INVOLUTES AND EVOLUTES IN n-DIMENSIONAL SIMPLY ISOTROPIC SPACE $I_{n}^{(1)}$

Blaženka Divjak
University of Zagreb, Faculty of Organization and Informatics, Varaždin, Croatia
E-mail: bdivjak@foi.hr
Željka Milin Šipuš
University of Zagreb, Department of Mathematics, Croatia
E-mail: milin@math.hr

In this paper, the notions of the isotropic involutes (of order k) and the isotropic evolutes in n dimensional simply isotropic space $\mathrm{I}_{\mathrm{n}}^{(1)}$ are defined. We determine the formula of involutes of a given admissible curve in $\mathrm{I}_{\mathrm{n}}^{(1)}$ and the curvature and the torsion of involutes and evolutes in $\mathrm{I}_{3}^{(1)}$. The system of differential equations which determines the evolute of a given admissible curve in $\mathrm{I}_{\mathrm{n}}^{(1)}$ is found. The explicit formula of the evolutes of admissible curve in $\mathrm{I}_{3}^{(1)}$ is given. The definitions of involutes and evolutes, which are used in this article, are motivated by the analogous definitions for Euclidean case from [2].

Keywords: admissible curve, involutes, evolutes, n-dimensional simply isotropic space.
Mathematics subject classification: 53A35

1. CURVES IN $I_{n}^{(1)}$

Let I be an interval, $I \subseteq \mathbf{R}$ and $\mathrm{f}: I \rightarrow \mathrm{I}_{\mathrm{n}}^{(\mathrm{I})}$ vector function given in affine coordinates as

$$
\overrightarrow{O X}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right):=\mathrm{x}(t), t \in I
$$

The set of points $\mathrm{c} \in \mathrm{I}_{\mathrm{n}}^{(\mathrm{I})}$ is called a C^{r}-curve if there is an open interval $\mathrm{I} \subseteq \mathbf{R}$ and Cr^{r}-function ($\mathrm{r} \geq 1$) f: $\mathrm{I} \rightarrow \mathrm{I}_{\mathrm{n}}^{(\mathrm{I})}$ with $\mathrm{f}(\mathrm{I})=\mathrm{c}$.

A Cr-curve is a regular C^{r}-curve provided

$$
\dot{\mathbf{x}}(t)=\left(\dot{x}_{1}(t), \ldots, \dot{x}_{n}(t)\right) \neq \mathbf{0}, \mathbf{t} \in I,
$$

and if f is an injective transformation a curve is called a simple C^{r}-curve.
A regular Cr^{r}-curve $(\mathrm{r} \geq \mathrm{n}-1)$ is nondegenerate if the set of vectors

$$
\left\{\dot{\mathbf{x}}(t), \ldots, \mathbf{x}^{(n-1)}(t)\right\}
$$

is linearly independent for all $t \in I$.

A curve $\mathrm{c} \subset \mathrm{I}_{\mathrm{n}}^{(1)}$ is said to be an admissible C^{r}-curve ($\mathrm{r} \geq \mathrm{n}-1$) when c is a simple, nondegenerate Cr^{r}-curve ($\mathrm{r} \geq \mathrm{n}-1$) without the isotropic osculating hyperplanes.

Let c , which is defined on a closed interval $[\mathrm{a}, \mathrm{b}]$, be an admissible curve in $\mathrm{I}_{\mathrm{n}}^{(1)}$. Then

$$
s:=\int_{l=a}^{b}\left(\dot{x}_{1}^{2}+\ldots+\dot{x}_{n-1}^{2}\right)^{1 / 2} d t
$$

is called the isotropic arc length of the curve c from $\mathbf{x}(a)$ to $\mathbf{x}(b)$. (From now on, s always denotes a parameter of the arc length.)

For the admissible curve $\mathrm{c}(\mathbf{x}=\mathbf{x}(\mathrm{s}))$ we can define n-frame $\left\{\mathbf{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$ in any point, as has been done in [1] or [4] for example. Then, there are functions $\kappa_{1}(\mathrm{~s}), \ldots, \kappa_{\mathrm{n}-1}(\mathrm{~s})$ so that the Frenet formulae

$$
\left\{\begin{array}{l}
\dot{\mathbf{t}_{1}}=\kappa_{1} \mathbf{t}_{2} \tag{1.1}\\
\dot{\mathbf{t}_{i}}=\kappa_{i} \mathbf{t}_{i+1}-\kappa_{i-1} \mathbf{t}_{i-1} \quad i=2, \ldots, n-1 \\
\dot{\mathbf{t}_{n}}=0
\end{array}\right.
$$

hold. The functions $\kappa_{1}(\mathrm{~s}), \ldots, \kappa_{\mathrm{n}-1}(\mathrm{~s})$ are called the isotropic curvatures of the curve c .
The definitions of involutes and evolutes, which are used in this article, are motivated by the analogous definitions for the Euclidean case from [2].

2. INVOLUTES

2.1. Involutes in $\mathrm{I}_{n}^{(1)}$

Definition 1. Let c , given by $\mathbf{x}=\mathbf{x}(s), \mathbf{x}: I \rightarrow \mathrm{I}_{\mathrm{n}}^{(1)}, I \subseteq \mathbf{R}$ be an admissible $\mathrm{Cr}^{\text {-curve }}$ $(r \geq n)$ parameterized by the parameter of the arc length. The orthogonal trajectories of the first tangents of the curve c are called the involutes of the curve c .

Theorem 1. A one-parameter family of involutes of an admissible curve c is represented by the formula

$$
\begin{equation*}
\overline{\mathbf{x}}(s)=\mathbf{x}(s)+\mathbf{t}_{1}(s)(k-s)_{2} \tag{2.1}
\end{equation*}
$$

where k is an arbitrary constant and s is the arc length of the curve c .
Proof. The involute of the curve $\mathrm{c}(\mathbf{x}=\mathbf{x}(s))$ is characterized by

$$
\begin{equation*}
\overline{\mathbf{x}}(s)=\mathbf{x}(s)+u(s) \mathbf{t}_{\mathbf{1}}(s) \tag{2.2}
\end{equation*}
$$

where $u(\mathrm{~s})$ is a function of s on I. Then the differentiation of the relation (2.2) and the Frenet formulae (1.1) give the following equation

$$
\begin{equation*}
\overline{\mathbf{x}}^{\prime}(s)=\left(1+u^{\prime}(s)\right) \mathbf{t}_{1}(s)+\kappa_{1}(s) u(s) \mathbf{t}_{2}(s) . \tag{2.3}
\end{equation*}
$$

In accordance with $\overline{\mathbf{x}}^{\prime} \mathbf{t}_{1}=0$, we have $1+u^{\prime}(s)=0$ and furthermore,

$$
\begin{equation*}
u(s)=k-s, k=\text { const. } \tag{2.4}
\end{equation*}
$$

Inserting the relation (2.4) into (2.2) we obtain the expression (2.1) as desired.

Corollary 1. Two different involutes of an admissible curve c are equidistant.
In addition, we wish to generalize the notion of an involute.
Definition 2. Let $\mathrm{c}(\mathbf{x}=\mathbf{x}(s))$ be an admissible curve. Curves, which are orthogonal to the system of k -dimensional osculating hyperplanes of c , are called the involutes of order k of the curve c .
The involutes of order k are given by

$$
\begin{equation*}
\overline{\mathbf{x}}=\mathbf{x}(s)+u_{1}(s) \mathbf{t}_{1}(s)+\ldots+u_{k}(s) \mathbf{t}_{k}(s), k \leq n-1 . \tag{2.5}
\end{equation*}
$$

In order to determine the functions $u_{1}, \ldots, u_{\mathrm{k}}$ from (2.5) we differentiate (2.5) and by using the Frenet formulae (1.1) we have

$$
\begin{align*}
& \overline{\mathbf{x}}^{\prime}=\left(1+u_{1}^{\prime}-u_{2} \kappa_{2}\right) \mathbf{t}_{1}+\sum_{l=2}^{k-1}\left(u_{l}^{\prime}+\kappa_{l-1} u_{l-1}-\kappa_{l} u_{l+1}\right) \mathbf{t}_{l}+ \tag{2.6}\\
& +\left(u_{k}^{\prime}+\kappa_{k-1} u_{k-1}\right) \mathbf{t}_{k}+\kappa_{k} u_{k} \mathbf{t}_{k+1} .
\end{align*}
$$

Since we have $\mathrm{t}_{\mathrm{i}} \mathrm{y}^{\prime}=0$ for $\mathrm{i}=1, \ldots, \mathrm{k} ; \mathrm{k} \leq \mathrm{n}-1$ we obtain

$$
\left\{\begin{array}{l}
1+\mathrm{u}_{1}^{\prime}-\kappa_{2} \mathrm{u}_{2}=0 \tag{2.7}\\
\mathrm{u}_{1}^{\prime}+\kappa_{\mathrm{l}-1} \mathrm{u}_{1-1}-\kappa_{1} \mathrm{u}_{1+1}=0, \quad \mathrm{l}=2, \ldots, \mathrm{k}- \\
\mathrm{u}_{\mathrm{k}}^{\prime}+\kappa_{\mathrm{k}-1} \mathrm{u}_{\mathrm{k}-1}=0
\end{array}\right.
$$

from (2.6) after a scalar multiplication by $\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{\mathrm{k}}$.
The system of differential equations (2.7) is the same as in the Euclidean case and admits a uniquely determined set of solutions $u_{1}, \ldots, u_{\mathrm{k}}$, having already prescribed the initial values at the point $s=\mathrm{a}$ of the curve c .

According to the above, the involute, which is defined in Definition 1 , is actually the involute of order 1 and then the relations (2.7) are reduced to (2.4).

If $\mathrm{c} \subset \mathrm{I}_{n}^{(m)} \quad(m<n)$ is an admissible curve the involutes of c could be defined in the same way as is done above. Obviously, Theorem 1, Corollary 1 and Corollary 2 are true in a case when $k \leq n-m-1$.

2.2. Involutes in $I_{3}^{(1)}$

Corollary 2. Let c , given by $\mathbf{x}=\mathbf{x}(s)$, be an admissible curve in $\mathrm{I}_{3}^{(1)}$ where s is the parameter of the arc length and $\{\mathbf{t}(s), \mathbf{n}(s), \mathbf{b}(s)\}$ the 3-frame of the given curve. Then the involute $\bar{c}(\overline{\mathbf{x}}=\overline{\mathbf{x}}(s))$ of curve c has the following form

$$
\begin{equation*}
\overline{\mathbf{x}}(s)=\mathbf{x}(s)+(k-s) \mathbf{t}(s) . \tag{2.8}
\end{equation*}
$$

The proof is analogues to that of Theorem 1.
Corollary 3. If $\kappa(s)$ and $\tau(s)$ are the curvature and the torsion of an admissible curve c , then the curvature $\bar{\kappa}$ and the torsion - of the involute $\overline{\mathrm{c}}$ of the curve c are given by

$$
\begin{equation*}
\bar{\kappa}(s)=\frac{\operatorname{sgn} \kappa}{|s-k|}, \bar{\tau}(s)=\frac{\left(\frac{\tau}{\kappa}\right)^{\prime}}{\kappa(k-s)} . \tag{2.9}
\end{equation*}
$$

Proof. The parameter s is not the parameter of the arc length of \bar{c}, so, as is shown in [4], we have

$$
\begin{equation*}
\bar{\kappa}(s)=\frac{\operatorname{Det}(\dot{\overline{\mathbf{x}}}, \ddot{\overline{\mathbf{x}}})}{|\dot{\overline{\mathbf{x}}}|^{3}}, \bar{\tau}(s)=\frac{\operatorname{Det}(\dot{\overline{\mathbf{x}}}, \ddot{\mathbf{x}}, \ddot{\overline{\mathbf{x}}})}{\operatorname{Det}^{2}(\dot{\overline{\mathbf{x}}}, \ddot{\overline{\mathbf{x}}})} . \tag{2.10}
\end{equation*}
$$

On the other hand, the differentiation of equation (2.8) implies that

$$
\begin{aligned}
\dot{\overline{\mathbf{x}}}(s)= & (k-s) \kappa \mathbf{n}, \\
\ddot{\overline{\mathbf{x}}}(s)= & -(k-s) \kappa^{2} \mathbf{t}+\left[(k-s) \kappa^{\prime}-\kappa\right] \mathbf{n}+(k-s) \kappa \tau \mathbf{b}, \\
\ddot{\overline{\mathbf{x}}}(s)= & {\left[2 \kappa^{2}-3(k-s) \kappa \kappa^{\prime}\right] \mathbf{t}+\left[-(k-s) \kappa^{3}-2 \kappa^{\prime}+(k-s) \kappa^{\prime \prime}\right] \mathbf{n}+} \\
& {\left[2(k-s) \kappa^{\prime} \tau+(k-s) \kappa \tau^{\prime}-2 \kappa \tau\right] \mathbf{b}, } \\
\dot{\tilde{\mathbf{x}}}(s)= & (k-s) \kappa \widetilde{\mathbf{n}}, \\
\ddot{\widetilde{\mathbf{x}}}(s)= & -(k-s) \kappa^{2} \widetilde{\mathbf{t}}+\left[(k-s) \kappa^{\prime}-\kappa\right] \widetilde{\mathbf{n}} .
\end{aligned}
$$

Now, it is easy to see that

$$
\begin{aligned}
& |\dot{\overline{\mathbf{x}}}|=|(k-s) \kappa|, \\
& \operatorname{Det}(\dot{\tilde{\mathbf{x}}}, \ddot{\tilde{\mathbf{x}}})=(k-s)^{2} \kappa^{3}, \\
& \operatorname{Det}(\dot{\overline{\mathbf{x}}}, \ddot{\overline{\mathbf{x}}}, \ddot{\mathbf{x}})=(k-s)^{3}\left(\kappa \tau^{\prime}-\kappa^{\prime} \tau\right) \kappa^{3} .
\end{aligned}
$$

And now from the above relations and (2.10) we deduce (2.9).
Example 1. The involutes of the helix

$$
\begin{equation*}
\mathbf{x}(s)=\left(a \cos \frac{s}{a}, a \sin \frac{s}{a}, \frac{p}{a} s\right) \tag{2.11}
\end{equation*}
$$

are the plane curves

$$
\mathbf{x}(s)=\left(a \cos \frac{s}{a}+(s-k) \sin \frac{s}{a}, a \sin \frac{s}{a}+(k-s) \cos \frac{s}{a}, \frac{p}{a} k\right) \quad k=\text { const. }
$$

We could ask ourselves if there are any other admissible curves in $\mathrm{I}_{3}^{(1)}$ which have plane involutes. Because of (2.9) we may conclude that $\bar{\tau} \equiv 0$ if and only if
$\left(\frac{\tau}{\kappa}\right)^{\prime}=0$. Thus, $\frac{\tau}{\kappa}=$ const. So, only those admissible curves in $\mathrm{I}_{3}^{(1)}$ which have plane involutes are the helices.

3. EVOLUTES

3.1. Evolutes in $I_{n}^{(1)}$

Definition 3. We say that a curve $\mathbf{c}^{*}\left(\mathbf{x}^{*}=\mathbf{x}^{*}(s)\right)$ is an evolute of an admissible C^{n} curve $\mathrm{c}(\mathrm{x}=\mathrm{x}(s)), \mathrm{c} \subseteq \mathrm{I}_{\mathrm{n}}^{(\mathrm{l})}$ if c is the involute of c^{*}. The parameter s is the parameter of the arc length of c.

The question that must be asked is: when does an evolute of a given curve exist and what does this evolute look like? The following theorem, which has the same form as in the Euclidean case (see [2]), answers the first part of this question.

Theorem 2. Let $\mathrm{c}: I \rightarrow \mathrm{I}_{n}^{(1)}$ be an admissible curve and s the parameter of the arc length. The evolute of c exists if and only if there is a nonisotropic unit field $\mathbf{a}(s)$ and a real function $\mathrm{p}(s)$ such that

$$
\begin{equation*}
\mathbf{t}_{1}+\mathbf{a}^{\prime} \mathbf{p}=0 . \tag{3.1}
\end{equation*}
$$

Proof. $\Rightarrow \quad$ Let $c^{*}\left(\mathbf{x}^{*}=\mathbf{x}^{*}(s)\right)$ be the involute of $\mathrm{c}(\mathbf{x}=\mathbf{x}(\mathrm{s}))$. Then, there is a unit field $\mathbf{a}(s)$ and a function $p(s)$ so that

$$
\begin{equation*}
\mathbf{x}^{*}(s)=\mathbf{x}(s)+p(s) \mathbf{a}(s) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{x}^{*}(s)=\lambda(s) \mathbf{a}(s) \tag{3.3}
\end{equation*}
$$

By differentiating (3.2) we get

$$
\begin{equation*}
\left(\lambda-\mathbf{p}^{\prime}\right) \mathbf{a}=\mathbf{t}_{1}+\mathbf{a}^{\prime} p . \tag{3.4}
\end{equation*}
$$

Multiplying the relation (3.4) by a we obtain

$$
\lambda-p^{\prime}=0
$$

and then, the relation (3.4) becomes (3.1).
$\Leftarrow \quad$ Now we suppose that (3.1) holds. Define $\mathbf{x}^{*}(s)$ by

$$
\begin{equation*}
\mathbf{x}^{*}(s)=\mathbf{x}(s)+\mathbf{a}(s) p(s) \tag{3.5}
\end{equation*}
$$

and by differentiating that by s we get

$$
\begin{equation*}
\mathbf{x}^{* \prime}(s)=\mathbf{t}_{1}+\mathbf{a}^{\prime} p+\mathbf{a} p^{\prime} . \tag{3.6}
\end{equation*}
$$

Comparing (3.6) and (3.1) we conclude that

$$
\mathbf{x}^{* \prime}=\mathbf{a} p^{\prime}
$$

which means that vectors $\mathbf{x}^{*}-\mathbf{x}$ and $\mathbf{x}^{* \prime}$ are linearly dependent. In addition, we have

$$
\mathbf{t}_{1} \mathbf{x}^{* \prime}=\mathbf{t}_{1} \mathbf{a} p^{\prime}=-\mathbf{a}^{\prime} p \mathbf{p} p^{\prime}=0,
$$

since \mathbf{a} is a unit field. Therefore \mathbf{x}^{\prime} is orthogonal to $\mathbf{x}^{* \prime}$ which implies c is the involute of c^{*}.

Now, we shall try to find the expression for the evolute c* of a given admissible curve $\mathrm{c}(\mathbf{x}=\mathbf{x}(s)), \mathrm{c} \subseteq \mathrm{I}_{\mathrm{n}}^{(1)}$ which is referred to as the parameter of the arc length s.

Obviously,

$$
\begin{equation*}
\mathbf{c}^{*} \ldots \mathbf{x}^{*}(s)=\mathbf{x}(s)+p(s) \mathbf{a}(s), p(s) \neq 0, \tag{3.7}
\end{equation*}
$$

where $\mathbf{a}(s)$ is a unit field orthogonal to c and therefore, collinear with the first tangent of $c^{*}\left(\mathbf{x}^{* \prime}=\lambda \mathbf{a}\right)$. So, we have

$$
\begin{equation*}
a=\sum_{i=2}^{n} a_{i} \mathbf{t}_{i} \tag{3.8}
\end{equation*}
$$

and since $|a|=1$ it follows that

$$
\begin{equation*}
\sum_{i=2}^{n-1} a_{i}^{2}=1 . \tag{3.9}
\end{equation*}
$$

By differentiating (3.7) by s, we get

$$
\lambda \mathbf{a}=\mathbf{t}_{1}+p^{\prime} \mathbf{a}+p \sum_{i=2}^{n}\left[a_{i}^{\prime} \mathbf{t}_{\mathbf{i}}+a_{i}\left(\kappa_{i} \mathbf{t}_{i+1}-\kappa_{i-1} \mathbf{t}_{i-1}\right)\right], \quad\left(\kappa_{n}=0\right)
$$

and then,

$$
\begin{aligned}
\left(\lambda-p^{\prime}\right) \mathrm{a}= & \left(1-\kappa_{1} a_{2} p\right) \mathrm{t}_{1}+p\left[\left(a_{2}^{\prime}-\kappa_{2} a_{3}\right) \mathrm{t}_{2}+\sum_{i=3}^{n-2}\left(a_{i}^{\prime}+a_{i-1} \kappa_{i-1}-a_{i+1} \kappa_{i}\right) \mathrm{t}_{i}+\right. \\
& \left.\left(a_{n-1}^{\prime}+a_{n-2} \kappa_{n-2}\right) \mathrm{t}_{n-1}+\left(a_{n}^{\prime}+\kappa_{n-1} a_{n-1}\right) \mathrm{t}_{n}\right] .
\end{aligned}
$$

So now we have

$$
\lambda-p^{\prime}=0
$$

and

$$
\begin{aligned}
& \left(1-\kappa_{1} a_{2} p\right) \mathrm{t}_{1}+p\left[\left(a_{2}^{\prime}-\kappa_{2} a_{3}\right) \mathrm{t}_{2}+\sum_{i=3}^{n-2}\left(a_{i}^{\prime}+a_{i-1} \kappa_{i-1}-a_{i+1} \kappa_{i}\right) \mathrm{t}_{i}+\right. \\
& \left.\left(a_{n-1}^{\prime}+a_{n-2} \kappa_{n-2}\right) \mathrm{t}_{n-1}+\left(a_{n}^{\prime}+\kappa_{n-1} a_{n-1}\right) \mathrm{t}_{n}\right]=0 .
\end{aligned}
$$

At the end, we will have the following system

$$
\left\{\begin{array}{l}
1-\kappa_{1} a_{2} p=0 \\
a_{2}^{\prime}-\kappa_{2} a_{3}=0 \\
a_{i}^{\prime}+a_{i-1} \kappa_{i-1}-a_{l+1} \kappa_{l}=0 \quad i=3, \ldots, n-2 \\
a_{n-1}^{\prime}+a_{n-2} \kappa_{n-2}=0 \\
a_{n}^{\prime}+a_{n-1} \kappa_{n-1}=0 \\
\sum_{i=2}^{n-1} a_{i}^{2}=1
\end{array}\right.
$$

which gives us the evolute of c (up to a constant).

When we consider an admissible curve c from $I_{n}^{(m)}$ the analogous system to system (3.10) does not determine the evolutes of c completely because the constants a_{n-m+l}, \ldots, a_{n} aren't actually in that system.

3.2. Evolutes in $\mathbf{I}_{3}^{(1)}$

If we put $\mathrm{n}=3$, the system (3.10) becomes
(3.11) $\left\{\begin{array}{l}a_{2}= \pm 1 \\ 1 \mp p \kappa=0 \\ a_{3}^{\prime} \pm \tau=0,\end{array}\right.$
and then, we have

$$
\begin{equation*}
p(s)= \pm \frac{1}{\kappa(s)}(\equiv \pm \rho(s)), \quad a_{3}(s)=k-\int_{0}^{s} \tau(\sigma) d \sigma . \tag{3.12}
\end{equation*}
$$

Inserting this into (3.7) we get the following corollary:
Corollary 4. The equation of evolute c^{*} of an admissible curve $\mathrm{c}(\mathrm{x}=\mathrm{x}(\mathrm{s}))$ in $\mathrm{I}_{3}^{(1)}$, where s is the parameter of the arc length on c , has the following form:

$$
\begin{equation*}
c^{*} \ldots \mathbf{x}^{*}(s)=\mathbf{x}(s)+\rho(s)\left[\mathbf{n}(s)+\left(k-\int_{0}^{s} \tau(\sigma) d \sigma\right) \mathbf{b}\right] . \tag{3.13}
\end{equation*}
$$

The projection of (3.13) on the basic plane $\mathrm{x}_{3}=0$ is

$$
\widetilde{\mathbf{x}}^{*}=\widetilde{\mathbf{x}}(\mathrm{s})+\rho(\mathrm{s}) \widetilde{\mathbf{n}}(\mathrm{s})
$$

and this is a formula of an evolute in the Euclidean case.
Corollary 5. The curvature κ^{*} and the torsion τ^{*} of the evolute c^{*} of a curve $\mathrm{c} \subset \mathrm{I}_{3}^{(1)}$ depend on the curvature κ and torsion τ of c in the following way:

$$
\begin{equation*}
\kappa^{*}(s)=\frac{\kappa^{3}(s)}{\left|\kappa^{\prime}(s)\right|}, \quad \tau^{*}(s)=-\frac{\kappa^{3}}{\kappa^{\prime}}\left(k-\int_{0}^{s} \tau(\sigma) d \sigma\right) . \tag{3.14}
\end{equation*}
$$

Proof. If c* is given by (3.13) we have

$$
\begin{aligned}
& \dot{\mathbf{x}}^{*}=\rho^{\prime} \mathbf{n}+\rho^{\prime}\left(k-\int_{0}^{s} \tau(\sigma) d \sigma\right) \mathbf{b}, \\
& \ddot{\mathbf{x}}^{*}=-\rho^{\prime} \kappa \mathbf{t}+\rho^{\prime \prime} \mathbf{n}+\rho^{\prime \prime}\left(k-\int_{0}^{s} \tau(\sigma) d \sigma\right) \mathbf{b}, \\
& \dddot{\mathbf{x}}^{*}=-\left(2 \rho^{\prime \prime} \kappa+\rho^{\prime} \kappa^{\prime}\right) \mathbf{t}+\left(\rho^{\prime \prime \prime}-\rho^{\prime} \kappa^{2}\right) \mathbf{n}+\rho^{\prime \prime \prime}\left(k-\int_{0}^{s} \tau(\sigma) d \sigma\right) \mathbf{b}, \\
& \left|\dot{\widetilde{\mathbf{x}}}^{*}\right|=\left|\rho^{\prime}\right|, \\
& \operatorname{Det}\left(\ddot{\mathbf{x}}^{*}, \ddot{\mathbf{x}}^{*}\right)=\rho^{\prime 2} \kappa, \\
& \operatorname{Det}\left(\dot{\mathbf{x}}^{*}, \ddot{\mathbf{x}}^{*}, \dddot{\mathbf{x}}^{*}\right)=\left(\rho^{\prime}\right)^{2} \kappa^{3}\left(c-\int_{0}^{s} \tau(\sigma) d \sigma\right) .
\end{aligned}
$$

Formulae (2.10) complete the proof.

Example 2. The evolute c^{*} of the helix, given by (2.11), is an isotropic straight line

$$
\mathrm{c}^{*} \ldots \mathbf{x}(s)=(0,0, \mathrm{ak}) .
$$

In the projection on $\mathrm{x}_{3}=0$ it shows that the evolute of a circle is the point.
Corollary 6. The evolute of a given curve is a plain curve if and only if c is a plane curve.

Proof. Namely, $\tau^{*}=0$ if and only if $\kappa=0$ or $\int \tau(\sigma) d \sigma=k$. The condition $\kappa=0$ contradicts the fact that c is admissible. The second condition can be written as $\tau=0$ which means that c lies in a nonisotropic plane.

Corollary 7. If a curve c has a constant torsion $\tau_{0} \neq 0$, then the torsion of its evolute has the form

$$
\tau^{*}=-\frac{\kappa^{3}}{\kappa^{\prime}}\left(\dot{k}-\tau_{0} s\right) .
$$

REFERENCES:

[1] I. Berani. Prilozi diferencijalnoj geometriji izotropnih prostora. PhD thesis, PMF, University of Kosovo, Pristina, 1984.
[2] J.C.H. Gerretsen. Lectures on Tensor Calculus and Differential Geometry. P. Noordhoff N.V., Groningen, 1962.
[3] Ž. Milin-Šipuš and B. Divjak. Curves in n-dimensional k-isotropic space. Glasnik matematički, Vol.33, No. 53, 1998, pp.267-286.
[4] H. Sachs. Isotrope Geometrie des Raumes. Friedr. Vieweg \& Sohn, Braunschweig/ Wiesbaden, 1990.

Received: 31 July 1999
Accepted: 8 February 2000

Blaženka Divjak
 Željka Milin Šipuš

EVOLVENTE I EVOLUTE U n-DIMENZIONALNOM JEDNOSTRUKO IZOTROPNOM PROSTORU

Sažetak

Članak se sastoji od tri dijela. Prvi, uvodni dio, definira pojam dopustive krivulje u ndimenzionalnom jednostruko izotropnom prostoru i navodi Frenetove formule kao specijalni slučaj situacije u n-dimenzionalnom m-struko izotropnom prostoru $\mathrm{I}_{n}^{(m)}$ opisane u [3]. U drugom dijelu dana je formula evolventi dopustive krivulje, kao i sustav diferencijalnih jednadžbi koji određuje evolvente k-tog reda u $\mathrm{I}_{\mathrm{n}}^{(\mathrm{1})}$. Nadalje, izvedena je fleksija i torzija
evolventi dopustive krivulje u trodimenzionalnom jednostruko izotropnom prostoru $\mathrm{I}_{3}^{(1)} u$ ovisnosti o fleksiji i torziji dane krivulje, a dan je primjer evolvente cilindrične spirale. Treći dio bavi se evolutama dopustive krivulje u $\mathrm{I}_{\mathrm{n}}^{(1)}$. Naden je sustav diferencijalnih jednadžbi koje određuju evolutu dane dopustive krivulje $u \mathrm{I}_{\mathrm{n}}^{(1)}$, dana je eksplicitna formula evolute dopustive krivulje $u \mathrm{I}_{3}^{(1)}$, kao i fleksija i torzija takve evolute u ovisnosti o fleksiji i torziji dane krivulje. Razmotrene su i neke posljedice izvedenih formula, te pitanje evolventi i evoluta dopustivih krivulja u općem slučaju $\mathrm{I}_{n}^{(m)}$. Upotrijebljene definicije evolvente i evolute motivirane su analognim definicijama za euklidski slučaj koje su izrečene u [2].
Ključne riječi: dopustiva krivulja, evolvente, evolute, n-dimenzionalni jednostruko izotropni prostor.

