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We consider incorporating know!edge and time in multi-agent systems. Five tempora!
operators o, ., +, u. W are decribed. Thefollowing facts are proved: (a) for all formu!as
F in LK (propositiona!!ogic + know!edge operator K) if states s and sJ are equa!, then F
ho!ds in s if.f F ho!ds in sj, (b) the same resu!t does not ho!d in LKT (LK + the tempora!
operators). Finally, we characterize two propositions that state when the formu!as Ki(F) =>
+Kj(F) and Ki(F) => .Kj(F) hold.
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1. INTRODUCTION

The idea offonnal logical analysis ofmulti-agent systems is described in [1], [2],
[3], [4], [5] and [6]. A very interesting result that states that a knowledge base can be
modeled as a multi-agent system is given in [1].

In this paper, we shall characterize incorporating knowledge and time in multi-
agent systems. Some new resuIts regarding the properties of temporal operators and
knowledge operators will be proved.

The paper consists of five sections and an Appendix containing some proofs. In
Section 2, we introduce the basic notions of multi-agent systems. In Section 3, we
characterize in detail incorporating knowledge and time in multi-agent systems.
Section 4 contains the proofs of Proposition (Base): all the basic temporal operators
can be defined in tenns of the operators o and U, and Proposition (\f. ):\f. F holds
iff F holds infinitely ofien, and • \fF holds iff F holds almost everywhere.
Conclusions are given in Section 5. The Appendix contains the proofs of Proposition
(LK): for all fonnulas F in LK we have if states s and s I are equal, then F holds
in s iff F holds in s I; Proposition (LKT): the result in Proposition (LK) does not
hold in LKT; Proposition (Ki => • Kj): if agent i knows F, then agent j eventually
knows Funder the condition that some premise U (defined later) holds; and
Proposition (Ki => \fKj): if agent i knows F, then agent j always knows Funder
the condition that some premise Ul (defined later) hold
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2. BASIC NOTIONS

In this section, we introduce the basic concepts and notations.

Suppose we have a group consisting ofm agents, named 1,2, .., m . An agent may
be aman (a real agent), a software module or a communicating robot (an artificial
agent). An agent may even be a component of a computer system (a wire or a message
buffer). We assume these agents wish to reason about a world that can be described in
terms of a nonempty set P of primitive propositions. A language is just a set of
formulas, where the set of formulas LK of interest to us is defined as follows:

(1) The primitive propositions in P are formulas;

(2) If F and G are formulas, then so are oF, (F /\ G), (F v G), (F => G), (F ~
G), and Ki(F) for all i E {l, 2, .., m}, where Ki is a modal operator.

A Kripke structure M for an agent group {I, 2,.., m} over P is a (m + 2)-tuple

M = (S, I, kl, k2,.., km), where S is a set ofpossible worlds, I is an interpretation
that associates with each world in S a truth assignment to the primitive propositions in
P, and kl, k2'''' km are binary relations on S, called the possibility relations for
agents 1,2, .., m, respectively.

Given p E P, the express ion I[w](P) = true means that p is true in a world w in
a structure M. The fact that p is false, in a world v of a structure M, is indicated by
the expression I[v](P) = false.

The expression (u, v) E ki means that an agent i considers a world v possible,
given his information in a world u. Since ki defines what worlds an agent i
considers possible in any given world, ki will be called the possibility relation of the
agent i.

We now define what it means for a formula to be true at a given world in a
structure.

Let (M, w) 1=F mean that F holds or is true at (M, w). Definition of 1= is as
follows:

(a) (M, w) 1=p iff I[w](p) = true, where p E P;
(b) (M, w) 1=F /\ G iff (M, w) 1=F and (M, w) 1=G;
(c) (M, w) 1=F v G iff (M, w) 1=F or (M, w) 1=G;
(d) (M, w) 1=F => G iff (M, w) 1=F implies (M, w) 1=G;
(e) (M, w) 1=F ~ G iff (M, w) 1=F => G and (M, w) 1=G => F;
(f) (M, w) 1=oF iff (M,w) I;t F, that is, (M, w) 1=F does not hold;
(g) M 1=F iff (M, w) 1=F for all WES.

Finally, we shali define a modal operator Ki, where Ki(F) is read: Agent
knows F.

(h) (M, w) 1=Ki(F) iff (M, t) 1=F for all t E S such that (w, t) Eki.
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In (h) we have that an agent i knows F in a world w of a strueture M exaetly
if F holds at all worlds t that the agent i eonsiders possible in w.

Multi-Agent Systems

A multi-agent system is any eolleetion of interaeting agents. Our key assumption
is that if we look at the system at any point in time, eaeh of the agents is in some state.
We refer to this as the agent's loeal state. We assume that an agent's loeal state
eneapsulates all the information to which the agent has aeeess. As eaeh agent has a
loeal state, it is very natural to think of the whole system as being in some (global)
state. The global state includes the loeal states of the agents and the loeal state of an
environment. Aeeordingly, we divide a system into two eomponents: the environment
and the agents, where we view the environment as everything else that is relevant.
Also, the environment ean be viewed as just another agent. We need to say that a
given system ean be modeled in many ways. How to divide the system into agents and
environment depends on the system being analyzed.

Let Le be a set of possible loeal states for the environment and let Li be a set of
possible loeal states for agent i , i = I, .., n. We define G = Le x LI x .. x Ln to be
the set of global states. A global state deseribes the system at a given point in time.
Sinee a system eonstantly ehanges (it is not a statie entity), we are interested in how
these systems ehange over time. We take time to range over the natural numbers, that
is, the time domain is the set of the natural numbers, N.

A run over G is a funetion r: N ~ G.

Thus, a run over G ean be identified by a sequenee of global states in G. The run
r represents a eomplete deseription of how the system's global state evolves over
time. Thus, r(O)deseribes the initial global state of the system in a possible execution,
r( I) deseribes the next global state, and so on.

If rem) = (se, sl, .., sn), then we define r[e](m)=se and r[i](m)=si, for i=I, .., n.

Note that r[i](m) = si is the loeal state of the agent i at the (global) state rem).

A system Rover G is a set of runs over G. The system R model s the possible
behaviors of the system being modeled.

Knowledge in Multi-Agent Systems

We assume that we have a set P ofprimitive propositions, whieh we ean think of
as describing basic facts about a system R. Let I be an interpretation for the
propositions in P over G, which assigns truth values to the primitive propositions at
the global states. Thus, for every p E P and s E G, I[s](p) E {true, false}. An
interpreted system IS is a pair (R, 1).

Now, we define knowledge in an interpreted system IS.

Let IS = (R, I) be an interpreted system. A Kripke structure for IS, denoted

M(lS) = (S, I, kl, .., kn), is defined in a straightforward way.
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s = {rem) IrE R, m E N}, that is, S is the set of the global states at the points
(r,m) in the system R.

The possibility relations kl, k2, .., kn are defined as follows.

Let rem) = (se, sl, .., sn), r'(m') = (se', sl ', .., sn') be two global states in S. We
say that rem) and r'(m') are indistinguishable to an agent i iff si = si'.

Thus, the agent i has the same local state in both rem) and r'(m'). We define

ki = {(rem), r'(m') E S X S I rem) and r'(m') are indistinguishable to the agent
i}, i = 1,2, .., n.

Accordingly, (r(m), r'(m'j) E ki iff si = si', i = 1,2, .., n.

There is no possibility relation ke for the environment because we are not
usually interested in what the environment knows.

Now, it is evident what it means for a formula F in LK to be true at a state rem)
in an interpreted system IS. For instance, we have

(IS, rem»~1=p iff I[r(m)](p) = true, for all p E P.

(IS, rem»~ 1= Ki(F) iff (IS, r'(m') 1= F for all r'(m') E S such that (r(m),
r'(m'» Eki.

We say that a formula F in LK is valid in an interpreted system IS, denoted IS
1=F , iff

(IS, rem»~ 1=F for all rem) E S.

Let us note that we do not as sume that the agents compute their knowledge in any
way, or that they can necessarily answer questions based on their knowledge. We
interpret knowledge as an extemal one, ascribed to the agents by someone reasoning
about the system.

To be able to make temporal statements, we extend our language LK byadding
temporal operators, which are new modal operators for talking about time. This
language will be denoted by LKT., and will be used for reasoning about events that
happen along asingle run r in the system R.

We define here five temporal operators: o (next time), • (always), • (eventually),
U (until), and W (waiting-for, or unless).

The Next Operator o
oF, read next F, is defined by (IS, rem»~1=oF iff (IS, rtrn+l ) 1=F .

Thus, oF holds at state rem) iff F holds at the next state r(m+ I).

The AJways Operator •
\fF, read aJways F, is defined by (IS, r(m» 1=\fF iff (IS, rem'»~1=F for all m'~ m.
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Accordingly, .F holds at state rem) itf F holds at state rem) (now) and at all
later states.

The Eventually Operator +
+F ,read eventually F, is defined by (IS, rtrn) 1=+F itf (IS, rem'»~1=F for some m'z m.

Thus, + F holds at state r(m) itf F holds at state rem) or some state in the
future.

The Until Operator U
F UFI, read F until FI, is defined by (IS, r(m» 1=F U FI itf
(IS, rtrn') 1=FI for some m' ~ m and (IS, rfrn") 1=F for all m" with m sm" < m'.

The until formula F U F 1 predicts the eventual occurrence of F I and states that
F holds continuously at least until the first occurrence of F I.

The Unless (Waiting-for) Operator W
F W FI, read F unless FI, has the following semanties.
(IS, r(m» 1=F W FI itf (IS, rtm) 1=F U FI or (IS, rtrn) 1=.F.

Thus, the formula F W F 1 express es the property that F holds continuously
either until the next occurrence of F 1 or throughout the sequence of states.

Note that our interpretation of oF makes sense because our notion of time is
discrete. All the other temporal operators make perfect sense even for continuous
notions of time.

2. SOME PROPERTIES OF LKT-FORMULAS

We have defined the five temporal operators: o, ., +, U, and W. In the following
proposition we shall show that we can take o and U as our basic temporal operators,
and defmev, +, and W in terms of U.

Proposition (Base)
We have
(1) ISI=.F~-,+-,F (2) IS 1=+F ~ True U F .

Proof (1)

Let rtmj sS be an arbitrary state.We would like to show (IS, r(m»I=.F<=:>-,+-,F .

Because (IS, r(m» I=.F iff (for all m' ~ m) [(IS, r(m'» 1=F] iff

(for all m' ~ m)[(IS, rem'»~ It -,F] iff(IS, rem»~ It+-,F iff(lS, r(m» 1=-,+-,F, we
have (IS, r(m» 1= .F <=:>-,+-,F, as desire
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Proof (2)

Because IS 1=True, we have (for all m E N)[(IS, rem»~1=True]. Now, we
proceed as follows.

Let rem) be an arbitrary state in S. We need to prove (IS, rem»~ I=+F<=> True U F.

Because (IS, rem»~1= +F iff (for some m' ~ m)[(IS, rem'»~ 1=F] iff
(for some m' ~ m)[(IS, rem'»~ 1=F] and
(for all m" with m s; m" < m')[(IS, r(m") 1=True] iff (IS, rem»~ 1=True UF.
Consequently, (IS, rem»~ 1= +F <=>True U F.

Proposition( •• )
Wehave
(1) (IS, rem»~1=• +F iff the set {m' I (IS, rem'»~1=F} is infinite.

(2) (lS, rem»~1=•• F iff (for some m')(for all m" ~ m')[(IS, r(m"» 1=F]

Proposition (. + ) says that • + F holds iff F holds infinitely ofien, and +. F
holds iff F holds almost everywhere.

Proof (1)

(IS, r(m» 1=• +F iff (for all m' ~ m)[(IS, rem'»~ 1= +F] iff
(for all m' ~ m)(for some m" ~ m')[(IS, rtrn") 1=F] iff {m" I (IS, run") 1=
F} is infinite.

Proof (2)

(IS, rem»~ 1=+.F iff (for some m' ~ m)[(IS, rem'»~ 1= .F] iff
(for some m' ~ m)(for all m" ~ m')[(IS, r(m") 1=F], that is, (IS,r(m» 1=+.F
iff F holds almost everywhere.

We can see that the temporal operators defined talk about events that happen only
in the present or the future, not events that have happened in the past. These operators
suffice for many applications, but it is not a problem to define temporal operators for
reasoning about the past. The past temporal operators will be considered in a
forthcoming paper.

In the following proposition, we state that if rem) and r'(m') are equal states,
then F holds in rem) iff F holds in r'(m'). The result is true for every formula F in
LK.

Proposition (LK)
Let IS = (R, I) be an interpreted system. Then
(for all rem), r'(m') E S)(for all F E LK)[r(m) = r'(m') =>
(IS rrrnn 1=F <=>(lS r'(m')) 1=Fl.
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Proposition (LK) does not hold in LKT. To show that, we shall construct (in the
Appendix) an interpreted system IS = (R, I) such that rem), r'(m') E S and rem) =
r'(m'), but (IS, runl) F +p and (IS, r'(m') F -.+p for some proposition p E P.

Proposition (LKT)
Proposition(LK) does not hold in LKT.

Now, we shall consider some of the important agent properties. These properties
reiate the knowledge of two agents, and are important ifwe wish to introduce an order
in the set ofagents. Understandably, this order can be very helpful when we analyze
the respective multi-agent system.

In the following propositions, we shall use a set S[j, r](m') defined by
S[j, r](m') = {ri(mi) I (r(m'), ritmi) E kj}. Thus, S[j, r](m') is the set of the states in
S that agent j considers possible in the state rem').

Proposition (Ki => • Kj)
If U: (for some m' ~ m)[r(m) x SU,r](m') S;;; ki], then
(for all F E LKT)[(IS,r(m» t= Ki(F) => • Kj(F)].

Proposition (Ki => +Kj) states that if agent i knows F, then agent j eventually
knows F, under the condition that Uhoids.

Proposition (Ki => • Kj)
If Ul: (for all m' ~ m)[r(m)x SU,r](m') S;;; ki], then
(for all F E LKT)[(IS,rem»~t= Ki(F) => .Kj(F)].

Accordingly, agent j always knows F if agent i knows F, under the condition
that Ul holds.

3. CONCLUSIONS

We have described incorporating knowledge and time in multi-agent systems. We
have proved

Proposition (Base): all the basic temporal operators can be defined in terms of the
operators o and U, and proposition (. +):. +F holds iff F holds infinitely often,
and +.F holds iff F holds almost everywhere. The proofs ofProposition (LK): for
all formulas F in LK we have if states s and s1 are equal, then F holds in s iff
F holds in sl; and Proposition (LKT): the result in proposition (LK) does not hold in
LKT are given in the Appendix. Also in the Appendix, we have given the proofs of
Proposition (Ki => • Kj): if agent i knows F, then agent j eventually knows F
under the condition that the premise U holds; and Proposition «Ki => .Kj): if agent
i knows F, then agent j always knows Funder the condition that the premise Ul
holds.
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Because the theory of multi-agent systems is a very important fonnal tool for
describing and analyzing real systems, in a forthcoming paper we shall investigate the
language LKT extended with the past temporal operators. Also an open problem
remains: how to characterize a graphical representation of the language LKT?

APPENDIX

Proof (Proposition (LK»

The fact is evident for a Boolean combination of propositions. Now, let F have
the form F = Ki(G). We have (IS, r(m» 1=Ki(G) iff (for all ri(mi) E S)[(r(m),
ri(mi» E ki => (IS, ritmi) 1=G] iff (for all ri(mi) E S)[(r'(m'), ritmi) E ki => (IS,
riunij) 1=G] iff (IS, r'(m') 1=Ki(G), as desired.

Proof (Proposition (LKT»

Let r and r' be two runs as follows.

r: r(O), r(1), .., r(k),... r': r'(O), r'(1), .., r'(k), ... ; where r(O) = r'(O).

Next, we define the interpretation I of IS like this:

I[r(O)](p) = true and I[r'(m')](p) = false for all r'(m'). Consequently, we have
(IS, r(O» 1= +p and (IS, r'(O) 1=-, +p

Proof (Proposition (Ki => +Kj)

Assume U and V:(IS, r(m»1= Ki(F). We would like to show (IS, rem»~1=+Kj(F).

From the assumption V, we have
(for all ri(mi) E S)[(r(m), ritmi) E ki => (IS, ritmi) 1=F]. Let m' ~ m be such
a point that rem) x S[j, r](m') ~ ki. We shall prove (IS, run'j) 1=Kj(F).

Let rj(mj) E S be an arbitrary state such that (r(m'), rj(mj)) E kj. It follows

rj(mj) E S[j, r](m'). Thus, from V we have (r(m), rj(mj» Eki. Therefore, (IS,
rj(mj)) t= F, that is, (IS, rem'»~ 1= Kj(F). Accordingly, we have (IS, r(m» 1=
+ Kj(F), as desired.

Proof (Proposition (Ki => • Kj)

Assume Ul and VI: (IS, rem»~ l= Ki(F). We need to show (IS, rem»~1=.Kj(F).

From VI we obtain (for all ri(mi) E S)[(r(m), ritmi) E ki => (IS, ri(mi» 1=F].

Let m' ~ m be an arbitrary point. We have to prave (IS, r(m'» 1=Kj(F).

Let rj(mj) be an arbitrary state such that (r(m'), rj(mj)) E kj. It follows rj(mj) E

S[j, r](m ').

Thus, from Ul we obtain (r(m), rj(mj»Eki. Therefore,(IS, rj(mj»t= F.We conclude

(IS, r(m'» 1=Kj(F). Because (for all m' ~ m)[(IS, nrn'j) 1=Kj(F)], we have
(IS, r(m» 1= .Kj(F).
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VIŠEAGENTNI SUSTAVI: UGRAĐlVANJE ZNANJA I VREMENA

Sažetak

U ovom članku razmatrali smo znanje i vrijeme u višeagentnim sustavima. Karakterizirali
smo pet temporalnih operatora: o, t", #, U i W, a zatim smo dokazali nekoliko propozicija
koje utvrđuju veze između temporalnih operatora ioperatora znanja.

Ključne riječi: baze manja, operatori manja, prosuđivanje o manju, temporalni operatori,
teorija manja, višeagentni sustavi.
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