UDC: 007.52
Original scientific paper

THE PAST TEMPORAL OPERATORS IN MULTI-AGENT
SYSTEMS

Mirko Malekovic¢

University of Zagreb, Faculty of Organization and Informatics, Varazdin, Croatia
E-mail: mmalekov@foi.hr

Mirko Cubrilo
University of Zagreb, Faculty of Organization and Informatics, Varazdin, Croatia
E-mail: mcubrilo@foi.hr

In this paper, we consider the past temporal operators in multi-agent systems. Three temporal
operators po (previous), p ¢ (once), and p ¥ (has-always-been) are defined.

These past temporal operators can be used for reasoning about events that happen along a
single run r (in the past) in the system R, where R models the possible behaviors of the
system being modeled. Some important properties of agents (expressed by the formulas :

Ki = poKj, Ki = p ¢Kj, and Ki = p ¥Kj ) are characterized..
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1. INTRODUCTION

The theory of multi-agent systems is described in [1]. In [2], we have described
incorporating knowledge (knowledge operators Ki, i = 1,.., m) and time (the future
temporal operators). An excellent introduction to temporal logic can be found in [3].

The future temporal operators can talk about events that happen only in the present
or future, not events that happen in the past.

In this paper, we define the past temporal operators: po (previous), p ¢ (once), and
p¥ (has-always been). By using these temporal operators and knowledge operators, we
can build the knowledge-temporal formulas that express the properties of agents in
multi-agent systems. Some new results regarding the properties that relate the
knowledge of two agents will be proved. These results can be very useful in analyzing
the respective multi-agent system.

The paper consists of four sections and an appendix containing proof of the past
propositions. In Section 2, we introduce the basic notions of multi-agent systems,
knowledge operators, and the past temporal operators. In Section 3, we state the past
propositions:

Proposition (Ki = poKj) [agent j previously knew F if agent i knows F, under the
condition that some premise Ul (defined later) holds]; Proposition (Ki = p¢Kj)
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[agent j has known F if agent i knows F, under the condition that some premise U2
(defined later) holds]; and Proposition (Ki = p¥Kj) [agent j has always known F if
agent i knows F, under the condition that some premise U3 (defined later) holds].
Conclusions are given in Section 4. The Appendix contains the proofs of all the
propositions mentioned above.

2. BASIC NOTIONS

In this section, we introduce the basic concepts and notations.

Suppose we have a group consisting of m agents, named 1, 2,.., m . We assume
these agents wish to reason about a world that can be described in terms of a nonempty
set P of primitive propositions. A language is just a set of formulas, where the set of
formulas PLK, of interest to us, is defined as follows:

(1) The primitive propositions in P are formulas;

(2) If F and G are formulas, then so are —F, (F v G), and Ki(F) forall i € {1,
2, ..,m}, where Ki is a modal operator.

We omit the parentheses in formulas such as (F v G) whenever it does not lead to
confusion. We also use standard abbreviations from prepositional logic, suchas F A G
for

—(=Fv-G), F=G for -=FvG,and F& G for (F=>G)A(G=F).
A Kripke structure M for an agent group {1, 2,.., m} over P isa (m + 2)-tuple

M= (S, [, k1, k2,.., km), where S is a set of possible worlds, I is an interpretation
that associates with each world in S a truth assignment to the primitive propositions in
P, and kl, k2,.., km are binary relations on S, called the possibility relations for
agents 1, 2,.., m, respectively.

Given p € P, the expression I[w](p) = true means that p is true in a world w in
a structure M. The fact that p is false, in a world v of a structure M, is indicated by
the expression I[v](p) = false.

The expression (u, v) € ki means that an agent i considers a world v possible,
given his information in a world u. Since ki defines what worlds an agent i considers
possible in any given world, ki will be called the possibility relation of the agent i.

We now define what it means for a formula to be true at a given world in a
structure.

Let (M, w) =F mean that F holds or is true at (M, w). The definition for & is
as follows:

(a) M, w)=p iff I[w](p) =true, where p € P;

®) M,w)EFVG iff M,w)EF or (M, w) E=G;

(c) M, w)E=—F iff (M,w) & F, thatis, (M, w) =F does not hold;
(d) MEF iff M,w)EF forall weS.
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Finally, we shall define a modal operator Ki, where Ki(F) is read: Agent i
knows F.

() (M, w)EKIi(F) iff (M,t)=F forall te S such that (w,t) e ki.

In (e) we have that an agent i knows F inaworld w of a structure M exactly
if F holds at all worlds t that the agent i considers possible in w.

Multi-agent systems

A multi-agent system is any collection of interacting agents. Our key assumption is
that if we look at a system at any point in time, each of the agents is in some state. We
refer to this as the agent’s local state. We assume that an agent’s local state
encapsulates all the information to which the agent has access. As each agent has a
local state, it is very natural to think of the whole system as being in some (global)
state. The global state includes the local states of the agents and the local state of an
environment. Accordingly, we divide a system into two components: the environment
and the agents, where we view the environment as everything else that is relevant.
Also, the environment can be viewed as just another agent. We need to say that a given
system can be modeled in many ways. How to divide the system into agents and
environment depends on the system being analyzed.

Let Le be a set of possible local states for the environment and let Li be a set of
possible local states for agent i , i=1,..,n. Wedefine G=Le xLI x .. xLn to be
the set of global states. A global state describes the system at a given point in time.
Since a system constantly changes (it is not a static entity), we are interested in how
systems change over time. We take time to range over the natural numbers, that is, the
time domain is the set of the natural numbers, N.

A run over G is a function r: N — G.

Thus, a run over G can be identified by a sequence of global states in G . The run
r represents a complete description of how the system’s global state evolves over
time. Thus, r(0) describes the initial global state of the system in a possible execution,
(1) describes the next global state, and so on.

If r(m)=(se, sl,.., sn), then we define r[e](m)=se and r[i](m)=si, for i=1,..,n.

Note that r[i](m) = si is the local state of agent i at the (global) state r(m) .

Asystem R over G is a set of runs over G. The system R models the possible
behaviors of the system being modeled. At the end of this section, let us point out that
the authors in [1] showed how to model a knowledge base as a multi-agent system.
The result is very interesting because in doing so we can now talk about what the

knowledge base knows about its own knowledge. Some problems in this approach will
be studied in a forthcoming paper.

Knowledge in multi-agent systems

We assume that we have a set P of primitive propositions, which we can think of
as describing basic facts about a system R. Let I be an interpretation for the
propositions in P over G, which assigns truth values to the primitive propositions at
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the global states. Thus, for every p € P and s € G, I[s](p) € {true, false}. An
interpreted system IS is a pair (R, I).

Now, we define knowledge in interpreted systems.
Let IS=(R,]) be an interpreted system. A Kripke structure for IS, denoted
M(IS) = (S, L, k1, .., kn), is defined in a straightforward way.

S = {r(m) | reR, meN}, thatis, S is the set of the global states at the points (r, m)
in the system R.

The possibility relations k1, k2,.., kn are defined as follows.

Let r(m) = (se, sl,.., sn), r’(m’) = (se’, sl’,.., sn’) be two global states in S. We
say that r(m) and r’(m’) are indistinguishable to an agent i iff si=si’.

Thus, the agent i has the same local state in both r(m) and r’(m’). We define
ki = {(r(m), r’(m’)) € S x S| r(m) and r’(m’) are indistinguishable to the agent i}, i
=1,2,.,n

Accordingly, (r(m), r’(m’)) € ki iff si=si’, i=1,2,.,n.

There is no possibility relation ke for the environment because we are not usually
interested in what the environment knows.

Now, it is evident what it means for a formula F in PLK to be true at a state
r(m) in an interpreted system IS. For instance, we have

(S, r(m)) E=p iff I[r(m)](p) = true, for all p € P.
(S, r(m))E=Ki(F) iff (IS, r’(m’)) = F for all r’(m”)eS such that (r(m), r’(m’)) € ki.

We say that a formula F in LK is valid in an interpreted system IS, denoted IS
E=F,iff (IS, r(m)) EF forall r(m) € S.

To be able to make temporal statements, we extend our language PLK by adding
temporal operators, which are new modal operators for talking about time. In [2] we
described the future temporal operators (the operators talk about events that happen
only in the future). In this paper, we characterize the past temporal operators for
reasoning about the past. The language (PLK + the past temporal operators) will be
denoted by PLKPT., and will be used for reasoning about events that happen along a
single run r (in the past) in the system R.

The past temporal operators

A past formula (includes at least one past temporal operator) describes a property
of a prefix of the state, lying to the left of the current position, that is, a past formula at
the state r(m) describes a property of the states r(0), r(1),.., r(m — 1), r(m).

The Previous Operator po
If F € PLKPT, then so is poF, read previously F. Its semantics is defined by
(IS, r(m)) = poF iff m>0 and (IS,r(m-1))=F.
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Thus, poF holds at state r(m) iff r(m) is not the first state in the run r and F
holds at state r(m — 1). In particular, poF is false at state r(0). This operator makes
sense because our notion of time is discrete. All the other past temporal operators
make perfect sense even for continuous notions of time.

The Once Operator p ¢ _
If F € LKPT, then so is p¢F, read once F. Its semantics is defined by

(IS, r(m)) = p¢F iff (for some m’, 0 <m’ <m)[(IS, r(m’)) = F].

Accordingly, p¢F holds at state r(m) iff F holds at state r(m) or some
preceding state.

The Has-always-been Operator p¥
p¥F € LKPT if F € LKT. Itisread has always been F, and defined by

(S, r(m)) = p¥F iff (forall m’, 0 <m’ <m)[(S, 1(m’)) = F]

Thus, p¥F holds at state r(m) iff F holds at state r(m) and all preceding
positions.

3. THE PAST PROPOSITIONS

In this section, we give the past propositions that talk about some important agent
properties. These properties relate the knowledge of two agents.

In the following propositions, we shall use the set S[j, r](m’) defined by

S[j, r](m’) = {ri(mi) | (r(m”), ri(mi)) € kj}. Thus, S[j, r](m’) is the set of the states
in S that agent j considers possible in state r(m’). Also, F is an arbitrary formula in
LKPT.

Proposition (Ki = poKj)
If S[, rl(m - 1) < S[i, r}(m), then (IS, r(m)) k= Ki(F) = poKj(F).

The proposition states that at state r(m) agent j previously knew F if agent i
knows F, under the condition that Ul: S[j, r](m — 1) < S[i, r](m) holds.

Proposition (Ki = p ¢Kj)
If (for some m’, 0 <m’ < m)[S[j, r](m’) < S[i, r](m)], then (IS, r(m)) = Ki(F) = p ¢Kj(F).

Proposition (Ki = p#Kj) says that at state r(m) agent j has known F if agent
i knows F, under the condition that U2: (for some m’, 0 < m’ < m)[S[j, r](m’) < S[i,
r](m)] holds.

Proposition (Ki = p¥Kj)
If (forallm’,0<m’ <m)[Sfj, fJm’) < S, rJ(m)], then (IS, r(m)) k= Ki(F) = p¥Kj(F).

19



M. Malekovié, M. Cubrilo. The past temporal operators in multi-agent systems

Proposition (Ki = p¥Kj) states that at state r(m) agent j has always known F
if agent i knows F, under the condition that U3: (for all m’, 0 <m’ < m)[S[j, r[(m’)
c S[i, r](m)] is true.

4. CONCLUSIONS

We have considered the properties of the past temporal operators and the
knowledge operators. These properties relate the knowledge of two agents. We have
stated the past propositions: Proposition (Ki = poKj) [agent j previously knew F if
agent i knows F, under the condition that the premise Ul holds]; Proposition (Ki =
p#Kj) ) [agent j has known F if agent i knows F, under the condition that the premise
U2 holds]; and Proposition (Ki = p¥Kj) [agent j has always known F if agent i
knows F, under the condition that the premise U3 holds]. The Appendix contains the
proofs of all the propositions mentioned above.

APPENDIX
Proof (Proposition (Ki = poKj)

Assume Ul: S[j, r](m - 1) < S[i, r](m). We would like to show

(S, r(m)) = Ki(F) = poKj(F). Assume V1: (IS, r(m)) = Ki(F). We have to show
(IS, r(m)) = poKj(F), that is, (IS, r(m — 1)) = Kj(F).

Let ri(mi) € S be an arbitrary state such that (r(m — 1), ri(mi)) € kj. It follows that
ri(mi) € S[j, r](m—1). We have (by the assumption Ul) ri(mi) € S[i, r](m). Therefore,
(r(m), ri(mi))eki. Because V1 holds, we have (IS, ri(mi)) = F. Consequently, we have
(S, r(m — 1)) = Kj(F), as we wanted to show.

Proof (Proposition (Ki = p ¢Kj)

Assume U2: (for some m’, 0 < m’< m)[S[j, r](m’)cS[i, r](m)]. We would like to show
(IS, r(m)) = Ki(F) = p ¢Kj(F). Assume V2: (IS, r(m)) = Ki(F). We have to show
(IS, r(m)) = p¢Kj(F). Let m’, 0< m’< m, be such a point that (by the assumption U2)
U2’: S[j, r](m’) < S[i, r}(m) holds. We shall prove (IS, r(m”)) & Kj(F).

Let ri(mi) € S be an arbitrary state such that (r(m’), ri(mi)) € kj, that is,

ri(mi) € S[j, r](m’). It follows (by the assumption U2) that ri(mi)e S[i, r](m). Therefore,
(r(m), ri(mi)) € ki. We obtain (by the assumption V2) (IS,ri(mi)) = F. Consequently,
we have (IS, r(m”)) = Kj(F), that is, (IS, r(m)) = p ¢Kj(F)., as desired.

Proof (Proposition (Ki = pvKj)

Assume U3: (for all m’, 0 < m’ <m)[S[j, r](m’) < S[i, r](m)]. We would like to show
(IS, r(m)) = Ki(F) = p¥Kj(F). Assume V3: (IS, r(m)) k= Ki(F). We have to show
(IS, r(m)) = p¥Kj(F). Let m’ be an arbitrary point such that 0 < m’ < m. We need to
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prove (IS, r(m’)) & Kj(F). Let ri(mi) € S be an arbitrary state such that

(r(m”), ri(mi)) € kj. We have to prove (IS, ri(mi)) = F. From (r(m’), ri(mi) € kj, it
follows that ri(mi) € S[j, rj(m’). We have (by U3) ri(mi) € S[i, r](m). Therefore,
(r(m), ri(mi)) € ki. We have (by V3) (IS, ri(mi)) = F. Consequently, we obtain

(IS, r(m’)) = Kj(F), that is, (IS, r(m)) = p¥Kj(F), as we wanted to show.

We are grateful to the anonymous referees for their careful reading and useful
comments.
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TEMPORALNI OPERATORI O PROSLOSTI U VISEAGENTNIM
SUSTAVIMA

Sazetak

U ovom ¢lanku razmotreni su temporalni operatori o proslosti u viseagentnim sustavima.
Definirana su tri temporailna operatora: po (prethodno), p¢ (bilo je barem jedanput) i p%
(uvijek je bilo) Temeljem navedenih operatora i operatora znanja karakterizirana su neka
vazna svojstva agenata u vise agentnim sustavima.

Kljuéne rijeci: baze znanja, operatori znanja, viSeagentni sustavi, temporalni operatori za
proslost, rezoniranje o znanju.
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