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This paper deals with analytical and simulation approach for choice of activation functions and instead of a
number of nodes for a class of neural network controllers for frequency control of thermal power systems. Neural
network update laws are derived via Lyapunov like stability analysis. Whennumber of nodes is fixed, then simula-
tion analysis is conducted to find the best performer activation function. Best performance is chosen using integral
error criteria and proper statistical tests.
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Dizajn adaptivnog regulatora s neuronskim mrežama za regulacijufrekvencije u elektroenergetskom
sustavu s toplinskim turbinama. Članak opisuje analitičko-simulacijski pristup izboru aktivacijskih funkcija i
broja čvorova za klasu regulatora s neuronskim mrežama za regulaciju frekvencije u elektroenergetskom sustavu
s toplinskim turbinama. Zakoni učenja neuronske mreže su izvedeni kroz analizu stabilnosti primjenom funkcije
Ljapunova. Nakon što je odre�en brojčvorova, proveden je simulacijski postupak za odre�ivanje najbolje aktivaci-
jske funkcije. Najbolja funkcija za dani regulator je odre�ena korištenjem kriterija integralne pogreške i statističkim
testiranjem.

Klju čne riječi: izbor aktivacijskih funkcija, broǰcvorova, regulacija neuronskim mrežama

1 INTRODUCTION

The paper presents novel procedure for designing neu-
ral network (NN) frequency controller for an isolated ther-
mopower system. As power systems are rapidly entering
the era of deregulation, the importance of frequency con-
trol becomes more significant and precise scheduling of
loads in power system becomes increasingly complicated,
if not impossible. As a result, load fluctuations in the
power system are becoming more explicit. In addition, in
emerging markets of ancillary services, primary controllers
and turbines employed in secondary frequency and power
control change constantly, typically on hourly basis.

When conventional control schemes are used, these
changes of power system parameters can cause serious
problems affecting the quality of frequency control, and
in some cases even affect the overall system stability. In
order to avoid such instabilities, conventional secondary
controllers are usually implemented with smaller integral
gains than the optimal performance would otherwise re-
quire ([2]).

The problem addressing the frequency and load – fre-

quency control is well described ([2], [3], [4], [5], [6], [7],
[8] and many others). Some of already mentioned non-
adaptive schemes are given in [2], [3], [4], [5], [6], and [7].
However, as the recent trends in the deregulation of mod-
ern power systems lead to frequent and significant param-
eters changes, the quality of control is diminished when
such non-adaptive controllers are used, hence calling for
other approaches.

NN load-frequency control is described in [9], [10]
and [11]. These NN control algorithms show satisfactory
performance but, unfortunately, require off-line training.
Since NN training cannot be done on real systems, this ap-
proach is constrained regarding application to power sys-
tems control because it is very hard to obtain a precise
model required to train the controller.

In this paper we provide a novel design procedure and
description of adaptive NN controller that does not require
a priori training yielding the neural network capable of
on-line learning ([1]). The new controller represents an
advanced and performance-enhanced version of a NN con-
trol scheme given in [12].
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2 MATHEMATICAL PRELIMINARIES

Let R denote the real numbers,Rn denote the realn
vectors,Rm×n the realm × n matrices. We denote by
‖·‖ a suitable vector norm. Given a matrixA = [aij ],
A ∈ Rn×m theFrobenius normis defined by

‖A‖2F = tr(ATA) =
∑

i,j

a2ij (1)

with tr() the trace operation. The associated inner prod-
uct is 〈A, B〉F = tr

(
ATB

)
. The Frobenius norm‖A‖2F

is denoted by‖·‖ throughout this paper, unless otherwise
specified. The trace ofA satisfiestr(A) = tr(AT ) for a
matrixA = [aij ]. For anymxn matrix, andnxm matrix
C, we havetr(BC) = tr(CB).

In proving stability we use proposition given in [13]
which basically states that a system is uniformly ultimately
bounded if it has a Lyapunov function whose time deriva-
tive is negative in an annulus of a certain width around the
origin. As given in [13];

Lemma 1: Consider the functiong (•) : R→R

g (y) = α0 + α1y−α2y
2, y∈R+, (2)

whereαi > 0, i = 0, 1, 2. Theng (y) < 0 if y > η > 0,
where

η =
α1 +

√
α2
1 + 4α0α2

2α2
. (3)

Proposition 1: Letx(t) ∈ Rm be the solution of the
differential equation

ẋ(t) = f(x(t), t), x(t0) = x0. (4)

And assume there exists a functionL(x(t), t) that satisfies

mm ‖x(t)‖2 ≤ L(x(t), t) ≤ mM ‖x(t)‖2 , (5)

L̇(x(t), t) ≤ g(‖x(t)‖) < 0 for all ‖x(t)‖ > η > 0, (6)

with mm andmM positive constants,g (•) as in (2) andη

as in (2). Defineδ ≡
√
m−1

m mM andd > δη. Thenx(t)
is uniformly ultimately bounded that is

‖x0‖ ≤ r → ‖x(t)‖ ≤ d for all t ≥ t0 + T (d, r), (7)

where

T (d, r) = 0, r ≤ δ−1d, (8)

T (d, r) =
mMr2 −mmR2

α2R2 − α1R− α0
, r > δ−1d. (9)

Fig. 1. Two layer neural network

3 NN POWER SYSTEM CONTROL

Givenx ∈ Rn1 , a two-layer NN, shown in Fig. 1, has a
net output given by

y = WTσ(V Tx), (10)

where x =
[
1 x1 . . . xn1

]T
, y =[

y1 . . . yn2

]
and σ(•) is the activation

function. If z =
[
z1 z2 ...

]T
, we define

σ(z) =
[
σ(z1) σ(z2) ...

]T
. Including "1" as a

first term of vector x in allows one to incorporate the
thresholds as the first column ofWT . Then any tuning of
NN weights includes tuning of thresholds as well [1].

The main property of NNs we are concerned with for
control and estimation purposes is the function approxi-
mation property ([15], [16]). Letf(x) be a smooth func-
tion from Rn1 → Rn2 . Then, it can be shown that if the
activation functions are suitably selected, as long asx is
restricted to a compact setS ∈ Rn, then for some suffi-
ciently large number of hidden-layer neuronsL, there exist
weights and thresholds such that

f(x) = WTσ(V Tx) + ε(x). (11)

The value ofε(x) is called the neural network func-
tional approximation error. In fact, for any choice of a
positive numberεN , one can find a neural network such
thatε(x) ≤ εN for all x ∈ S. Also, it has been shown that,
if the first-layer weightsV are fixed (not tuned), then the
approximation property can be satisfied by selecting only
the output weightsW . For this to occurϕ(x) = σ(V Tx)
must be a basis [1].

If one selects the activation functions suitably, then, as
it was shown by Igelnik and Pao [17], theϕ(x) is a ba-
sis if is selected randomly. Activation functions should be
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Gaussian, subsequent derivatives of Gaussians, sigmoidal
functions or hyperbolic tangents.

3.1 Isolated Thermopower System

The model of an isolated thermopower system is shown
in Fig. 2. All power values are given in per unit system
([pu]).

1/R

Gg Gt Gs

-
Pr

-
PL

+

Pm

-

f

Fig. 2. The model of isolated thermo power system

The transfer functions are given as:

Gg =
1

1 + Tgs
, (12)

Gt =
1

1 + Tts
, (13)

Gs =
Ks

1 + Tss
, (14)

whereGg, Gt andGs represent turbine governors, control
turbines and the power system respectively. Such models
are described in more details in [2], [3], [4], [5], [6], [7],
[8], and by many others. Model parameters are: power
system droopR [Hz/pu], turbine governing time constant
Tg [s], turbine time constantTt [s], load time constantTs

[s] and load system gainKs [Hz/pu]. Model output is fre-
quency change from operating point∆f [Hz], model in-
puts are load power change∆PL [pu] and control power
reference value∆Pr [pu], and∆Pm [pu] is mechanical
power change. These papers also show that the isolated
thermopower system given in Fig. 2 is always asymptoti-
cally stable ifR is a positive number. In real power systems
that is always the case.

The system is linear and the need for adaptive control
or use of the function approximation property of the neu-
ral network is not obvious. However, as it was mentioned
before, all of the system parameters can and do change dur-
ing the operation. This is especially true in modern power
systems where ancillary services are bought and utilized
on free market on the hourly base. Thus, with constantly
changing parameters it is conceivable that adaptive control
scheme would perform better than non-adaptive control.

The conventional way to control thermopower plant is
to use linear PI controllers. The controller has the change
of power system frequency∆f as the input and produces
the control signal∆Pr at output. That signal is fed to
available turbine governors in order to counter the changes

caused by the change in the load∆PL. The turbine out-
put is the mechanical power∆Pm. However, the presence
of integral action means that the system can become un-
stable. Instead, the full state space adaptive NN controller
acting as a nonlinear proportional gain parallel to1/R will
guarantee stability and provide required accuracy.

The system shown in Fig. 2 can be represented in state
space form as

ẋ =




− 1
Tg

0 − 1
RTg

1
Tt

− 1
Tt

0

0 Ks

Ts
− 1

Ts


x

+




− 1
Tg

0

0 0
0 −Ks

Ts



[

∆Pr

∆PL

]

ẋ = Ax+Bu

∆f =
[
0 0 1

]
x.

(15)

The state vectorx is defined as

x =
[
yg ∆Pm ∆f

]T
, (16)

whereyg is the output from the turbine controllers. In prac-
tice, these states are physically available, and this represen-
tation allows for the NN control scheme design.

3.2 Adaptive Neural Network Control

We use the neural network shown in Fig. 1. When the
first layer weights are initialized randomly and then fixed
to form a basisϕ(x), the NN output (10) becomes

y = WTϕ(x) (17)

similarly to the tracking NN controller described in [18],
[19], [14], [20], [21] and numerous other papers.

However, as the problem here is control and not track-
ing, we need different controller architecture. First of all
there is no special robustifying term within the controller
and, second, the PD controller parallel to NN controller
is absent. Actually, nor derivative nor proportional part
parallel to1/R is needed to initially stabilize the system
since uncontrolled system is always stable. Even though
the proportional gainK parallel to1/R was still used in the
scheme in [12], simulation analysis had shown that propor-
tional gain does not improve the performance of the control
scheme. Therefore, the controller developed below does
not use proportional part in control, but only NN alone.

It is assumed that the load disturbance∆PL is bounded
so that

∆PL ≤ ∆PM . (18)

This assumption is true as long as the power system is
in normal mode of operation. If the load disturbance is
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Fig. 3. NN control scheme

too big there will not be any control action since the sys-
tem just does not have enough power generation capability
available. In that case, the protection functions take over
and some loads have to be disconnected.

NN tuning law is derived in [24] as follows. NN control
scheme in shown in Fig. 3. Control signal is given by

∆Pr = WTϕ(x) (19)

and the weight updates are provided by

Ẇ = Fϕ(x)∆f − kw ‖x‖FW, (20)

with F any symmetric and positive definite matrix and
kw positive design parameter. Then, the system statesx
and neural network weightsW are ultimately uniformly
bounded (UUB) and the system is stable in Lyapunov sense
as long as

‖x‖ >
dMσ(P )max +

D2

4k2
w

1
2σ(Q)min

, (21)

or

‖W‖ >
D

2kw
+

√
D2

4k2w
+

dMσ(P )max

kw
. (22)

Proof is provided in [24] in the way that rewrites equa-
tion (15) into the form that is more suitable for the stability
analysis

ẋ = Ax+B2∆PL +B1W
Tϕ(x) (23)

where

B1 =
[
− 1

Tg
0 0

]T
, (24)

B2 =
[
0 0 −Ks

Ts

]T
. (25)

We will also redefine the disturbance as

d = B2∆PL. (26)

Note thatd is also bounded by a constantdM because ratio
Ks

Ts
has always a finite value. We can now rewrite (23) as

ẋ = Ax+ d+B1W
Tϕ(x) (27)

Let us now define the Lyapunov candidate:

L̇ =
1

2
xTPx+

1

2
WTF−1W (28)

with P a diagonal and positive definite matrix. In this de-
signW is a vector because we have only one output. The
Lyapunov derivative is:

L̇ =
1

2
(ẋTPx+ xTP ẋ) +WTF−1Ẇ . (29)

By introducing (27) into (29) we obtain

L = 1
2 ẋ

T (ATP + PA)x+ xTPd

+xTPB1W
Tϕ(x) +WTF−1Ẇ .

(30)

The first term in (30) is a well known Lyapunov function
for linear system and can be easily rewritten by introducing
(20) into (30)

L = 1
2 ẋ

TQx+ xTPd

+WTϕ(x)(xTPB1 +∆f) + kw ‖x‖ ‖W‖2, (31)

with Q positive definite (note that uncontrolled system is
asymptotically stable, so positive definiteQ always exists).
Let us defineD asD = max(‖ϕ(x)‖ (‖PB1‖ + 1)). Ac-
tivation functions are bounded so we can replaceϕ(x) by
‖ϕ(x)‖. Let us defineσ(Q)min andσ(P )max as the min-
imum and maximum singular values of matricesQ andP
respectively. After introducing norms and some arithmetic
we obtain the following inequality:

L̇ ≤ −‖x‖
(

1
2 ‖x‖σ(Q)min−
dMσ(P )max − ‖W‖D + kw ‖W‖2

)
.

(32)
Lyapunov derivative is negative as long the term in paren-
theses in (32). This term will be positive as long as (21)
and (22) hold, meaning as long asx andW are outside
a compact set. Vectorsx andW are thus UUB and the
system is stable.

4 CHOICE OF NUMBER OF NODES AND ACTI-
VATION FUNCTIONS

The important step in structuring the neural network is
choice of number of nodes and type of activation functions.
Exact solution for choice of number of nodes or activation
functions does not exist. Instead, various iterative methods
can be applied. Here, we will illustrate an novel iterative
method for choice of NN controller’s activation functions
and number of nodes.
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Let us first deal with choice of number of nodes. We
will assume some minimal knowledge about the nature of
controlled plant. We can see that, in essence, controlled
plant is built out of three first order transfer functions with
nonconstant parameters. The state vector in our case has
three states. It is shown in [25] and [26] that bound of func-
tion approximation error decreases with number of nodes
as well as the number of inputs.

So, a simple way to estimate number of nodes is to pick
transfer function with any parameters corresponding to the
control plant architecture - in our case, we have three first
order transfer functions so we choose the first order trans-
fer function as a common representative for all three states
of the system. Then, the transfer function is persistently
excited with the appropriate signal ([27]) and the inputs,
u, and the output,y, are recorded. This step can be easily
done by simulation. Error can be calculated ase = y − u.

Now, the next step is to setup feedforward network with
less or the same number of inputs as is our state vector,
x. In our case, inputs areu ande. Generally, the initial
number of NN nodes for the approximation of the first or-
der transfer function can be heuristically determined and
typically turns out to be two. Furthermore, hyperbolic tan-
gents, any member of the family of the sigmoid or the
Gaussian type of activation functions can be used during
this step.

The network is trained to check if sufficiently small er-
ror can be achieved where the sufficiently small error de-
pends on required precision in actual system. If this is
achieved, the chosen number of nodes remains two. If not,
one node is added. The procedure is repeated until the suf-
ficiently small error is achieved. Software tools for NN
training and simulation needed for carrying out the proce-
dure are numerous and readily available.

Now, for the system shown in Fig. 2, we can choose
two nodes for each of the three transfer functions, totaling
six nodes in neural network hidden layer. Actually, the
dimension ofϕ(x) is in this case7× 1 with bias included.

Choice of activation functions is more complex. Again,
as for the choice of number of nodes, there is no exact
solution for choice of activation functions. Therefore, we
will assume that we know the basic information of system
architecture and we will find activation function through
simulation.

The procedure starts with setting up the network with
number of nodes found by the procedure described above.
The activation functions are the ones that are to be checked.
Persistently excited input or disturbance signal is fed into
the system from Fig. 2 controlled by (11) and with weights
updated by (12) and performance indicators recorded. The
procedure is repeated to evaluate all activation functions
candidates with expected parameter changes.

Of course, we must assume that we don’t have com-
plexity issues with hardware. In the other words, our hard-
ware is good enough to withstand numerical burdens of
Radial basis functions (RBF) or sigmoid activation func-
tions. With contemporary hardware pieces this is always
almost the case.

5 SIMULATION EXAMPLE

In order to illustrate the procedure described above,
the simulation example is provided. Simulations were
performed with following parameters and signals:Tg =
0.08s, Tt = 0.3s, Ts = 20s, Ks = 120Hz

pu , R =

2.4Hz
pu , F = diag(0.07), kw = 0.05, and ∆PL =

0.1 sin(0.02π t)pu. Matrix ϕ(x) has dimensions 7x1 and
W andV initialized as random numbers between -0.5 and
0.5. Simulations were performed for given plant parame-
ters as well as for plant parameters increased and decreased
by 10%. Simulation time was 480 s. Recorded perfor-
mance indicators for each simulation were Integral of Ab-
solute Error (IAE)

JIAE =

∫ ∞

0

|e(t)| dt (33)

and Integral of Squared Error (ISE)

JISE =

∫ ∞

0

e2(t)dt. (34)

Since neural network weights were initialized ran-
domly, it was necessary to perform a number of simula-
tions in order to obtain samples with different IAE and ISE
values that allow us to compare mean values and choose
the best candidate. We performed fifty simulations for ev-
ery activation function and every set of parameters. Sim-
ulation was performed for Gaussian activation function
given by

f(x) = e−a2(x−b)2 , (35)

tanh activation function given by

f(x) =
e2a(x−b) − 1

e2a(x−b) + 1
, (36)

andsigm (sigmoid) activation function given by

f(x) =
1

e−a(x−b) + 1
. (37)

Resulting IAE and ISE mean values for the three acti-
vation functions from above are given in Table 1, Table 2
and Table 3.

Simulation was also performed for nominal parame-
ters and±10% parameter changes for the system con-
trolled with conventional PI controller with proportional
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5 10 15 20 25

0.01 

0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 

0.99 

IAE

P
ro

b
a

b
ili

ty

Norm al probabilit y  plots  - origi nal  param eters

Fig. 4. Normal probability plots for IAE and original pa-
rameters

Table 1. Mean values of IAE and ISE with original param-
eters

IAE ISE
Gauss 4.0426 0.0476
tanh 16.2409 0.7912
sigm 6.7312 0.1214

Table 2. Mean values of IAE and ISE with original param-
eters decreased by 10%

IAE ISE
Gauss 4.0844 0.0475
tanh 16.1705 0.7654
sigm 6.7234 0.1234

Table 3. Mean values of IAE and ISE with original param-
eters increased by 10%

IAE ISE
Gauss 4.1132 0.0503
tanh 16.1597 0.7799
sigm 6.7229 0.1271

gain,kp = 0.08, and integral gain,ki = 0.1Hz. Results
are shown in Table 4.

From tables 1-4 it can be seen that control with neural
networks with Gaussian and sigmoidal functions outper-
forms by far control with PI or tanh activation function.
However, the question is whether these differences are sta-
tistically significant.

To answer that question, we will first check the distribu-
tion of recorded IAE and ISE simulation results for every
activation function. Normal probability plots varying the
criteria, system parameters, and initial weights within V-
layer are shown in Figures 4-9.

From Figures 4-9 we can see that distributions are nor-
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Fig. 5. Normal probability plots for IAE and decreased
parameters
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Fig. 6. Normal probability plots for ISE and original pa-
rameters

mal, so samples can be compared by standard t test for
hypothesis testing, withH0 hypothesis stating the means
are the same andH1 hypothesis stating that one mean is
smaller than the other, i.e. left tailed t test. We will perform
test with0.025 level of significance. In case of comparison
with PI controller we use one sample t test.

T test results are given in Tables 5-10. Subscripts as-
signed to the criteria name denote activation function for
obtained mean value of integral error.

Very small p values and relatively big t values point on
small effect on precision by consecutive testing on sam-
ples. Therefore, there was no need to perform multivari-
able statistical testing.

T tests confirm that the tests leading to results in Ta-
bles 1-4 are statistically significant. Now we can state
that NN control with Gaussian activation functions outper-
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Table 4. IAE and ISE for PI controlled system
IAE ISE

Nominal 17.0659 0.8122
-10% 17.0639 0.8119
+10% 17.0674 0.8124

Table 5. T test results for IAE and original parameters
Test
result

p value t value

IAEtanh<IAEPI no 0.0864 −1.3836
IAEsigma<IAEtanh yes 1.5037 ·10−21 −15.8608
IAEGauss<IAEsigma yes 1.0431 ·10−44 −25.1142

Table 6. T test results for ISE and original parameters
Test
result

p value t value

ISEtanh<ISEPI no 0.3538 −0.3773
ISEsigma<ISEtanh yes 1.5006 ·10−16 −12.0192
ISEGauss<ISEsigma yes 1.7594 ·10−41 −23.5823

Table 7. T test results for IAE and decreased parameters
Test
result

p value t value

IAEtanh<IAEPI no 0.0741 −1.469
IAEsigma<IAEtanh yes 5.0414 ·10−21 −15.4241
IAEGauss<IAEsigma yes 3.3138 ·10−39 −22.2924

Table 8. T test results for ISE and decreased parameters
Test
result

p value t value

ISEtanh<ISEPI no 0.1902 −0.8853
ISEsigma<ISEtanh yes 8.0349 ·10−17 −12.2194
ISEGauss<ISEsigma yes 4.7662 ·10−41 −25.8554

Table 9. T test results for IAE and increased parameters
Test
result

p value t value

IAEtanh<IAEPI no 0.0716 −1.4875
IAEsigma<IAEtanh yes 6.0808 ·10−21 −15.3564
IAEGauss<IAEsigma yes 1.7644 ·10−46 −26.3856

Table 10. T test results for ISE and increased parameters
Test
result

p value t value

IAEtanh<IAEPI no 0.298 −0.5337
IAEsigma<IAEtanh yes 9.4429 ·10−15 −10.7030
IAEGauss<IAEsigma yes 8.4833 ·10−36 −21.4119
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Fig. 7. Normal probability plots for ISE and decreased
parameters
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Fig. 8. Normal probability plots for IAE and increased
parameters

forms other cases since it generates the smallest integral
errors.

Comparison in responses of the system with original pa-
rameters controlled by neural network with Gaussian ac-
tivation function vs. PI controller is shown in Fig. 10
and Fig. 11. Disturbance input was set to be∆PL =
0.1 sin(0.02πt).

Unwanted frequency variation is shown in Fig. 10 and is
about three times smaller in magnitude for the system con-
trolled by NN than in the case of system controlled with
conventional PI controller. However, as shown in Fig. 11,
the power required to achieve such performance is essen-
tially equal in both cases. Thus, the requests for action
from ancillary systems required to keep the system fre-
quency within the nominal bounds will be much lower if
NN control scheme is used resulting in reduced overall cost
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Fig. 9. Normal probability plots for IAE and increased
parameters
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of the frequency control.

6 CONCLUSION

Paper has shown a practical approach to neural network
design for frequency control for thermal power systems.
First, we defined linear-in-parameter (LIP) neural network
(i.e. hidden layer weights are fixed and initiated as random
numbers). Then, we performed Lyapunov stability analy-
sis in order to find weight updates laws. It was followed
by initiation of hidden layer and output weights as random
numbers covering the expected state space of controlled
plant. The procedure for determining number of nodes was
described in details. The structure of NN was finalized by
choosing the type of activation function through proper sta-
tistical testing.

The comparative analysis of the NN and conventional
PI controller showed that the power necessary to keep the
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Fig. 11. Control signals

system frequency within the nominal bounds will be much
lower when NN control scheme is used. It results in sig-
nificantly reduced cost of the frequency control.

Described procedure can be easily carried out using a
digital computer and can be applied to systems exhibit-
ing similar dynamics as described in this paper, for exam-
ple hydropower systems, hydraulic pistons or water tur-
bines. Moreover, future work will comprise application of
the given procedure on systems with different dynamics as
well as systems with nonlinearities, therefore expanding its
use to a wider class of systems.
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Krunoslav Horvat, Ph.D.
Brodarski Institute,
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