Ivan LončarUDK : 513Faculty of Organization and InformaticsOriginal Scientific PaperVaraždinVaraždin

E-mail : Ivan.Loncar@foi.hr

Approximate systems of hyperspaces

In the present paper we give some partial answers to the following question. QUESTION. Let $X = \{X_a, p_{ab}, A\}$ be an an approximate inverse system of normal spaces. Under what conditions is the collection $2^X = \{2^{X_a}, 2^{p_{ab}}, A\}$ an approximate inverse system, i.e., under what conditions does this collection satisfy condition (A2)?

Key words: hyperspace, approximate inverse system and limit. Classification: 54B25,54D30.

1 Introduction

Let X be a topological space. The closure of $A \subseteq X$ is denoted by $Cl_X A$ or ClA.

For any topological space the set of all non-empty closed subsets of X is denoted by 2^{X} . The Vietoris topology on 2^{X} is the topology with a base

$$\langle U_1, U_2, ..., U_n \rangle = \{ F : F \in 2^X, F \subseteq \bigcup_{i=1}^n U_i, F \bigcap U_i \neq \emptyset, i = 1, ..., n \},$$
 (1)

where $U_1, ..., U_n$ are open subsets of X.

In the sequel we use the notion of normal cover [2, p. 379]. An open cover \mathcal{U} of a space X is normal if there exists a sequence \mathcal{U}_1 , \mathcal{U}_2 , ..., \mathcal{U}_n , ... of open covers of X such that $\mathcal{U}_1 = \mathcal{U}$ and \mathcal{U}_{n+1} is a star refinement of \mathcal{U}_n for n=1, 2, We denote by Cov(X) the set of all normal coverings of X. A T_1 space X is paracompact iff each open cover of X is normal [2, Theorem 5.1.12.]. A T_1 space X is normal iff each locally finite open cover of X is normal [2, p. 379].

If $\mathcal{U}, \mathcal{V} \in \text{Cov}(X)$ and \mathcal{V} refines $\mathcal{U}, \text{we write } \mathcal{V} \prec \mathcal{U}.$ If $f,g:Y \to X$ are \mathcal{U} -near mappings, i.e. if for any $y \in Y$ there exists $U \in \mathcal{U}$ with $f(y), g(y) \in U$, we write $(f,g) \prec \mathcal{U}$.

If X is a subspace of Y, and if \mathcal{U} is a cover of Y, then by the *trace* of \mathcal{U} on X is meant the cover $\{U \cap X: U \in \mathcal{U}\}$. The trace of \mathcal{U} on X is denoted by $\mathcal{U}|X$. If $f:X \to Y$ is a continuous mapping and if \mathcal{U} is a normal (respectively, locally finite) cover of Y, then $f^{-1}(\mathcal{U})=\{f^{-1}(U): U \in \mathcal{U}\}$ is a normal (respectively, locally finite) cover of X [1, 1.21. Proposition.]. If $X \subseteq Y$

and if \mathcal{U} is a normal (respectively, locally finite) cover of Y, then $\mathcal{U}|X$ is a normal (respectively, locally finite) cover of X [1, 1.22. Proposition.].

In this paper we study the approximate inverse system in the sense of S. Mardešić [8].

DEFINITION 1.1 An approximate inverse system is a collection $\mathbf{X} = \{X_a, p_{ab}, A\}$, where (A, \leq) is a directed preordered set, $X_a, a \in A$, is a topological space and $p_{ab}: X_b \to X_a$,

 $a \leq b$, are mappings such that $p_{aa} = id$ and the following condition (A2) is satisfied:

(A2) For each $a \in A$ and each normal cover $U \in Cov(X_a)$ there is an index $b \ge a$ such that $(p_{ac}p_{cd}, p_{ad}) \prec U$, whenever $b \le c \le d$.

We will call an inverse system in the sense of [2, p. 135.] a usual inverse system.

Other basic notions, including approximate mapping, the limit of an approximate system and approximate resolution, are defined as in [8] and [10].

2 P - embedded inverse systems

Let $f: X \to Y$ be a continuous mapping onto a normal space Y. We define a mapping $2^{f}: 2^{X} \to 2^{Y}$ by $2^{f}(K) = \operatorname{Cl}_{Y}(f(K)), K \in 2^{X}$. This mapping is continuous [6, Lemma 1.10]). If $\mathbf{X} = \{X_{a}, p_{ab}, A\}$ is an approximate inverse system of normal spaces, then we have the collection $2^{\mathbf{X}} = \{2^{X_{a}}, 2^{p_{ab}}, A\}$. It is natural to ask the following question.

QUESTION. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of normal spaces. Under what conditions is the collection $2^{\mathbf{X}} = \{2^{X_a}, 2^{p_{ab}}, A\}$ an approximate inverse system, i.e., under what conditions does this collection satisfy condition (A2)?

In this section we give some partial answer to this question. It is known that the collection $\beta \mathbf{X} = \{\beta \mathbf{X}_a, \beta \mathbf{p}_{ab}, \mathbf{A}\}$ is an approximate inverse system [7, Lemma 2.9]. Thus, the collection $2^{\beta \mathbf{X}} = \{2^{\beta X_a}, 2^{\beta p_{ab}}, \mathbf{A}\}$ is an approximate inverse system [14, Lemma (9.4)]. In the sequel we consider approximate inverse systems of normal spaces. If \mathbf{X} is an approximate inverse system of normal spaces, then there exists an embedding $\mathbf{E}_a : 2^{X_a} \to 2^{\beta X_a}$ defined by $\mathbf{E}_a(\mathbf{K}) = \mathrm{Cl}_{\beta X_a}\mathbf{K}, a \in \mathbf{A}, [5, p. 764, \mathrm{Lemma.}].$

LEMMA 2.1 The diagram

$$\begin{array}{cccc} 2^{X_a} & \stackrel{2^{p_{ab}}}{\longleftarrow} & 2^{X_b} \\ & \downarrow_{E_a} & & \downarrow_{E_b} \\ 2^{\beta X_a} & \stackrel{2^{\beta p_{ab}}}{\longleftarrow} & 2^{\beta X_b} \end{array}$$

(D2)

42

 $a,b \in A$, commutes.

Proof. Lemma follows from the equation

$$\beta p_{ab}[Cl_{\beta X_b}(F)] = Cl_{\beta X_a}Cl_{X_a}p_{ab}(F), \qquad F \in 2^{X_b}$$
(2)

We need to prove that

$$\beta p_{ab}[Cl_{\beta X_b}(F)] \supseteq Cl_{\beta X_a}Cl_{X_a}p_{ab}(F), \qquad F \in 2^{X_b}$$
(3)

and

$$\beta p_{ab}[Cl_{\beta X_b}(F)] \subseteq Cl_{\beta X_a}Cl_{X_a}p_{ab}(F), \qquad F \in 2^{X_b}$$
(4)

First, let us prove (3). From $F \subseteq Cl_{\beta X_b}(F)$ it follows that $\beta p_{ab}(F) \subseteq \beta p_{ab}Cl_{\beta X_b}(F)$. Thus, $p_{ab}(F) \subseteq \beta p_{ab}Cl_{\beta X_b}(F)$. We infer that $Cl_{\beta X_a}p_{ab}(F) \subseteq \beta p_{ab}Cl_{\beta X_b}(F)$. Hence, $Cl_{X_a}p_{ab}(F) \subseteq \beta p_{ab}Cl_{\beta X_b}(F)$ since $Cl_{X_a}p_{ab}(F) \subseteq Cl_{\beta X_a}p_{ab}(F)$. This means

that

 $\operatorname{Cl}_{\beta X_a} \operatorname{Cl}_{X_a} p_{ab}(F) \subseteq \beta p_{ab} \operatorname{Cl}_{\beta X_b}(F)$ since $\beta p_{ab} \operatorname{Cl}_{\beta X_b}(F)$ is closed.

Let us prove (4). Suppose, on the contrary, that there exists a point $\mathbf{x} \in \beta p_{ab}[Cl_{\beta X_b}(F)] \setminus Cl_{\beta X_a}Cl_{X_a}p_{ab}(F)$. This means that there exists a point $\mathbf{y} \in Cl_{\beta X_b}(F)$ such that $\beta p_{ab}(\mathbf{y}) = \mathbf{x}$ and a neighbourhood U (in βX_a) such that $U \cap Cl_{X_a} p_{ab}(F) = \emptyset$. Thus, $\mathbf{V} = (\beta p_{ab})^{-1}(\mathbf{U})$ and F are disjoint and V is a neighbourhood of y. Hence, $\mathbf{y} \notin Cl_{\beta X_b}(F)$, a contradiction. Thus, (4) is proved. Consequently, Lemma 2.1 is proved.

DEFINITION 2.2 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of normal spaces. We say that $2^{\mathbf{X}}$ is P - embedded in $2^{\beta \mathbf{X}}$ if each \mathbf{E}_a , $\mathbf{a} \in \mathbf{A}$, is a P - embedding, i.e., for each normal cover \mathcal{U} of $\mathbf{E}_a(2^{X_a})$ there exists a normal cover \mathcal{V} of $2^{\beta X_a}$ such that the trace $\mathcal{V}|\mathbf{E}_a(2^{X_a})$ is a refinement of \mathcal{U} .

In the sequel we identify $2^{\mathbf{X}} = \{2^{X_a}, 2^{p_{ab}}, A\}$ with $E(2^{\mathbf{X}}) = \{E_a(2^{X_a}), 2^{\beta p_{ab}}| E_b(2^{X_b}), A\}$. In this case we shall consider $2^{p_{ab}}$ as the restriction $2^{\beta p_{ab}}|E_b(2^{X_b})$ since the diagram 2.1 commutes. Moreover, 2^{X_a} is a subset of $2^{\beta X_a}$.

THEOREM 2.3 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of normal spaces such that $2^{\mathbf{X}}$ is P - embedded in $2^{\beta \mathbf{X}}$. Then $2^{\mathbf{X}} = \{2^{X_a}, 2^{p_{ab}}, A\}$ is an approximate inverse system.

Theorem follows from the following simple lemma.

LEMMA 2.4 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system. If $\{Y_a : a \in A\}$ is a collection of subsets Y_a of X_a such that $p_{ab}(Y_b) \subseteq Y_a$ and each Y_a is P - embedded in X_a , then $\mathbf{Y} = \{Y_a, p_{ab} | Y_b, A\}$ is an approximate inverse system.

Proof. Let \mathcal{U} be a normal cover of Y_a . There exists a normal cover \mathcal{V} of X_a such that $\mathcal{V}|Y_a$ refines \mathcal{U} . By virtue of (A2) for **X** there exists a $b \ge a$ such that $(p_{ad}, p_{ac}p_{cd}) \prec \mathcal{V}$, $b \le c \le d$. We infer that $(p_{ad}|Y_d, p_{ac}|Y_c, p_{cd}|Y_d) \prec \mathcal{V}|Y_a \prec \mathcal{U}$, $b \le c \le d$. It follows that the collection **Y** satisfies (A2), i.e., **Y** is an approximate inverse system. The proof is completed.

The main theorem of this section is the following theorem.

THEOREM 2.5 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of normal spaces. Then $2^{\mathbf{X}}$ is P - embedded in $2^{\beta \mathbf{X}}$ if and only if $\beta(2^{\mathbf{X}_a}) = 2^{\beta X_a}$, $a \in A$.

Proof. If 2^{X} is P - embedded in $2^{\beta X}$, then $2^{X_{*}}$ is P-embedded in $2^{\beta X_{*}}$, $a \in A$. Hence, $2^{X_{*}}$ is C^{*} - embedded in $2^{\beta X_{*}}$ and $2^{X_{*}}$ is pseudocompact [1, Theorem 15.16]. We infer that $\beta(2^{X_{*}}) = 2^{\beta X_{*}}$ since $2^{\beta X_{*}}$ is a compactification in which $2^{X_{*}}$ is C^{*} - embedded [2, 3.6.3. Corollary.].

Conversely, if $\beta(2^{X_*}) = 2^{\beta X_*}$, then X_a and 2^{X_*} are pseudocompact [3, Theorem 2.1 and its proof]. Moreover, 2^{X_*} is C^{*} - embedded in $\beta(2^{X_*}) = 2^{\beta X_*}$. This means that 2^{X_*} is P - embedded in $\beta(2^{X_*}) = 2^{\beta X_*}$ [1, Theorem 15.16]. The proof is complete.

Let m be an infinite cardinal. We say that a Tychonoff space X is mbounded if each subset S of X with $|S| \leq m$ has a compact closure. Each m - bounded space X is m - compact. The property of being m - bounded is productive, closed hereditary and preserved under continuous mapping.

THEOREM 2.6 Let X be a normal space. Then 2^X is m - bounded iff X is m - bounded.

Proof. The proof is a straightforward modification of the proof of Theorem 5 of [5]. For the sake of completeness we give this proof. If 2^{X} is m - bounded, then X is also since X, as normal space, is embedded in 2^{X} as a closed subspace.

Conversely, let us prove that 2^X is m - bounded if X is. Let $E:2^X \to 2^{\beta X}$ be the embedding defined by $E(K) = Cl_{\beta X}(K), K \in 2^X$. Let $S = \{K_{\alpha} : \alpha \in A\}$ be a subset of 2^X of the cardinality $|A| \leq m$. Let \mathcal{B} be the closure of S in $2^{\beta X}$ and let \mathcal{C} be the closure of S in 2^X . We have $E(\mathcal{C}) = \mathcal{B} \cap E(2^X)$. It will be sufficient to prove that $\mathcal{B} \subseteq E(2^X)$, since then $E(\mathcal{C}) = \mathcal{B} \cap E(2^X)$. It will be compact since \mathcal{B} is. Let K^* be any point of \mathcal{B} in $2^{\beta X}$, and let $\{Cl_{\beta X}(K_{i_{\mu}}): i_{\mu} \in M\}$ be a net converging to K^* in $2^{\beta X}$. Let $K = K^* \cap X$. Suppose that $x \in K^* \setminus Cl_{\beta X}(K)$. Then let $x \in U$ with U open in βX with $[Cl_{\beta X}(U)] \cap [Cl_{\beta X}(K)] = \emptyset$. Since $Cl_{\beta X}(K_{i_{\mu}}) \to K^*$, there exists a $\gamma \in M$ such that, for $\mu \geq \gamma$, $[Cl_{\beta X}(K_{i_{\mu}})] \cap U$ $\neq \emptyset$. Thus, $K_{i_{\mu}} \cap U \neq \emptyset$ for $\mu \geq \gamma$. Let $M' = \{\mu : K_{\mu} \cap U \neq \emptyset\}$ and let $a_{\mu} \in K_{\mu} \cap U$, for each $\mu \in M'$.Let $B = Cl_X\{a_{\mu} : \mu \in M'\}$. Then B is compact since X is m - bounded. Therefore, there exists a subnet of $\{a_{i_{\mu}}\}$ converging to some $a \in B$. One can easily show that $a \in K^*$ and thus $a \in K^* \cap X = K$. On the other hand, $a \in Cl_{\beta X}(U)$ and $[Cl_{\beta X}(U)] \cap K = \emptyset$. This is impossible. Thus $K^* = Cl_{\beta X}(K)$, i.e., $K^* = E(2^X)$ and $\mathcal{B} \subseteq E(2^X)$. The proof is complete.

THEOREM 2.7 Let X be a normal \aleph_0 - bounded space. Then $\beta(2^X) = 2^{\beta X}$.

Proof. By virtue of [3, Theorem 3.8] it follows that $\beta(2^X) = 2^{\beta X}$. The proof is complete.

THEOREM 2.8 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of normal \aleph_0 - bounded spaces. Then $2^{\mathbf{X}} = \{2^{X_a}, 2^{p_{ab}}, A\}$ is an approximate inverse system.

Proof. Apply Theorems 2.7 and 2.5.

THEOREM 2.9 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of Tychonoff |A| - bounded spaces. Then limX is a Tychonoff |A| - bounded space. If each X_a is non-empty, then limX is non-empty.

Proof. The non-emptiness of $\lim X$ follows from Theorem 2.4. [7]. Moreover, $\lim X$ is |A| - bounded since $\prod X_a$ is |A| - bounded and $\lim X$ is a closed subset of $\prod X_a$.

LEMMA 2.10 If $\mathbf{p} = \{p_a : a \in A\} : X \to \mathbf{X} = \{X_a, p_{ab}, A\}$ is an approximate resolution such that all spaces X_a are Tychonoff spaces and X is |A| - compact, then \mathbf{p} is a limit of \mathbf{X} .

Proof. The proof is the same as the proof of Theorem 3.1 [10] in all steps except Step (v). In the case considered here, the Cauchy family C(y) has the non - empty intersection, since C(y) has the finite intersection property, has the cardinality $\leq |A|$ and X is |A| - compact. The proof is complete.

Let us note that the converse of the above theorem is generally false [10, Example 3.2]. If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an approximate system of pseudocompact spaces, then we have

THEOREM 2.11 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of pseudocompact spaces X_a with limit X and natural projections $p_a: X \to X_a$. Then $\mathbf{p} = \{p_a : a \in A\} : X \to \mathbf{X}$ is an approximate resolution iff X is Pembedded in $\lim \beta \mathbf{X}$.

Proof. If p is an approximate resolution, then by (B1), for each normal cover \mathcal{U} of X there is an $a \in A$ and a normal cover \mathcal{U}_b , $b \ge a$, of X_b such that $p^{-1}(\mathcal{U}_b)$ refines \mathcal{U} . Since each X_b is P-embedded in βX_b [1, Theorem 15.16] (as a pseudocompact C^{*}-embedded subspace) there exists a normal cover \mathcal{V}_b of βX_b such that $\mathcal{V}_b|X_b$ refines \mathcal{U}_b . Then $\mathcal{V} = P_b^{-1}\mathcal{V}_b$ is a normal cover of

45

 $\lim \beta X$, where $P_b : \lim \beta X \to \beta X_b$, $b \in A$, are the natural projections. It is clear that the trace $\mathcal{V}|X$ refines \mathcal{U} . Thus, X is P - embedded in $\lim \beta X$. Conversely, let X be P - embedded in $\lim \beta X$. Then for each normal cover \mathcal{U} of X there is a normal cover \mathcal{V} of $\lim \beta X$ such that $\mathcal{V}|X$ refines \mathcal{U} . There is an $a \in A$ such that for each $b \geq a$ there exists a normal cover \mathcal{V}_b with $P_b^{-1}(\mathcal{V}_b) \prec$ \mathcal{V} since βX is an approximate resolution [8, Theorem 9.]. It is clear that $P_b^{-1}(\mathcal{V}_b)|X \prec \mathcal{V}$. Thus, p satisfies (B1) [8, p. 252]. In order to complete the proof it suffices to prove that p satisfies (B2) [8, p. 252]. Let \mathcal{W} be any normal cover of X_a . There exists a normal cover \mathcal{Z} of βX_a such that $\mathcal{Z}|X_a$ refines \mathcal{W} since X_a is P - embedded in βX_a [1, Theorem 15.16]. By virtue of (B2) for $\mathbf{P} = \{P_a : a \in A\} : \lim \beta X \to \beta X$ there exists a $b \in A$, $b \geq a$, such that for each $c \geq b \beta p_{ac}(\beta X_c) \subseteq \operatorname{st}(P_a(\lim \beta X), \mathcal{Z})$. It follows that $p_{ac}(X_c) \subseteq \operatorname{st}(p_a(\lim X, W))$. This means that p satisfies (B2). The proof is completed.

In connection with the last theorem, one can ask under what conditions is $\mathbf{P}|\mathbf{X} = \{\mathbf{P}_a|\mathbf{X}\} : \mathbf{X} \rightarrow \beta \mathbf{X} = \{\beta \mathbf{X}_a, \beta \mathbf{p}_{ab}, \mathbf{A}\}$ an approximate resolution? We have the following theorem.

THEOREM 2.12 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of Tychonoff spaces X_a . Then $\mathbf{P}|X = \{P_a|X : a \in A\} = \{p_a : a \in A\} : X \rightarrow \beta \mathbf{X}$ $= \{\beta X_a, \beta p_{ab}, A\}$ is an approximate resolution if and only if $X = \lim \mathbf{X}$ is a dense subset of $\lim \beta \mathbf{X}$, P - embedded in $\lim \beta \mathbf{X}$.

Proof. Theorem follows from Proposition 2.2. of [11].

THEOREM 2.13 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system such that $2^{\mathbf{X}}$ is P - embedded in $2^{\beta \mathbf{X}}$ and let $P_a : \lim 2^{\mathbf{X}} \to 2^{X_a}$ be a natural projection, $a \in A$. Then $\mathbf{P} = \{P_a : a \in A\} : \lim 2^{\mathbf{X}} \to 2^{\mathbf{X}}$ is an approximate resolution iff $\lim 2^{\mathbf{X}}$ is P - embedded in $\lim 2^{\beta \mathbf{X}}$.

THEOREM 2.14 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of pseudocompact spaces X_a with limit X and surjective projections $p_a: X \to X_a$. Then $\mathbf{p} = \{p_a : a \in A\} : X \to \mathbf{X}$ is an approximate resolution iff X is pseudocompact and $\lim \beta \mathbf{X} = \beta \lim \mathbf{X}$.

Proof. If X is pseudocompact and $\lim \beta \mathbf{X} = \beta \lim \mathbf{X}$, then X is P - embedded in $\lim \beta \mathbf{X}$ since X is pseudocompact and C^{*} - embedded in $\beta \mathbf{X} = \beta \lim \mathbf{X}$ [1, Theorem 15.16]. By virtue of Theorem 2.11 we infer that **p** is a resolution. Conversely, if **p** is an approximate resolution, then X is P - embedded in $\lim \beta \mathbf{X}$ (Theorem 2.11). From Theorem 15.16 of [1] it follows that X is pseudocompact and C^{*} - embedded in $\lim \beta \mathbf{X}$. We infer that $\lim \beta \mathbf{X} = \beta \lim \mathbf{X}$ since $\lim \beta \mathbf{X}$ is a compactification of X in which X is C^{*} - embedded. The proof is complete. **THEOREM 2.15** Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system such that $2^{\mathbf{X}}$ is P - embedded in $2^{\beta \mathbf{X}}$ and let P_a : $\lim 2^{\mathbf{X}} \to 2^{X_a}$ be a natural projection which is surjective for each $a \in A$. Then $\mathbf{P} = \{P_a : a \in A\}$: $\lim 2^{\mathbf{X}} \to 2^{\mathbf{X}}$ is an approximate resolution iff $\lim 2^{\beta \mathbf{X}} = \beta(\lim 2^{\mathbf{X}})$.

ACKNOWLEDGEMENT. The author wishes to express his gratitude to the referee for his help and suggestions.

47

References

- Aló R.A. and Shapiro H.L., Normal topological spaces, Cambridge University Press, 1974.
- [2] Engelking R., General topology, PWN, Warszawa, 1977.
- [3] Ginsburg J., On the Stone Cech compactification of the space of closed sets, Transactions of the American Math. Soc. 215(1976), 301 311.
- [4] Ginsburg J., Some results on the countable compactness and pseudocompactness of hyperspaces, Canad. J. Math. 6(1975), 1392 - 1399.
- [5] Keesling J., Normality and the properties related to compactness in hyperspaces, Proc. Amer. Math. Soc. 24 (1970), 760 766.
- [6] Lončar I., Hyperspaces of the inverse limit space, Glasnik matematički 27(47) (1992), 71-84.
- [7] Lončar I., Approximate limits of m compact spaces, Glasnik Matematički 30(50) (1995), 73 - 84.
- [8] Mardešić S., On approximate inverse systems and resolutions, Fund. Math. 142(1993),241-255.
- [9] Mardešić S. and Rubin L.R., Approximate inverse system of compacta and covering dimension, Pacific J. Math. 138(2):129-144, 1989.
- [10] Mardešić S. and Watanabe T., Approximate resolutions of spaces and mappings, Glasnik Mat., 24(3):587-637, 1989.
- [11] Matijević V., Spaces having approximate resolutions consisting of finite - dimensional polyhedra, Publ. Math. Debrecen 46(1995), 301 - 314.
- [12] Michael E., Topologies on spaces of subsets, Transactions of the American Math. Soc. 71 (1951), 152 - 182.
- [13] Nadler S.B., Hyperspaces of sets, Marcel Dekker, Inc., New York, 1978.
- [14] Segal J., Watanabe T., Cosmic approximate limits and fixed points, Trans. Amer. Math. Soc. 333 (1992), 1-61.

Received: 1996-02-16

Lončar I. Hiperprostor aproksimativnog limesa

SAŽETAK

U radu su izučavani aproksimativni inverzni sistemi $\mathbf{X} = \{X_a, p_{ab}, A\}$ kod kojih je svaki 2^{X_a} P - smješten u $2^{\beta X_a}$. Tada kažemo da je $2^{\mathbf{X}}$ P - smješten u $2^{\beta \mathbf{X}}$ (definicija 2.2).

Osnovni teorem 2.5 tvrdi da je $2^{\mathbf{X}} = \{2^{X_a}, 2^{p_{ab}}, A\} P$ - smješten u aproksimativni inverzni sistem $2^{\beta \mathbf{X}} = \{2^{\beta X_a}, 2^{\beta p_{ab}}, A\}$ onda i samo onda kada je $\beta(2^{X_a}) = 2^{\beta X_a}$ za svaki $a \in A$.

Teoremi 2.13 i 2.15 daju nužne i dovoljne uvjete da bi P - smješteni sistem bio aproksimativna rezolventa.