

R = 〈01120〉, Q = 〈01201〉, W = 〈01210〉, whereby
F = W (R, Q) = 〈02121〉 holds.

It can be read from the table columns that

W (R(x1, x2), Q(x1, x2)) = F (x1, x2),

W (R(x1,
¬
x2), Q(x1,

¬
x2)) = F (x1,

¬
x2),

W (R(
•
x1, x2), Q(

•
x1, x2)) = F (

•
x1, x2),

W (R(
•
x1,

¬
x2), Q(

•
x1,

¬
x2)) = F (

•
x1,

¬
x2).

These examples represent a confirmation of the results for PL3, analog
to the result of the theorem 3 (see [3] p. 77) for PL2.
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Table 6

x1 x2 R Q W F x1
¬
x2 R Q W F

•
x1 x2 R Q W F

•
x1

¬
x2 R Q W F

0 0 0 0 0 0 0 2 1 2 1 1 0 0 0 0 0 0 0 2 1 2 1 1

1 0 1 1 2 2 1 2 2 0 2 2 2 0 1 2 1 1 2 2 0 1 1 1

2 0 1 2 1 1 2 2 0 1 1 1 1 0 1 1 2 2 1 2 2 0 2 2

0 1 1 1 2 2 0 1 1 1 2 2 0 1 1 1 2 2 0 1 1 1 2 2

1 1 1 2 1 1 1 1 1 2 1 1 2 1 2 0 2 2 2 1 2 0 2 2

2 1 2 0 2 2 2 1 2 0 2 2 1 1 1 2 1 1 1 1 1 2 1 1

0 2 1 2 1 1 0 0 0 0 0 0 0 2 1 2 1 1 0 0 0 0 0 0

1 2 2 0 2 2 1 0 1 1 2 2 2 2 0 1 1 1 2 0 1 2 1 1

2 2 0 1 1 1 2 0 1 2 1 1 1 2 2 0 2 2 1 0 1 1 2 2

6. CONCLUDING REMARKS

The proof of equivalence of P and NP class problems (the second one), expounded in
this paper, is basically already present in [3] (see. 8.1), even if not in an explicit form.
The main issue not explicated in [3], is the important idea of calculating with the
bound R applied to the memory volume for literals-digits with or without indices. I
have assumed that this result was going to be recognized without additional emphasis,
which turned out to be unrealistic.

I should also mention, that although the first proof of the equivalence of P and
NP class problem was carried out by the end of the last century, the second was
carried out at the very beginnig of the present century. I should also state that it is
possible to acquire a third proof, as a common result of the last two results. However,
I believe that the more important issue is the application of the sigma–notation on
superreduction, and even more important is the computer realization based on σ–
notation, for its capability to make possible on existing computers what is expected
of quantum computers.
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