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This paper deals with analytical and simulation approach for choice ofatiot functions and instead of a
number of nodes for a class of neural network controllers for faqu control of thermal power systems. Neural
network update laws are derived via Lyapunov like stability analysis. Wihember of nodes is fixed, then simula-
tion analysis is conducted to find the best performer activation functiest fBerformance is chosen using integral
error criteria and proper statistical tests.
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Dizajn adaptivhog regulatora s neuronskim mreZzama za regulacijufrekvencije u elektroenergetskom
sustavu s toplinskim turbinama. Clanak opisuje analitko-simulacijski pristup izboru aktivacijskih funkcija i
broja¢vorova za klasu regulatora s neuronskim mrezama za regulacijefrefie u elektroenergetskom sustavu
s toplinskim turbinama. ZakoniG@nja neuronske mreze su izvedeni kroz analizu stabilnosti primjenokeife
Ljapunova. Nakon $to je oditen brojcvorova, proveden je simulacijski postupak za didranje najbolje aktivaci-
jske funkcije. Najbolja funkcija za dani regulator je odema koriStenjem kriterija integralne pogreske i stdtigtn
testiranjem.

Klju €ne rijeci: izbor aktivacijskih funkcija, brogvorova, regulacija neuronskim mrezama

1 INTRODUCTION guency control is well described ([2], [3], [4], [5], [6], I7

The paper presents novel procedure for designing ned8l @nd many others). Some of already mentioned non-
ral network (NN) frequency controller for an isolated ther- 2daptive schemes are given in [2], [3], [4], [5], [6], and.[7]

mopower system. As power systems are rapidly enterinﬁ'owever’ as the recent trends in the deregulation of mod-

the era of deregulation, the importance of frequency con€'n POWer systems lead to frequent and significant param-

trol becomes more significant and precise scheduling oft€rs changes, the quality of control is diminished when
loads in power system becomes increasingly complicate&,“Ch non-adaptive controllers are used, hence calling for
if not impossible. As a result, load fluctuations in the Other approaches.
power system are becoming more explicit. In addition, in NN load-frequency control is described in [9], [10]
emerging markets of ancillary services, primary contrslle and [11]. These NN control algorithms show satisfactory
and turbines employed in secondary frequency and powdterformance but, unfortunately, require off-line train
control change constantly, typically on hourly basis. Since NN training cannot be done on real systems, this ap-
When conventional control schemes are used, theg&0ach is constrained regarding application to power sys-
changes of power system parameters can cause serid§nS contrc_)l becaus_e it is very hard to obtain a precise
problems affecting the quality of frequency control, andModel required to train the controller.
in some cases even affect the overall system stability. In In this paper we provide a novel design procedure and
order to avoid such instabilities, conventional secondarglescription of adaptive NN controller that does not require
controllers are usually implemented with smaller integrala priori training yielding the neural network capable of
gains than the optimal performance would otherwise reon-line learning ([1]). The new controller represents an
quire ([2]). advanced and performance-enhanced version of a NN con-

The problem addressing the frequency and load — fretrol scheme given in [12].
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2 MATHEMATICAL PRELIMINARIES

Let R denote the real number®™ denote the reah
vectors, R™*" the realm x n matrices. We denote by
I-|| & suitable vector norm. Given a matrik = [a;;],
A € R™™ theFrobenius norms defined by

|A|7 =tr(ATA) = a 1)
i,

with ¢r() the trace operation. The associated inner prod- |
uctis (4, B), = tr (AT B). The Frobenius normjA||3,

is denoted byj|-|| throughout this paper, unless otherwise
specified. The trace ofl satisfiestr(A) = tr(AT) for a
matrix A = [a;;]. For anyman matrix, andnzm matrix

C, we havetr(BC) = tr(CB).

In proving stability we use proposition given in [13]
which bas_lc_ally states thatasystem is unlformly uIt|m,afteI 3 NN POWER SYSTEM CONTROL
bounded if it has a Lyapunov function whose time deriva- _ o
tive is negative in an annulus of a certain width around the Givenz € R"!, atwo-layer NN, shown in Fig. 1, has a

Fig. 1. Two layer neural network

origin. As given in [13];
Lemma 1: Consider the functign(e) : R—R

g(y) = a0 + ary—any®, yeRT, (2

wherea; >0, i =0, 1, 2. Theng (y) < 0if y > n > 0,

where
arp+y/of +dagay

a 20&2

3

Proposition 1: Let:(¢) € R™ be the solution of the
differential equation

o(t) = f(z(t), 1), (4)

I(to) = Xp.
And assume there exists a functibz(t), t) that satisfies

M 2()]|* < L(x(t),1) < mar a@)]*, (5

L(z(1),t) < g(llz()]]) < 0forall [|lz(t)| > >0, (6)

with m,,, andm, positive constantsg; (e) as in (2) and;

as in (2). Define = /mm'myr andd > 6. Thenz(t)
is uniformly ultimately bounded that is

lzol| <7r —|lx()|| <dforallt > tq+T(d,r), (7)
where
T(d,r) =0, r<d§'d, (8)
2 2
T(d,r) = MM e sy ()

042R2 — OélR — Q)
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net output given by

y=WTo(Va), (10)
where 2 = [1 = R TR
[0 Yn, | and o(e) is the activation
function. fz2 = [2z1 2 .. }T, we define
o(z) = [o(z) o(z2) .. ]T Including "1" as a

first term of vector x in allows one to incorporate the
thresholds as the first column @f 7. Then any tuning of
NN weights includes tuning of thresholds as well [1].

The main property of NNs we are concerned with for
control and estimation purposes is the function approxi-
mation property ([15], [16]). Leff(x) be a smooth func-
tion from R™ — R™. Then, it can be shown that if the
activation functions are suitably selected, as long as
restricted to a compact sét € R™, then for some suffi-
ciently large number of hidden-layer neurdnghere exist
weights and thresholds such that

fx)=Wro(VTz) 4+ (). (11)

The value ofe(x) is called the neural network func-
tional approximation error. In fact, for any choice of a
positive numbet 5, one can find a neural network such
thate(z) < ey forallz € S. Also, it has been shown that,
if the first-layer weightsv/ are fixed (not tuned), then the
approximation property can be satisfied by selecting only
the output weight$¥. For this to occurp(z) = o (V7' x)
must be a basis [1].

If one selects the activation functions suitably, then, as
it was shown by Igelnik and Pao [17], thgz) is a ba-
sis if is selected randomly. Activation functions should be
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Gaussian, subsequent derivatives of Gaussians, sigmoidzaused by the change in the loAd®;,. The turbine out-

functions or hyperbolic tangents. put is the mechanical powex P,,,. However, the presence
of integral action means that the system can become un-
3.1 Isolated Thermopower System stable. Instead, the full state space adaptive NN controlle

The model of an isolated thermopower system is showr’ﬁICtIng as a nonlinear proportional gain parallel fat wil

in Fig. 2. All power values are given in per unit system guarantee stability and provide required accuracy.

([pu)). The system shown in Fig. 2 can be represented in state
space form as
1/R _ T%, 0 _ R;g
= 1 _ 1
AP, T = T KT" 01 €T
N [~ || &f 0 i —7
Il T
< AP, (15)
Fig. 2. The model of isolated thermo power system + 8 9{ APy
The transfer functions are given as: i = Az + Bu
1 Af=10 0 1|z
Gg:1+Ts’ (12) /=1 )
g The state vectax is defined as
G = (13) r
T 1+ TS v=[y, AP, Af], (16)
K,
A (14) wherey, is the output from the turbine controllers. In prac-

tice, these states are physically available, and this sepre
whereG, G andG, represent turbine governors, control tation allows for the NN control scheme design.
turbines and the power system respectively. Such models
are described in more details in [2], [3], [4], [5], [6], [7], 3.2 Adaptive Neural Network Control

[8], and by many others. Model parameters are: power \yg yse the neural network shown in Fig. 1. When the
system droopi [Hz/pu], turbine governing time constant it |ayer weights are initialized randomly and then fixed

T, [s], turbine time con;tarﬂ“t [s], load time constgrﬂ“s to form a basisy(z), the NN output (10) becomes
[s] and load system gaif’, [Hz/pu]. Model output is fre-

guency change from operating poiftf [Hz], model in- y=W7Tp(z) a7)
puts are load power changeP;, [pu] and control power ) ) )
reference valueA P, [pu], and AP, [pu] is mechanical similarly to the tracking NN controller described in [18],
power change. These papers also show that the isolaté}®]: [14], [20], [21] and numerous other papers.
thermopower system given in Fig. 2 is always asymptoti- However, as the problem here is control and not track-
cally stable ifR is a positive number. In real power systemsing, we need different controller architecture. First df al
that is always the case. there is no special robustifying term within the controller

The system is linear and the need for adaptive controf'fmd’ second, the PD contro!ler.parallel to NN.controIIer
or use of the function approximation property of the neu-'S absent. Actgally, nor der'lvf':l'tlve nor proport|ona| part
ral network is not obvious. However, as it was mentioned?@@llel tol/R is needed to initially stabilize the system
before, all of the system parameters can and do change di"ce uncontrolled system is always stable. Even though
ing the operation. This is especially true in modern powerthe propgruonal gauK p.araIIeI t°1/,R was still used in the
systems where ancillary services are bought and utilize§cheme in [12], simulation analysis had shown that propor-
on free market on the hourly base. Thus, with constantl§'0n3| gain does not improve the performance of the control
changing parameters it is conceivable that adaptive contrgCheme. Therefore, the controller developed below does
scheme would perform better than non-adaptive control. NOt US€ proportional partin control, but only NN alone.

It is assumed that the load disturbank®’;, is bounded

The conventional way to control thermopower plant is o that

to use linear PI controllers. The controller has the changg
of power system frequenc f as the input and produces APL < APy (18)

the control signalAP, at output. That signal is fed to This assumption is true as long as the power system is
available turbine governors in order to counter the changeis normal mode of operation. If the load disturbance is
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1R Note thatd is also bounded by a constahy; because ratio
L ij— has always a finite value. We can now rewrite (23) as
AP
) AP,, J\ . T
APr_ G, ‘myg } G, } " Af t=Azx+d+ BiW" p(x) (27)
Let us now define the Lyapunov candidate:
r 1 T 1 T n—1
W' (x) with P a diagonal and positive definite matrix. In this de-
signW is a vector because we have only one output. The

Lyapunov derivative is:

. 1 .
L= §(jJTPJT +2TPi)+ WIF-'W.  (29)

too big there will not be any control action since the syS-gy introducing (27) into (29) we obtain

tem just does not have enough power generation capability

available. In that case, the protection functions take over L =3i"(ATP+ PA)x + 7 Pd
and some loads have to be disconnected. +2TPByW T p(x) + wWTF-1W.

NN tuning law is derived in [24] as follows. NN control
scheme in shown in Fig. 3. Control signal is given by

Fig. 3. NN control scheme

(30)

The first term in (30) is a well known Lyapunov function
for linear system and can be easily rewritten by introducing

AP, = WTSO(J;) (19) (20) into (30)

L=1iTQx + 2" Pd

and the weight updates are provided b
g up P Y FWT () (@ PBy + Af) + ky |l [ W],

(31)
W =Fo@)Af = ku |z FW, (20)  with @ positive definite (note that uncontrolled system is
d asymptotically stable, so positive definffealways exists).
Let us defineD asD = max(||¢(z)|| (||PB1] +1)). Ac-
tivation functions are bounded so we can repla¢e) by
S\gp(x)ﬂ. Let us definer (Q)min @ndo (P)max as the min-
imum and maximum singular values of matricgand P

with F' any symmetric and positive definite matrix an
k., positive design parameter. Then, the system states
and neural network weightd” are ultimately uniformly

bounded (UUB) and the system is stable in Lyapunov sen

as long as . . . . .
duro (P D2 respectively. After introducing norms and some arithmetic
2] > 0 (P)max + 75z (21) We obtain the following inequality:
1 9
§U(Q)min 1
or L S _ ||{I,‘|| ( 2 ”IH U(Q)min* ) ) )
W] > g [ DT max ) (32)
2k, 4k3, Ky, Lyapunov derivative is negative as long the term in paren-

theses in (32). This term will be positive as long as (21)
and (22) hold, meaning as long asand W are outside
a compact set. Vectors and W are thus UUB and the

Proof is provided in [24] in the way that rewrites equa-
tion (15) into the form that is more suitable for the stafilit

analysis system is stable.
i = Az + BoAPp + ByWT 23
= Av+ BAPL+ BV o(w) 3 4 CHOICE OF NUMBER OF NODES AND ACTI-
where ., VATION FUNCTIONS
B, = { —T%, 0 0 } , (24) The important step in structuring the neural network is
choice of number of nodes and type of activation functions.
B, — [ 0 0 —ZK- }T (25) Exact solution for choice of number of nodes or activation
2 Ts ' functions does not exist. Instead, various iterative n@gho
We will also redefine the disturbance as can be applied. Here, we will illustrate an novel iterative
method for choice of NN controller’s activation functions
d = ByAPy, (26) and number of nodes.
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Let us first deal with choice of number of nodes. We Of course, we must assume that we don’t have com-
will assume some minimal knowledge about the nature oplexity issues with hardware. In the other words, our hard-
controlled plant. We can see that, in essence, controlledare is good enough to withstand numerical burdens of
plant is built out of three first order transfer functionshwit Radial basis functions (RBF) or sigmoid activation func-
nonconstant parameters. The state vector in our case hgns. With contemporary hardware pieces this is always
three states. Itis shown in [25] and [26] that bound of func-almost the case.
tion approximation error decreases with number of nodes
as well as the number of inputs. 5 SIMULATION EXAMPLE

So, a simple way to estimate number of nodes is to pick |n order to illustrate the procedure described above,
transfer function with any parameters corresponding to thehe simulation example is provided. Simulations were

control plant architecture - in our case, we have three firsherformed with following parameters and signalg; =
order transfer functions so we choose the first order transgy 085, 7, = 0.3s, T, = 20s, K, = 12082 R =

fer function as a common representative for all three state$  n- p _ diag(0.07), kw = 0.05 ancflmA’P _
of the system. Then, the transfer function is persistentl)() gL, K L L

exied with the appropriat signal (27) and he nputs ) 042 1 Lt i) e nenns B ane
u, and the outputy, are recorded. This step can be easily : ) . '
0.5. Simulations were performed for given plant parame-

done by simulation. Error can be calculatectas y — u. )
) _ ters as well as for plant parameters increased and decreased
Now, the next step is to setup feedforward network Wlthby 10%. Simulation time was 480 s. Recorded perfor-

less or the same number of inputs as is our state vectofance indicators for each simulation were Integral of Ab-
x. Inour case, inputs are ande. Generally, the initial  g5|ute Error (IAE)

number of NN nodes for the approximation of the first or- -
der transfer function can be heuristically determined and Jiap = / le(t)] dt (33)
typically turns out to be two. Furthermore, hyperbolic tan- 0

gents, any member of the family of the sigmoid or the

Gaussian type of activation functions can be used duringa nd Integral of Squared Error (ISE)
this step.

The network is trained to check if sufficiently small er-
ror can be achieved where the sufficiently small error de- Si | network iht initialized
pends on required precision in actual system. If this is INce neural network weights were initiafized ran-

achieved, the chosen number of nodes remains two. If nogomly’ it was necessary to perform a number of simula-

one node is added. The procedure is repeated until the sfons in order to obtain samples with different IAE and ISE
ficiently small error is achieved. Software tools for NN values that allow us to compare mean values and choose

training and simulation needed for carrying out the proceEhe beﬁt c?ndlgate{ we pzrformed f|Itny|muIat|otns fors‘?"'
dure are numerous and readily available. ery activation function and every set of parameters. Sim-

o ulation was performed for Gaussian activation function
Now, for the system shown in Fig. 2, we can choos

. S€iven by
two nodes for each of the three transfer functions, totaling

six nodes in neural network hidden layer. Actually, the
dimension ofp(x) is in this cas& x 1 with bias included.

Choice of activation functions is more complex. Again,

Jrsp = / h e2(t)dt. (34)
0

fla) =e 07, (35)
tanh activation function given by

as for the choice of number of nodes, there is no exact p2a(z—b) _
solution for choice of activation functions. Therefore, we flx) = ¥F——, (36)
. o . e2a(x b) +1
will assume that we know the basic information of system
architecture and we will find activation function through andsigm (sigmoid) activation function given by
simulation. 1
The procedure starts with setting up the network with flz) = e—ale=b) {1 37)

number of nodes found by the procedure described above.

The activation functions are the ones that are to be checked. Resulting IAE and ISE mean values for the three acti-
Persistently excited input or disturbance signal is fed int vation functions from above are given in Table 1, Table 2
the system from Fig. 2 controlled by (11) and with weightsand Table 3.

updated by (12) and performance indicators recorded. The Simulation was also performed for nominal parame-
procedure is repeated to evaluate all activation functiongers and+10% parameter changes for the system con-
candidates with expected parameter changes. trolled with conventional PI controller with proportional
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Nomal probability plots - original parameters Normal probability plots - original parameters
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Fig. 4. Normal probability plots for IAE and original pa- Fig. 5. Normal probability plots for IAE and decreased

rameters parameters
Table 1. Mean values of IAE and ISE with original param- Normal probability plots - decreased parameters
eters 0.99
IAE ISE 0.98
Gauss 4.0426 0.0476 0.95
tanh 16.2409 0.7912 oo
sigm 6.7312 0.1214 0.75
Table 2. Mean values of IAE and ISE with original param- § o
eters decreased by 10% 0.25
IAE ISE

0.10

Gauss 4.0844 0.0475 0.05
tanh 16.1705 0.7654 0.02
sigm 6.7234 0.1234 oo

Table 3. Mean values of IAE and ISE with original param-

eters increased by 10% Fig. 6. Normal probability plots for ISE and original pa-
IAE ISE rameters
Gauss 4.1132 0.0503
tanh 16.1597 0.7799
sigm 6.7229 01971 mal, so samples can be compared by standard t test for

hypothesis testing, witli70 hypothesis stating the means
are the same anff 1 hypothesis stating that one mean is
gain, k, = 0.08, and integral gaink; = 0.1 Hz. Results smallerthan the other, i.e. left tailed t test. We will penfo

are shown in Table 4. test with0.025 level of significance. In case of comparison

From tables 1-4 it can be seen that control with neuralVith Pl controller we use one sample t test.
networks with Gaussian and sigmoidal functions outper- T test results are given in Tables 5-10. Subscripts as-
forms by far control with Pl or tanh activation function. signed to the criteria name denote activation function for
However, the guestion is whether these differences are stabtained mean value of integral error.
tistically significant. Very small p values and relatively big t values point on
To answer that question, we will first check the distribu-small effect on precision by consecutive testing on sam-
tion of recorded IAE and ISE simulation results for everyples. Therefore, there was no need to perform multivari-
activation function. Normal probability plots varying the able statistical testing.
criteria, system parameters, and initial weights within V- T tests confirm that the tests leading to results in Ta-
layer are shown in Figures 4-9. bles 1-4 are statistically significant. Now we can state
From Figures 4-9 we can see that distributions are northat NN control with Gaussian activation functions outper-
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Table 4. IAE and ISE for PI controlled system

IAE ISE
Nominal 17.0659 0.8122
-10% 17.0639 0.8119
+10% 17.0674 0.8124

Table 5. T test results for IAE and original parameters

Test p value t value
result
IAEtanh <IAEp) no 0.0864 —1.3836
IAEsigma <|AE@nn | yes | 1.5037-10~2' [ —15.8608
IAE Gauss<IAEsigma| Yes 1.0431-10~* | —25.1142

Table 6. T test res

ults for ISE and original parameters

Test p value t value
result
ISEianh <ISEp no 0.3538 —0.3773
ISEsigma <ISEwanh | yes 1.5006-10~10 | —12.0192
ISEcauss<ISEsigma | YeS | 1.7594-10~ %1 | —23.5823

Table 7. T test results for IAE and decreased paramete
Test p value t value
result

IAE tgnh <IAEp no 0.0741 —1.469
IAEsigma <IAE@nn | Yes | 5.0414-10°21 | —15.4241
IAE Gauss<IAEsigma| YeS 3.3138-107°9 | —22.2924

Table 8. T test results for IS

E and decreased parameters

Test p value t value
result
ISEianh <ISEp no 0.1902 —0.8853
ISEsigma <ISEwanh | yes 8.0349-10~17 | —12.2194
ISEcauss<ISEsigma | Yes | 4.7662-10~ %1 | —25.8554

Table 9. T test results for IAE and increased parameters

Test p value t value
result
IAEtanh <IAEp) no 0.0716 —1.4875
IAEsigma <IAE@nn | Yes | 6.0808-1021 | —15.3564
IAE Gauss<IAEsigma| Yes 1.7644-10~%6 | —26.3856

Normal probability plots - decreased parameters

T T T T T

0.99 B T T N
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0.75

0.50

Probability
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I
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0.01 e _,—_—,—,—,m,—e
1 1 1 1 1 1 1 1 1 1

0.2 0.4 0.6 08 1 1.2 14 16 1.8 2

ISE

Fig. 7. Normal probability plots for ISE and decreased
parameters

Nomal probability das -increased parameters
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0.75

rs
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0.10
0.05

0.02
0.01

It Y

Fig. 8. Normal probability plots for IAE and increased
parameters

forms other cases since it generates the smallest integral
errors.

Comparison in responses of the system with original pa-
rameters controlled by neural network with Gaussian ac-
tivation function vs. PI controller is shown in Fig. 10
and Fig. 11. Disturbance input was set to Aé’;,
0.1sin(0.027t).

Unwanted frequency variation is shown in Fig. 10 and is
about three times smaller in magnitude for the system con-

Table 10. T test results for ISE and increased parameterdrolled by NN than in the case of system controlled with

Test p value t value
result
IAE tanh <IAEp, no 0.298 —0.5337
IAE sigma <|AEtanh | Yes 9.4429-10~1° | —10.7030
IAEGauss<|AEgigma| YES | 8.4833-10730 | —21.4119
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conventional Pl controller. However, as shown in Fig. 11,
the power required to achieve such performance is essen-
tially equal in both cases. Thus, the requests for action
from ancillary systems required to keep the system fre-
quency within the nominal bounds will be much lower if
NN control scheme is used resulting in reduced overall cost
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Nomal probability pas -increased parameters

0.99
0.98

0.95

0.90

0.75

P robability

0.25

0.10
0.05

0.02
0.01

Fig. 9. Normal probability plots for IAE and increased
parameters

AfHZ

Fig. 10. Frequency changes

of the frequency control.

6 CONCLUSION

Cortrolsignal [pu]

Fig. 11. Control signals

system frequency within the nominal bounds will be much
lower when NN control scheme is used. It results in sig-
nificantly reduced cost of the frequency control.

Described procedure can be easily carried out using a
digital computer and can be applied to systems exhibit-
ing similar dynamics as described in this paper, for exam-
ple hydropower systems, hydraulic pistons or water tur-
bines. Moreover, future work will comprise application of
the given procedure on systems with different dynamics as
well as systems with nonlinearities, therefore expanding i
use to a wider class of systems.
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