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1 INTRODUCTION

All spaces in this paper are Tychonoff spaces. Cov(X) is the set of all normal
coverings of a topological space X. For other details see [1]. If a covering V is a
refinement of a covering U, then we write V< U.

In this paper we study the approximate inverse system in the sense of S.
Mardesié [10].

DEFINITION 1.1 An approzimate inverse system is a collection X = {X,, pas,
A}, where (A,<) is a directed preordered set,X,,a€A,is a topological space and
Pab  Xo = X,,a<b,are mappings such that p,,=id and the following condition (A2)
1s satisfied:

(A2) For each ac A and each normal cover UE Cou(X,) there is an indez b>a such
that (PacPed,Pad)< L{,ywhe‘never a<b<e<d.
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DEFINITION 1.2 An approzimate map p = {ps:a € A}:X—X, into an approzi-
mate inverse system X = {X,, pa, A}is a collection of maps p, : X—X,, a€A,
such that the following condition holds

(AS) For any a€A and any U €Cou(X,) there is b>a such that (pecpe,pa)< U
for each ¢>b. (See [12]).

DEFINITION 1.3 Let X = {X,, pa, A} be an approzimate inverse system and
let p = {p,:a € A}:X—X, be an approzimate map. We say that p is a limit of
X provided it has the following universal property [12, p. 592]:

(UL) For any approzimate map q = {g,:a € A}:Y—=X, of a space Y there exists
a unique map g:Y—X such that p,g = q, for any a€A .

REMARK 1.4 If p:X—X is a limit of X, then the space X is determined up to
a unique homeomorphism.Therefore, we often speak of the limit X of X and we
write X = limX.

DEFINITION 1.5 [12, p. 592, Definition (1.12)]. Let X = {X,, pa, A} be an
approzimate system. A point z=(z,)€ [[{X, : a € A} is called a thread of X
provided it satisfies the following condition:

(L) (Va €A)(VU € Cov(X,))3Eb > a)(Vec > b)pac(z:) € st(za,U).

REMARK 1.6 If X, is a Ts5 space, then the sets st(x,,U), U € Cov(X,), form
a basis of the topology at the point x,. Therefore, for an approximate system of
Tychonoff spaces, the condition (L) is equivalent to the following condition [12,
Remark (1.13)]:

(L)* (Va € A) im{pac(xc):c>a} = x,.

The following theorem shows that the set of threads is a limit of X.

THEOREM 1.7 [12, Theorem (1.14)]. Let X = {X,, pw, A} be an approz-
imate inverse system. Let XC [] X, be the set of all threads of X and let
Do X—X, be the restriction p, = m,|X of the projection m,:[[ X, —X,,a€A. Then
p ={p.:a€A}—=X is a limit of X.

The canonical limit of X is the set of all threads of X [12, p. 593] .
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An approximate inverse system is said to be commutative provided it satisfies
the commutativity condition [12, (1.4) Definition]:
(©) DabPoc = Pac  for a<b<c.

An inverse system in the sense of [3, p. 135] we call a usual inverse system. By
virtue of [12, Remark (1.15)] if X = {X,, Pas, A} is a commutative approximate
inverse system and all X, are Tychonoff spaces, then the limit of X in the usual
sense and in the approximate sense coincide.

A basis of (open) normal coverings of a space X is a collection C of normal
coverings such that every normal covering Y€Cov(X) admits a refinement Ve C.
We denote by cw(X) (covering weight) the minimal cardinal of a basis of normal
coverings of X [13, p. 181].

LEMMA 1.8 [13, Example 2.2]. If X is a compact Hausdor{f space, then cw(X)
=w(X).

2 WELL-ORDERED APPROXIMATE INVERSE SYS-
TEMS

Let 7 be a cardinal number. We say that (A,<) is 7-directed if for each BCA with
card(B)< 7 there exists an a€A such that a>b for each beB. An approximate
inverse system X = {X,, pas, A} is 7-directed if A is 7-directed. We say that X
= {Xa, Pab, A} is o-directed if it is Ro-directed.

LEMMA 2.1 Let X = {X,, pas, A} be a T-directed approzimate inverse system
of Tychonoff spaces X, such that cw(X,)< 7 for each a€A. Then for each a€A

there ezists an a* €A such that
Dac = PatPoc and Po =papppy  a* <b<c (1)

Proof. Let U, be a basis of the normal coverings of X,. By virtue of (A2),
(AS) and the directedness of A for each normal covering U € U, there exists an
a(U)€A such that

(Pacs PabPoc) < U and  (pa,pasps) <U  aU) <b<ec. (2)

The set {a(U):U€Cov(X,)} has the cardinality equal to cw(X,)< 7. There exists
an a* €A such that a* >a(lf) for each U since A is T-directed. Let us prove (1).
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Suppose that pe.(z) # PasPsc(z) for a given point x of X.. There exists a pair
of disjoint open sets U and V such that p,.(x)€U and pgspsc(x)€V. By virtue of
Remark 1.6, the sets st(pac(x),U), UeCov(X,) form a basis of the topology at the
point p,(x). This means that there is V€ U, such that st(p,.(x),V)CU. We infer
that (pasPec, Pac)AY. This contradicts the definition of a*. Similarly, it follows
that p, = pasps.M

Let X = {X,, Pas, A} be an approximate inverse system. In the sequel pY
denotes the natural projection pX : limX—X,.

THEOREM 2.2 Let X = {Xa, pas, A}be an approzimate well-ordered inverse sys-
tem of topologically complete spaces such that cw(X,) < 7, a€ A, and card(cf(A))>

7. Then there exist:
1. a set B cofinal in A,
2. a usual inverse system Y = { Y}, pea, B} such that Y, = X, for some a€A,
3. a homeomorphism H : imX—limY such that p! H = pX, acA.

Proof. Let card(A)=R,. We may assume that A is the set of all ordinal numbers
o of the cardinality < X,. Thus

A={a:a<w,}.

If B' is a cofinal subset of A, then {X;, pas, B’} has the limit homeomorphic
to limX [12, Theorem (1.19)]. Thus, passing to a cofinal subsystem (if it is
necessary), we may assume that w, is a regular ordinal number and 7 < R,,.
Let us observe that A is 7-directed. Let a be any member of A. By transfinite
induction we define a set

B={b,: & <w,}

cofinal in A such that
by <by<...<by<..., a<wy.

By virtue of Lemma 2.1 there exists an a*. Let b; = a*. Suppose that b, is
defined for each o < f < w,. Let us define bg. If B is a non-limit ordinal, then
there exists v = 8 — 1. Define bg = (b,)*. If 8 is a limit ordinal, then card({bg
: a < f})< R,. Thus {b, : @ < B} is not cofinal in A. This means that there
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exists an a€A such that a>b, for each o < 3. We set bg = a. The set B is
defined. It is clear that card(B) = X,. Hence B is cofinal in A. It remains to
prove that if b, <bg <b, then

Pbaby, = PbabsPbgbs -

It is clear that (ba)* = ba41 <bg. By virtue of (1) for a = b,, b = bg, ¢ = b, we
have

Pbaby, = PbabgPbghsy -
Thus, Y is a usual inverse system. By virtue of [12, Theorem (1.19)] there exists

a homeomorphism H : limX—limY. N

COROLLARY 2.3 Let X = {X,, pa, A}be an approzimate well-ordered inverse
system of compact spaces such that w(X,) < T, a€A, and card(cf(A))> 7. Then
there exist:

1. a set B cofinal in A,
2. a usual inverse system Y = {Y,, pea, B} such that Y, = X, for some a€A,
3. a homeomorphism H : limX—limY such that p! H = pX, acA.

Proof. Each compact space X is topologically complete and cw(X) = w(X)
(Lemma 1.8). Apply Theorem 2.2. W

COROLLARY 2.4 Let X = {X,, pa, A}be an approzimate well-ordered inverse
system of compact spaces such that w(X,) < 7, a€A, and card(cf(A))> 7. Then
w(limX)< 7.

Proof. By virtue of Theorem 2.3 there exists a usual inverse system Y = {Y5,
DPed, B} such that Y, = X, for some a€A and there exists a homeomorphism H :
limX—limY. Applying [18, Teorema 2.2.] we complete the proof.l

COROLLARY 2.5 Let X = {X,, pa, A}be an approzimate well-ordered inverse
system of compact metric spaces such that card(cf(A))> R,. Then there exist:

1. a set B cofinal in A,
2. a usual inverse system Y = { Y}, pey, B} such that Yy, = X, for some a€A,

3. a homeomorphism H : imX—limY such that p! H = pX, acA.
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3 APPROXIMATE SYSTEMS AND APPROXIMATE
SUBSYSTEMS

We start with the following definition.

DEFINITION 3.1 Let X = {X,, pa, A} be an approzimate inverse system and
let B be a directed subset of A such that { Xy, pse, B} is an approzimate inverse
system. We say that {Xs, poc, B} is an approzimate subsystem of X = {Xa, pas,
A} if there ezists a mapping q : limX—lim{ Xy, py., B} such that

Dvq = Pb7 be Ba
where py : lim{ Xy, ppe, B}— X, and Py : limX—X,, bEB, are natural projections.
The next theorem is the main theorem of this Section.

THEOREM 3.2 Let X = {X,, pa, A} be an approzimate inverse system of com-
pact spaces. If w(X,)<card(A) for each a€A, then limX is homeomorphic to
a limit of a well-ordered usual inverse system {Xa, qup, @ < B <card(A)},
where each X, is a limit of an approzimate inverse subsystem {X,, pag, P},
card(® )< card(A).

Proof. The proof consists of several steps.
Step 1. For each subset B of A there ezists a directed set Fo(B) such that
card(Foo (B)) = card(B).
Proof of Step 1. See [9, pp. 238 - 239, Hilfssatz ]. For the sake of completeness
we give proof for Step 1. We consider two cases.
Card(A)< Ry. Let v be any finite subset of A. There exists a §(v)€A such that
0 <6é(v) for each § € v. Since A is infinite, there exists a sequence {v,: n€IV}
such that 11 C ... v, C ... and A = U{vs: n€IN}. Recursively, we define the sets
Ay, ooy Ap, o by
A= J{6(m)},

and

Any1=An U Uny1 U{J(An U Vn+1)}-
Card(A)> Ry. For each BCA there exists a set F;(B) = BU{d(v): v €B}, where

v is a finite subset of B and 6(v) is defined as in the first case. Put

Fn+1 = Fl(Fn(B)’
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and
F(B) = U{Fn(B) :n€ N}

It is clear that
F(B) € F(B) € .. C F(B) € ...

The set Foo(B) is directed since each finite subset v of Fuoo(B) is contained in
some F,(B) and, consequently, §(v) is contained in Fy(B).

If B is finite, then card(F(B)) = Ro. If card(B)> Rg, then we have card({6(v):
v €B})<card(B)®,. We infer that card(F;(B))<card(B)X,. Similarly, card(F,(B))
<card(B)Ro. This means that card(F(B))<card(B)X,. Thus

card(Fy(B)) < card(B)Ry, if  card(B) < card(A).

Step 2. For each subset B of A with card(B)<card(A), there ezists a directed set
Goo (B)2B such that the collection {X,, pab y Goo(B)} is an approzimate system.
For each subset B of A we define G (B) by induction as follows:

a) Let G1(B) = Foo(B),

b) For each n>1 we define G,(B) as follows:

1) If n is odd then G, (B) = Fo(Gr-1(B)),
2) If n is even, then G,(B) = G,_1(B) U{a* : a€G,_,(B)}.

Now we define G (B) = U{G,(B) : n€e IN}. It is obvious that card(Ge(B))<
card(A).

The set Goo(B) is directed. Let a,b be a pair of the elements of Geo(B).
There exists a n€ IN such that a,beG,(B).We may assume that n is odd. Then
a,bEF (G,_1(B)) . Thus there exists a ¢c€F(Gy-1(B)) such that c¢>ab. It is
clear that c€Gy(B). The proof of directedness of G (B) is completed.

The collection {X a4, pab » Goo(B)} is an approzimate system. It suffices to
prove that the condition (A2) is satisfied. Let a be any member of Gy, (B). There
exists an n€N such that a€G,(B). We have two cases.

1) If n is odd then G,(B) = Feo(Gn-1(B)). This means that a€F o (G,-1(B)).
By definition of Fo(G,—1(B)) we infer that a* €Fy(G,-1(B)). Thus (A2) is
satisfied.

2) If n is even, then G,(B) = G,_1(B) U{a* : a€G,_;(B) such that for each
normal cover of X,, a€G;(B), there exists a* with the property (A2) and (AS)
}. In this case a€G,41(B)CGw(B). Arguing as in the case 1, we infer that (A2)

is satisfied.
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Step 3. Let card(A)> Ro. There exists an initial ordinal number Q such that
all members of A are indexed by the ordinal numbers @ < 2. Hence, A = {a,:
a < Q}. Put By = {a,: p < @ < Q}. We have a transfinite sequence {B,:
a < Q} such that

a) card(B,)< card(A),
b) a < f < Q implies B, CBg,
c) A =U{Bs < Q}.

Put A, = Goo(Ba) and let A = {A, : B, C A} be ordered by inclusion C. It is
obvious that A is well-ordered by inclusion.

Step 4. If ® and VU are in A such that & C ¥, then there erists a mapping
qov - lim{meaﬂ’ ‘Il}—)lim{X7, Dag, (I)}'

Namely, if x = (xo, @ € ¥) €lim{Xq4,pas, ¥}, then by Definition 1.5 of the
threads of {Xq4,Peg, U} the condition (L) is satisfied. If (L) is satisfied for x
= (Xa, @ € ¥) €lim{Xq,pap, ¥}, then it is satisfied for (x,,7 € @) since the
required a’ in (L) lies - by definition of the set & - in the set ®. This means
that (x,,v € ®)€ lim{X,, pos, }. Now we define qo¢(z) = (x,,7 € P).

Step 5. The collection {Xs, gov, A} is a usual inverse system. It suffices to
prove the transitivity, i.e., if ® C ¥ C Q , then qeyqya = qsq. This easily follows
from the definition of qay.

Step 6. The space limX is homeomorphic to lim{Xg, qsy, A}, where Xg =
lim{X,, pag, ®}. We shall define a homeomorphism H : limX—lim{Xy, ¢sv,
A}. Let x = (x, : a€A) be any point of limX. Each collection {x, : a€ ® € A}
is a point xp of Xp since Xo = lim{X,, pas, ®}. Moreover, from the definition
of gey (Step 4) it follows that qey(xe) = xg, ¥ 2 @. Thus, the collection {xs :
® € A} is a point of lim{Xg, qey, A}. Let H(x) = {x¢, ® €€ A}. Thus, His a
continuous mapping of limX to lim{Xy, gay, A}. In order to complete the proof
it suffices to prove that H is 1 - 1 and onto. Let us prove that His 1 - 1. Let x =
(xo : a€A ) and = (y, : a€A ) be a pair of points of limX. This means that there
exists an a€A such that y, #x,. There exists an ® € A such that a€ ®. Thus,
the collections {x, : a€ ®} and {x, : a€ ®} are different. From this we conclude
that x¢ #ys, Xa,yo €Xo = lim{X,, pas, @}. Hence His 1 - 1. Let us prove that
H is onto. Let y = (yo : @ € A) be any point of lim{Xy, gy, A}. Each yg is
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a collection {x, : a€ ®} and if ¥ D @, then the collection {x, : a€ ®} is the
restriction of the collection {x, : a€ ¥} on ®. Let x be the collection which is
the union of all collections {x, : a€ ®}, & € A. Hence x is a collection (x, :

a€A) which is a point of limX and H(x) = y. The proof is completed. l

COROLLARY 3.3 Let X = {X,, pay, A} be an approrimate inverse system of
compact metric spaces. Then limX is homeomorphic to the limit of a well-ordered
usual inverse system {X,, qap, @ <  <card(A)}, where each X, is a limit of an

approzimate inverse subsystem {X,, pas, @}, card(®)<card(A).

COROLLARY 3.4 Let X = {X,, paw, A} be an approzimate inverse system of
compact metric spaces such that card(A) = Ny. Then limX is homeomorphic to
the limit of a well-ordered usual inverse system {Xs, qup, @ < < w1}, where
each X, is a metric space as a limit of an approzimate inverse sequence.

Considering only the countable subsets B of A and arguing as in the proof of
Theorem 3.2, we obtain the following theorem.

THEOREM 3.5 For each approzimate inverse system X = {X,, pa, A}, card(A)
> Ny, of metric compact spaces, there exists a usual o-directed inverse system
{ X, gow, A} such that each Xg is the limit of a countable approzimate subsystem
{X,, Pap, @} of the system X = {X,, pa, A} and limX is homeomorphic to
m{ Xy, qou, A}.

If X = {Xq, pab, A}is an approximate inverse system such that card(A) = R,

then we have the following theorem.

THEOREM 3.6 Let X = {X,, pa, A}be an approzimate inverse system of topo-
logically complete spaces such that card(A) = Ro. Then there ezists a countable
well-ordered subset B of A such that the collection {X,, pye, B} is an approzimate
inverse sequence and limX is homeomorphic to im{X,, pe., B}.

Proof. From the Step 1 of the proof of Theorem 3.2 it follows that there exists
a sequence
A CA C..CA,..

of fine sets A, such that A = U{A, : n€IN}. Using a 6(A,) for each A,, we
obtain a sequence B = {b, : n€IN} such that B is cofinal in A. Let us prove
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that {X;, pse, B} is an approximate inverse system, i.e., that (A2) is satisfied for
{Xs, poc; B}. For each X, and each normal cover of X, there exists an a' €A
such that (A2) is satisfied for b<a' <c<d since (A2) is satisfied for X = {X,,
Pas, A}. There exists a b’ such that b’ €B, b’ >a’, since B is cofinal in A. It is
obvious that (A2) is satisfied for each ¢,d€B such that b<b’ <c<d. By virtue of
[12, Theorem (1.19)] it follows that limX is homeomorphic to lim{X,, ps., B}. H

THEOREM 3.7 If X={X,, pun, IN} is an approzimate inverse sequence of com-
plete metric spaces, then there exist:

a) a cofinal subset M ={n;, iI€IN} of IN,

b) a usual inverse sequence Y = {Y;, qj, M} such that YV; = Xy, and ¢; =

pngng+;pn¢+1ni+2 pnj_lnj fOT eaCh Z)JEW:
c) a homeomorphism H : imX—limY.

Proof. See [7, Theorem 2.11] or [2, Proposition 8].H
If X = {Xq, pab, A} is an approximate commutative (or usual) inverse system,
then the assumption w(X,)<card(A) and Step 2. in the proof of Theorem 3.2

can be omitted and we have the following theorem.

THEOREM 3.8 Let X = {Xa, paw, A} be a usual inverse system of compact
spaces. Then limX is homeomorphic to the limit of a well-ordered usual inverse
system {Xa, qap, @ < B <card(A)}, where each X, is a limit of an approzimate
inverse subsystem {Xy, pag, ®}, card(®)<card(A).

4 APPLICATIONS

A continuum is a tree if each pair of points is separated by a third point. A con-
tinuum with precisely two nonseparating points is called a generalized arc (or an
ordered continuum). A continuum X is a tree if and only if X is locally connected
and hereditarily unicoherent. Each tree is hereditarily locally connected. A tree
is a generalized arc if and only if it is atriodic. A dendrite (arc) is a metrizable

tree (generalized arc).

THEOREM 4.1 Let X = {Xa, pas, A}be an approzimate well-ordered inverse
system of compact locally connected metric spaces such that card(cf(A))> R;.
Then X = limX is locally connected.
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Proof. By virtue of Theorem 2.5 there exists a usual inverse system Y = {Y,,
Ped, B} such that Y, = X, for some a€A and there exists a homeomorphism H :
limX—limY. Using [4, Theorem 3] we infer that limY is locally connected. M

THEOREM 4.2 Let X = {X,, pa, A} be an approzimate well-ordered inverse
system of locally connected continua X, and surjective bonding mappings pap such
that w(X,)< A. Then, either X = limX is locally connected or w(X)< A.

Proof. If card(cf(A))< A, then w(X)< A. If card(cf(A))> A, then from Theorem
2.5 it follows that there exists a usual inverse system Y = {Y}, pes, B} such
that Y, = X, for some a€A and there exists a homeomorphism H : limX—limY.
Using [4, Theorem 4] we infer that limY is locally connected M

COROLLARY 4.3 Let X = {Xq, pas, A} be an approrimate well-ordered inverse
system with surjective bonding mappings. If X,, a€ A, are locally connected metric

continua, then, either X = limX is metrizable or X is locally connected.

THEOREM 4.4 Let X be the limit of a well-ordered approrimate inverse system
of trees (generalized arcs) such that w(X,)< A. Then, either X is a tree (gener-
alized arc) or w(X)< A.

Proof. This follows from the Theorem above and the fact that X is hereditarily
unicoherent (atriodic) [8, Corollary 4.3], [8, The proof of Lemma 5.14].H

COROLLARY 4.5 Let X be the limit of a well-ordered approzimate inverse sys-
tem of dendrite (arcs). Then, either X is metrizable or X is tree (generalized

arc).

THEOREM 4.6 Let X = {X,, pa, A}be an approzimate o-directed inverse sys-
tem of trees (generalized arcs). Then X = limX is a tree (generalized arc).

Proof. It suffices to prove that X is hereditarily locally connected since X is
hereditarily unicoherent (atriodic) [8, Corollary 4.3], [8, The proof of Lemma
5.14]. Suppose that X is not hereditarily locally connected. By virtue of [17]
there exists in X a non-degenerate continuum of convergence Y such that there
exists a net {Y, : v € I'} of subcontinua of X such that LimY, =Y, YNY, =
0 for all v € T, and if 7,6 € T then either Y, = Y5 or Y,NYs = 0. Let x, y
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be a pair of distinct points of Y and let U, V be a pair of open subsets of X
such that xeU, yeV and Cl(U)NCI(V) = @. There exists a y; € I such that
Y., NU# 0 #Y,, NV. Let Z;, = Y,,. From the normality of X, it follows that
there exists an open set V; CX such that Cl(V;)NX; = @ and YCV,. There
exists a 7, > 7 such that Y,, CV,. Let Zy = Y,,. We infer that there exists
an open set Vo CX such that C1(V2)NZy = 0 and YCV,. Continuing in this way
we obtain a sequence Vi, Vs, ... of the open sets and a sequence Z, Z,, ... such
that

ClV,) € Vacis; n=2,3 .. (3)

and
Cl(V,) ﬂZn =0, Zizu1 €V, (4)

If F and G are closed disjoint subsets of X, then by virtue of [6, Lemma 2.17]
there is an a(F , G)€A such that py(F)Nps(G) = O for each b>a(F , G). Let
Z., be any member of the sequence Z;, Zy, ... and let G, be any member of the
sequence Cl(Vy), C1(Vy), ... There exists an a(m,n) such that py(Z,,)N\ps(CL(V,.))
= () for each b>a(m,n). By virtue of the o-directedness of A, there exists an a€A
such that a>a(m,n) for each m and n. We may assume that

Pa(CUU)) (pa(CUV)) = 0. (4)

Let K = p,(Cl(U)), L = pa(Cl(V)) and X, = pa(Z,), n = 1, 2, ... By virtue of
[15, p. 310, Lemma 2.4] or {17, p. 246., Theorem 4]) X, is not hereditarily locally
connected, a contradiction.l

We say that a mapping £:X—Y is hereditarily monotone if the restriction
f|:K—£(K) is monotone for each subcontinuum KCX.

THEOREM 4.7 Let X = {X,, pa, A} be an approzimate inverse system of hered-
starily locally connected metric continua and hereditarily monotone bonding map-

pings. Then X = limX is hereditarily locally connected.

Proof. The proof is broken into several steps.

Step 1. If X = {X,, pas, A} is a usual inverse system, then for each subcontinuum
K of X = limX there exists a usual inverse system K = {p,(K), pas|ps(K), A}
with the monotone bonding mappings pas|ps(K). Each p,(K) is locally connected
since X, is hereditarily locally connected. We infer that K = limK is locally
connected. Hence, X is hereditarily locally connected.



Zbornik radova, Volume 23, Number 1(1999)

Step 2. Let X={X,, pun, IN} be an approximate inverse sequence of hered-
itarily locally connected metric continua and hereditarily monotone mappings.

By virtue of Theorem 3.6 there exist
a) a cofinal subset M ={n;, i€ N} of IN,

b) a usual inverse sequence Y = {Y;, q;;, M} such that Y; = X, and q;; =

Priniyi Prcganisa - Prj_ing for each i,jeIN,
¢) a homeomorphism H : limX—limY.

Now each mapping q;; is hereditarily monotone. From Step 1. it follows that
limY is hereditarily locally connected. Hence limX is locally connected.

Step 3. Let us prove the Theorem. Let now X = {X,, pas, A} be an approximate
inverse system as in the Theorem. By virtue of Theorem 3.5 there exists a usual
o-directed inverse system {Xy, qsv, A} such that each Xg is a limit of a countable
approximate subsystem {X.,, pag, @} of the system X = {X,, pa, A} and limX
is homeomorphic to lim{Xy, qew, A}. From Step 2. we infer that each X is
hereditarily locally connected. We infer that lim{Xy, qsy, A} is hereditarily
locally connected since {Xy, qoy, A} is o-directed. Thus, limX is hereditarily
locally connected .l

A graph is a 1-dimensional polyhedron. Thus graphs are metrizable and lo-
cally connected.

We shall say that a non-empty compact space is perfect if it has no isolated
point.

A continuum is said to be totally regular [14, p. 47 if for each x#y in X there
is a positive integer n and perfect subsets Ay, ..., A,, ... of X such that z; €A;
for i = 1, ..., n implies that {xi, ..., X, } separates x from y in X.

Each graph is totally regular [14, Theorem 7.5, equivalence (1)< (8)].
The following theorem is a part of [14, Theorem 7.15, equivalence (1)< (6)].

Each totally regular continuum is hereditarily locally connected.
THEOREM 4.8 If X is a continuum then the following conditions are equivalent:
1. X is totally regular,

2. X is homeomorphic to lim{ G,,fas,I'} such that each G, is a graph and each

fab 18 @ monotone surjection.
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THEOREM 4.9 [14, Theorem 7.7]. Let X = {Xa, pas, A} be a usual inverse
system of totally regular continua X, and the monotone surjective mappings pap-

Then X = limX s totally regular.

LEMMA 4.10 Let X be a non-metric totally regular continuum. There ezists a

o-directed inverse system

X= {menm’A} (6)

such that each X, is totally reqular and each fu,, is a monotone surjection.
Proof. Apply [14, Theorem 9.4], Theorem 4.9 and Lemma 3.5 of [16] . B

THEOREM 4.11 Let X = {X,, pw, A} be an approzimate inverse system of
totally regqular metric continua and monotone bonding mappings. Then X = limX

1s totally regular.

Proof. If card(A) = Ry, then there exists a usual inverse sequence Y = {Y;, qi;,
M} such that Y; = Xp,, Gij = PrincpaPripinga Pn;_;n; for each ijelN, and a
homeomorphism H : limX—1imY (Theorems 3.6 and 3.7). By virtue of Theorem
4.9 limY is totally regular. Hence X is totally regular. If card(A)> R;, then there
exists a usual o-directed inverse system {Xg, qoy, A} such that each X is a
limit of a countable approximate subsystem {X,, pag, @} of the system X = {X,,
Pab, A} and limX is homeomorphic to lim{Xy, qey, A} (Theorem 3.5). Each Xg
is totally regular since card(®) = ¥y. Applying Theorem 4.9 we conclude that
lim{Xy, qey, A} is totally regular. Thus X = limX is totally regular.ll

We say that a continuum X is a continuous image of an arc if there exists a

generalized arc L and a continuous surjection f : L—X.

LEMMA 4.12 Let X = {Xa, pa, A}be an approzimate system such that X,,
a€A, are compact locally connected spaces and pg, are monotone surjections. If
Y = {Xo, pea, B} is an approzimate subsystem of X, then the mapping qap
: imX—UmY (defined in Step 4 of the proof of Theorem 8.2) is a monotone

surjection.

Proof. Let P, : imX—X,, a€A, be the natural projection. Similarly, let p, :
limY—X,, a€B, be the natural projection. From the definition of q45 (Step 4 of
the proof of Theorem 3.2) it follows that p,qsp = P, for each a€B. By virtue of
[12, Corollary 4.5] and [8, Corollary 5.6] it follows that P, and p, are monotone
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surjections. Let us prove that q4p is a surjection. Let y = (y, : a€éB)€limY. The
sets P !(y,), a€B, are non-empty since P, is surjective for each acA. From the
compactness of limX it follows that a limit superior Z = Ls{P;(y,), a€B} is a
non-empty subset of limX. We shall prove that for each z = (z,: a€A)€Z P,y(2)
= y,. Suppose that P,(z)#y,. There exists a pair U, V of open disjoint subsets
of X, such that y, €U and P,(z)€V. For sufficiently large beB P,(P;'(;)) is in
U because (AS). This means that P;*(V)NP;*(ys) = @ for sufficiently large beB.
This contradicts the assumption z€Ls{P, ' (y,), a€B}. Hence qup is a surjection.
In order to complete the proof it suffices to prove that q4p is monotone. Take a
point y€limY and suppose that q;5(y) is disconnected. There exists a pair U,
V of disjoint open sets in limX such that q;5(y)CUUV. From the compactness
of limX it follows that q4p is closed. This means that there exists an open
neighborhood W of y such that q;5(y)Cqa5(W)CUUV. From the definition of
the basis in limY it follows that there exists an open set W, in some X,, a€B such
that yep,;*(W,)CW. Moreover, we may assume that W, is connected since X, is
locally connected. Then P;!(W,) is connected since P, is monotone [8, Corollary
5.6). Moreover, q;5(y)CP;1(W,) and P;}(W,)CUU since P, = p,qap. This is
impossible since U and V are disjoint open sets and P;'(W,) is connected. The
proof is completed l

THEOREM 4.13 Let X = {X,, pa, A} be an approzimate well-ordered inverse
system of continuous images of arcs such that w(X,) < 7, a€A, card(cf(A))> T
and card(cf(A))> Ry. If the mappings pa, are monotone surjections, then X =

limX 1s a continuous tmage of an arc.

Proof. By virtue of Theorem 2.3 there exist a usual inverse system Y = {Y,,
Ped, B} such that Y, = X, for some a€A and a homeomorphism H : limX—limY.
From [5, Theorem 2.17] it follows that Y is the continuous image of an arc. Hence

X is the continuous image of an arc.ll

THEOREM 4.14 Let X = {X,, pa, A} be an approzimate inverse system of
continuous tmages of arcs such that cf(card(4))> Ry and w(X,)<card(A), acA.
If the bonding mappings are monotone surjections, then X = limX is a continuous
image of an arc if and only if a limit of each approzimate subsystem of X is a

continuous image of an arc.
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Proof. Sufficiency. By virtue of Theorem 3.2 there exists a well-ordered usual
inverse system {Xa, dag, @ < [ <card(A)}, where each X, is a limit of an
approximate inverse subsystem {X,, pag, ®}, card(®)<card(A) such that limX
is homeomorphic to lim{X,, qas, @ < f <card(A)}. By the assumption of the
Theorem, each X, is the continuous image of an arc. By virtue of Theorem 4.13,
X is the continuous image of an arc.

Necessity. If X is a continuous image of an arc, then X, is a continuous image of
an arc for each directed set BCA since there exists a natural projection pg:X—X,.
|

PROBLEM. Let X={X,, pun, IN} be an approximate inverse sequence of
continuous images of arcs and monotone surjective bonding mappings. Is it true

that limX is the continuous image of an arc?

THEOREM 4.15 Let X = {X,, pa, A} be an inverse system of continuous im-
ages of arcs. If cf(card(A))# wi, then X = limX is a continuous image of an arc

if and only if a limit of each subsystem of X is a continuous image of an arc.

Proof. If cf(card(A)) = Ry, then there exists a well-ordered sequence B = {a,:
neIN}CA which is cofinal in A. It is clear that X is homeomorphic to the limit
of an inverse sequence {X,, pas, B}. Applying Theorem [14, Theorem 5.1] we
complete the proof. If cf(card(A))> R, then the proof is similar to the proof of
Theorem 4.14.H

We close this Section with the following theorem and corollary.

THEOREM 4.16 Let X = {X,, pa, A} be an inverse system of continuous im-
ages of arcs. If cf(card(A))# w1, then X = limX is a continuous image of an arc
if and only if each proper subsystem {X,,pe,B} of X with cf(card(B)) = w has

a limit which is a continuous image of an arc.

Proof. The "only if part”. If X is a continuous image of an arc, then for each
subsystem {X,,pq,B} there exists a natural projection f, : X—1lim{X,,pa,B}.
Hence, lim{X,,p.s,B} is a continuous image of an arc.

The ”if” part. By virtue of Theorem 3.8 there exists a well-ordered inverse
system {Xq, qag, & < 8 < card(A)} such that X is homeomorphic to lim{X,,
Jag, & < B < card(A)}. If cf(card(A))< wy, then we have an inverse subsequence
of {X4, dap, @ < B < card(A)} which is a cofinal subsystem of {X4, qus, @ < 8 <
card(A)}. By virtue of [14, Theorem 5.1] X is a continuous image of an arc. Let
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cf(card(A)) > w;. By virtue of Theorems 3.8 and 4.15 it suffices to prove that each
subsystem of {Xg, pas, B}of X = {X,, pas, A} has a limit which is a continuous
image of an arc. We shall use the transfinite induction on card(B). If card(B) < wy,
then we use Theorem 5.1 of [14]. If card(B) = w, then lim{X,,pa,B} is a
continuous image of an arc by assumption of the Theorem. Now let {X,,pas,B}
be a subsystem of {X,,pas,A} such that card(B)> w;. Suppose that Theorem is
true for each subsystem of the cardinality < card(B). By virtue of Theorem 3.8
there exists a well-ordered inverse system {X,, qag, @ < < card(B)} such that
lim{X,,Pas,B} is homeomorphic to lim{X,, gas, @ < B < card(B)}. Since each
Xq is a limit of a subsystem of the cardinality <card(B), we have the inverse
system {Xq, Qap, @ < B < card(B)} which satisfies the conditions of Theorem
2.17 of [5]. Thus, lim{X,,pqs,B} is a continuous image of an arc. By the transfinite
induction, the proof is complete. H

COROLLARY 4.17 Let X be a locally connected continuum. The following con-

ditions are equivalent:

a) X is a continuous image of an arc,

b) If f : XY is a continuous mapping and cf(card(w(Y)) = wy, then Y is a

continuous image of an arc.

Proof. a) = b). Obvious.

b) = a). By virtue of Theorem [11] there exists an inverse system X =
{Xa,Pas,A} such that X, are metric locally connected continua, p,; are monotone
mappings and X is homeomorphic to limX. If Y = {X,,pa;,B} is any subsystem
of {Xq,Pas,A} with cf(card(w(Y)) = wy, then there exists a natural projection P:
X—limY. By virtue of b) it follows that limY is a continuous image of an arc.
Applying Theorem 4.16 we complete the proof. H

COROLLARY 4.18 Let X be a locally connected continuum such that w(X) <

R, . The following conditions are equivalent:
a) X is a continuous image of an arc,

b) Iff: X—=Y is a continuous mapping and w(Y) = Ny, then Y is a continuous

image of an arc.
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Ivan Loncar
BILJESKA O APROKSIMATIVNIM INVERZNIM SISTEMIMA

I PODSISTEMIMA

Sazetak

U radu je dokazano da aproksimativni inverzni sistemi uz neke dodatne uvjete pos-
jedugu kofinalne podsisteme koji su komutativni ili obiéni inverzni sistemi. Drugi
odjeljak sadrzi takve teoreme za dobro uredene aproksimativne inverzne sisteme,
dok treci odjeljak sadrzi teoreme za opéi sluéaj. U posljednjem, cetvrtom, odjelku

dane su neke primjene teorema prethodnih odjeljaka.

Kljucne rijeci : aproksimativni inverzni sistem, aproksimativni inverzni pod-
sistem.
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