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Inverse Limit of Continuous Images of Arcs

Abstract. The main purpose of this paper is to study the inverse limits of
continuous image of arcs. We shall prove:
a) If X = {Xa, Pab, A}is a monotone well- ordered inverse system of continuous
image of arcs such that cf(A)# Wl, then X = limX is the continuous image of
an arc (Theorem 2.17).
b) Let X = {Xa, Pab, (A,:S;)} be an inverse system of continuous image of
arcs with monotone surjective bonding mappings. Then X = limX is the
continuous image of an arc if and only if for each cyclic element Z of X and
the points x, y, zEZ there exists a countable directed subset (B, :S;)of (A,
:S;)such that for each countable directed subset (C, :S;)of (A, :S;)with e;;::?B
the restriction hBc = PBcI1im{Wd(:z:,y,z),Pddl,D} of the canonical projection
pB C is a homeomorphism

hBC : lim{Wd(:Z:, y, Z),Pddl' D} --+ lim{Wc(:Z:, y, Z),PCCl' C}

(Theorem 2.22).
Keywords and phrases: Inverse system and limit, continuous image of an arc.
Mathematics subject classification {1991} : 54B25 ,54D30.

1 Preliminaries
The cardinality of a set X will be denoted by card(X). The cofinality of a
cardinal number m will be denoted by cf(m). eov(X) is the set of all normal
coverings of a topological space X.For other details see [1]. A basis of (open)
normal coverings of a space X is a collection C of normal coverings such that
every normal covering UEeov(X) admits a refinement VE C. We denote by
cw(X) (covering weight) the minimal cardinal of a basis of normal coverings
of X [9, p. 181J.
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Loncar I. Inverse limit of continuous images of arcs

LEMMA 1.1 [9, Example 2.2)' If X is a compact Hausdorff space, then
cw(X) = w(X).

In the sequel we shall use the following theorem [16, Theorem 1.1].

THEOREM 1.2 Let X be a regular space. For each cardinal number). <5:cw(X)
there exists a subspace M>. ~X such that card(M>.)<5:c). and w(M>./::::')..

LEMMA 1.3 Let X be a regular space and let F= {Fa: a < W,...+2}, where
J.L is a fixed ordinal number, be an increasing transfinite sequence of subspaces
of X with w(Fa) = ~o and let Y = U{Fa: a < W,...+2}' Then wry) = ~o.
Moreover, if each Fa is closed, then there exists an ao such that Fao = F{3, for
each f3 ~ ao, and Y = Fao is closed.

Proof. Suppose that w(Y)~ ~l' By virtue of Theorem 1.2, for)' = ~l' there
exists a subspace M>.of Y such that card(M>.)<5:c~l and w(M>.)~ ~l' It is clear
that

M>. = (M>. n Fo) U[U{M>. n(Fa+l \ Fa) : 1<5:ca < W,...+2}]' (1)

If each Za = M>.n(Fa+1 \ Fa) is non empty, then we have card(M>.) = ~""+2'
This contradicts card(M>.)<5:c~l' We infer that there exists a f3 < W,...+2 such
that z; = 0 for each 'Y ~ f3. Hence, M>.~F{3. Thus, w(M>.)<5:cw(F{3)= ~o.
This contradicts w(M>.)~ ~l' Now, by virtue of [4, Problem 2.7.9 (e), p. 155]
it follows that there exists an ao such that F00 = F{3for each f3 ~ ao. It is
clear that Y = F00' Thus, Y is closed.•

THEOREM 1.4 Let X = {X ••, P••b, A}be a well-ordered inverse system such.
that w(X ••)< T, aEA. If P••b are perfect (P••b are open or X is continuous ), then
w(limX)<5:c T.

Proof. See [16, Teorema 2.2]"

LEMMA 1.5 Let X = {X ••, Pub, A}be a well-ordered inverse system of compact
spaces such that w(X ••)< T and card(cf(A))> T. Then there exists an aEA such
that the projection pc:limX-tXc is a homeomorphism for every c~a;

Proof. By virtue of Theorem 1.4 w(limX)<5:cT. This means that there exists
a family U = {Ua} of normal coverings of X = limX such that U is a basis of
normal coverings of X and card(U)<5:cT. For each Ua there exists an a" such
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that for each b;:::a*there exists a normal cover V of X, such that p; \V) refines
Ua. The cardinality of the set {a*} is S; T. Since card( d(A))> T, there exists
an aEA such that a;:::a*for each a", It follows that for each Ua and each c;:::a
there exists a normal cover V of X, such that p; leV) refines u.; Let us prove
that Pe is a homeomorphism. It suffices to prove that Pe is 1 - 1 since Pe is
onto and X is compact. Let X,y be a pair of distinct points of X. There is a
pair of disjoint open subsets U,V of X such that xEU and yEV. Consider the
normal cover W = {U, V, X\{x,y}}. Let Ua be a member of U which refines
W. There exists a norinai coverP of X~ such that p; leV) refines Ua• Suppose
that Pc(x) = Pc(Y). There is a member W of V such that Pc(X)EW. It follows
that x, YEp;l(W). We infer that (x, y)-< Ua• This is impossible since xEU,
yEV and Ua refines W. Hence, Pc(x)#Pc(Y) for each pair x, yEX. Thus, Pe is
1 - 1. •

Let X = {Xa, Pab, A}be an inverse system. For each subset .6.0 of (A, S;)
we define sets .6.n, n = 0, 1, ... , by the inductive rule .6.n+l = .6.nU {m(x,y):
x,yE .6.n}, where m(x,y) is a member of A such that X,y S;m(x,y). Let .6. =
U{.6.n: nElN}. It is clear that card(.6.) = card(.6.o). Moreoverv A is directed
by S; [11, Lemma 9.2]. For each directed set (A,S;) we define

AD'= {.6. : 0 # .6.C A, card(.6.) S; ~o and A is directed by S;}.

Then AD'is <T - directed by inclusion [11, Lemma 9.3]. If.6. EAD"let X6.
{Xb' Pbb', .6.} and X6. = limX6.. If.6., rEAD' and A <;::; r, let P6.I': XI' ---tX6.
denote the mapp induced by the projections pf: XI' ---tX6, 0 E .6.,of the inverse
system XI'. Now, we have [11, Theorem 9.4].

THEOREM 1.6 If X = {Xa, Pab, A}is an inverse system, then XD' = {XM
P6.I', A.,.} is a <T - directed inverse system and limX and limX.,. are canonically
homeomorphic.

THEOREM 1.7 Let X = {Xa, Pab, A}be a (T - directed inverse system of com-
pact metrizable spaces and .surjective bonding mappings. Then X = limX is
meirizable if and only if there exists an aEA such. that Pb:X---tXb is a homeo-
morphism for each b;:::a.

Proof. If there exists an aEA such that Ps is a homeomorphism for each b;:::a,
then X is metrizable. Conversely, if X is metrizable, then cw(X) = ~o (see
Lemma 1.1). Let B = {Un: nElN} be a basis of normal coverings of X. For
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each Un there exists an a(n)EA such that for each b::::a(n) there exists a normal
cover V of X, such that pi; l(V) refines Un. Since A is a - directed there exists
an aEA such that a::::a(n)for each nEIN. It follows that for each Un and each
b::::athere exists a normal cover V of X, such that p;;-l(V) refines Un. Let us
prove that Pb is a homeomorphism. It suffices to prove that Pe is 1 - 1 since Pb
is onto and X is compact. Let X,y be a pair of distinct points of X. There is a
pair of disjoint open subsets U,V of X such that xEU and yEV. Consider the
normal cover U = {U, V, X\{x,y}}. Let Un be a member of B which refines
U. There exists a normal cover V of X, such that p;;-YV) r~finesu.; Suppose
that Pb(X) = Pb(Y). There is a member W of V such that Pb(X)EW.It folows
that x, yEp;;-l(W). It follows that (x, y)-< Un. This is impossible since xEU,
yEV and u; refines U. Hence, Pb(X):f:Pb(Y)for each pair x, yEX. Thus, Pb is
1 - 1. •

THEOREM 1.8 Let X = {X,, Pab, A}be an inverse system of compact metriz-
able spaces Xa and surjective bonding mappings. Then X = limX is metrizable
if and only if there exists a countable subset B of A which is directed by ::; and
such that the natural projection p:X-tlim{Xb, Pbc, B} is a homeomorphism.

Proof. If there exists such subset B of A, then X is metrizable. Conversely,
if X is metrizable then we may assume that X is homeomorphic with Iim.X,
from Theorem 1.6. Applying Theorem 1.7 we complete the proof .•

The following theorem is Theorem 5.1 of [11].

THEOREM 1.9 Let X={Xn, PmM IN} be an inverse sequence with monotone
surjective bonding mappings. If each Xn is the continuous image of an arc,
then X = limX is the continuous image of an arc.

From Theorems 1.6 and 1.9 it follows the following theorem.

THEOREM 1.10 Let X = {Xa, Pab, A}be an inverse system of continuous
images of arcs with monotone surjective bonding mappings. Then XD' = {X~,
P~I', AD'} is an inverse system of continuous images of arcs.

2 Inverse systems of cyclic images of arcs
An arc (or ordered continuum) is a Hausdorff continuum with exactly two non
- separating points. Each separable arc is homeomorphic to the closed interval
1=[0,1].
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A continuum X is a dendron if each pair of distinct points of X can be
separated by a third point of X. A continuum X is a dendron if it is locally
connected and hereditarily unicoherent. A dendron is an arc if it is atriodic.

Let X be a non - degenerate locally connected continuum. A subset Y of X
is said to be a cyclic element of X if Y is connected and maximal with respect
to the property of containing no separating point of itself. A cyclic element of
a locally connected continuum is again a locally connected continuum. We let

Lx = {Y eX: Y is a non- degenerate cyclic element of X}.

LEMMA 2.1 A continuum X is a dendron iff it is locally connected and has
no non - degenerate cyclic elements.

LEMMA 2.2 If e is a connected subset of X and YELx, Then en Y is con-
nected {possibly void}.

LEMMA 2.3 If f: X-+X' is a monotone surjection, then for each Y' ELxl
there ezisis YELx such that Y' sur). In particular, Lx is non - empty if
LXI is non - empty.

LEMMA 2.4 Let Z be a cyclic element of a locally connected continuum X.
If J is a component of X\Z, then IBd{J} I = 1.

Proof. See [11, p. 5~].•

LEMMA 2.5 If Z and Ware cyclic elements of a locally connected continuum
X, then either card{Zn W}:::;J or Z = W.

Proof. See [6, p. 316 , Teorema 4.].•
Let Z be a cyclic element of X. For each component J of X\Z, let Bd(J) =

ZJ. We define [11, p. 5] p : X -+Z such that p(x) = x if xEZ and p(x) = ZJ

if xEJ. Then p is a monotone continuous retraction. It is called the canonical
retraction of X onto Z.

We shall say that X is cyclic if it is the only cyclic element of itself, equiv-
alently, if it has no separating point.

Let X = {Xa, Pab, A} be an inverse system and Y~X = limX. We shall
denote Pa(Y) by Ya, aEA.
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Loncar 1. Inverse limit of continuous images of arcs

LEMMA 2.6 Let X = {Xa, Pab, A}be an inverse system of locally connected
continua Xa with monotone bonding mappings and let Z be a non - degenerate
cyclic element of X = limX. There exists an ao such that Lb(Zb)=I-0, for each
b? ao.

Proof. Suppose that LZb = 0 for each bEB (i.e., all Zb are dendrons), where
B is cofinal in A. By virtue of [10, Theorem 3] Z is hereditarily unicoherent.
This means that Z is a dendron since it is locally connected. Thus, Lz = 0.
This contradicts the assumption that ZELx;.

In the sequel we shall use the following theorem [11, Theorem 2.7.].

THEOREM 2.7 Let X = {Xa, Pab, A}be an inverse system such that Pab are
monotone surjection and Y is a cyclic element of the locally connected contin-
uum X = limX. For each aEA, let Za be either a cyclic element of X; or a
one - point subset of Xa. Let Pa : Xa ~Za denote the canonical retraction if
Za is non - degenerate, and otherwise, let Pa : Xa ~Za be the constant map.
Suppose that some Zao is non - degenerate, and that Za <;'Pab(Zb)<;'Pa(Y) for
all b?a. Let gab = Pao(PabIZb), a:5,b. Then each gab: Zb ~Za is a monotone
surjection, the collection Z = {Za, gab,A} is an inverse sy.stem and there exists
a continuous mapping H: X ~ Z = limZ such that H] Y : Y~ Z is a homeomor-
phism.

THEOREM 2.8 A Hausdorff locally connected continuum S is the continuous
image of an arc if and only if each cyclic element of S is the continuous image
of an arc

Proof. See [3, Theorem 1].•
If Y is a closed subset of X, we let K(X\ Y) denote the family of all com-

ponents of X\ Y. Let X be a locally connected continuum. A subset Y of X is
said to be a T - set if it is closed and IBd(J)1 = 2, for each JEK(X\ Y)_

The following theorem is a part of Theorem 4.4. [11].

THEOREM 2.9 If X is a locally connected continuum, then the following
conditions are equivalent:

1. X is a continuous image of an arc,

2. X is a continuous image of an ordered compactum,
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3. for each YELx and any p,q,rE Y there exists a metrizable T - set Z in
Y such that p,q,rEZ.

4. For each YELx and each closed metrizable subset M of Y there exists
a metrizable T - set A in Y such that M~A.

THEOREM 2.10 Let X = {Xa, Pab,A}be a (J" - directed inverse system of con-
tinuous image of arcs such that the cyclic elements of each Xa are hereditarily
locally connected. If the bonding mappings are monotone surjections, then X
= limX is the continuous image of an arc.

Proof. By virtue of [2] the projections Pa are monotone. It follows that X is
locally connected. Let Y be a cyclic element of X. By virtue of Theorem 2.7
there exists the inverse system Z = {Za, gab, A} such that Y and limZ are
homeomorphic. Moreover, each Za is hereditarily locally connected and each
gab is monotone surjection. By virtue of Corollary 3 [5] limZ is hereditarily
locally connected. From Theorem 3.4 [14]it follows that limZ is the continuous
image of an arc. Theorem 2.8 completes the proof .•

A mapping f: X-+Y is said to be hereditarily monotone if for each sub-
continuum K~X the restriction flK : K-+f(K) is monotone [7, p. 16.].

If f:X-+Y and g:Y-+Z are hereditarily monotone mappings, then gf:X-+Z
is hereditarily monotone [7, p. 29, (5.3)].

LEMMA 2.11 If Z is a cyclic element of a locally connected continuum X,
then the canonical retraction p:X-+Z is hereditarily monotone.

Proof.' Let K be any subcontinuum of X and let PK = piK. Then p;/(z) =
z or p;/(z) = CI(J)nK, where J is a component of X\Z with non - empty
JnK. It remains to prove that CI(J)nK is connected. Suppose that CI(J) nK
is not connected. Let Zl = Bd(J). There exists a component L of CI(J)nK
such that Zl ~L. Moreover, Zl EK since K is connected and J is closed and
open in X\ {Zl}' By virtue of the normality of CI(J) it follows that there exists
a pair U,V of disjoint open (in CI(J)) sets such that L~U and Zl EV.It follows
that U is open and closed in X since Zl ~CI(U). This is impossible since K is
connected and Zl EK.•

THEOREM 2.12 Let X = {X ••, Pab, A }be an inverse .sy.stem of hereditarily lo-
cally connected continua and hereditarily monotone bonding mappings. Then X
= limX is heredit~rily locally connected and the projections pa are hereditarily
monotone.
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Proof. Let Y be any subcontinuum of X. Then Y = {Pa(Y), PablYb,A} is
an inverse system. The bonding mappings PablYbare monotone. By virtue of
Capel's theorem, the mappings PalY are monotone. Thus, the mappings Po.,
aEA, are hereditarily monotone. Moreover, Y is locally connected. Thus, X is
hereditarily locally connected .•

Now, we have the following theorem.

THEOREM 2.13 Let X = {Xa, Pab, A}be an inverse system of continuous
images of arcs such that the cyclic elements of each Xaare hereditarily locally
connected. If the bonding mappings are hereditarily monotone surjections, then
X = limX is the continuous image of an arc.

Proof. Let Y be a cyclic element of X. From Theorem 2.7 it follows that
there exists an inverse system Z = {Za, ga.b,A} such that Za, aEA, is a cyclic
element of X, and Z = limZ is homeomorphic to Y. Moreover, gab~ PaO(Pa.bIZb)
is hereditarily monotone since PablZband Po.are hereditarily monotone (Lemma
2.11). From Theorem 2.12 it follows that Z is hereditarily locally connected.
Thus, Y is hereditarily locally connected. By virtue of Theorem 3.4 [14] Y is
the continuous image of an arc. Theorem 2;8 completes the proof .•

From Theorems 2.7 and 2.8 it follows that it suffices to consider inverse
systems X = {Xa, Pab, A}of cyclic continuous images of arcs with monotone
surjective bonding mappings and with cyclic X = limX. Such systems will be
called CMC - systems. Let X be the limit of an CMC - system, let x, y and
Z be distinct points of X and let aEA such that x, = Pa(x), yo. = Pa(y), Za

= Pa(z) are distinct points of X,; By virtue of Theorems 3.2 and 3.6. of [11]
there exists a minimal metrizable T - set To.containing x, = Pa(x), Yo. = Pa(y),
Za = Pa(z).

LEMMA 2.14 Let X = {Xa, Pab, A}be a CMC - system. The family To. =
{Pab(Ta}: b~a} is directed by inclusion. Moreover, Wa(:z:,y,z} = CI(U{ T: TE
Ta}}isaT-setinXa.

Proof, For each pair Pab(Tb), Pac(Tc) of elements of T'; there exists a dEA
such that Pbd(Td)2Tb since Tb is minimal. This means that PaiTd)2Pab(Tb).
Similarly, Pad(Td)2Pac(Tc). By virtue of Theorem 3.1 [11], Wa(x,y,z) is aT -
set .•

LEMMA 2.15 Let X = {Xa, Pab, A}be a CMC - system. Then W(:z:,y,z} =
{Wa(:z:,y,z}, PablWb(:z:,y,z},A} is an inverse system and W(:z:,y,z} = limW(:z:,y,z}
is a minimal T - set in X containing :z:,y and z.
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Proof. It is clear that Pab(Wb(X,y,z))= Wa(x,y,z). By virtue of [11, Theorem
3.13] W(x,y,z) is aT - set. Let us prove that W(x, y, z) is minimal. Suppose,
on the contrary, that W(x, y, z) is not minimal. Then there exists aT - set
T~W(x, y, z). There exists an aEA such that Pa(T)~Wa(x, y, z). On the
other hand, for each b~a we have Pb(T);2Tb. Thus, PabPb(T) ;2 Pab(Tb), i.e.,
Pa(T);2Pab(Tb). This means that Pa(T) ;2 Cl(U{Pab(Tb): b~a}) = w,«, s,
z), a contradiction .•

TliEOREM 2.16 Let X = {Xa, Pab, A}be a GMG - system. Then X = limX
is the continuous image of an arciJffor any choice of distinct points x,y,zEX
the sets Wa(x,y,z), aEA, and W(x,y,z) are metrizable.

Proof.If X is a continuous image of an arc, then there exists a metrizable T
- set T containing X,y and z [11, Theorem 4.4]. Clearly, W(x,y,z)~T since
W(x,y,z) is minimal. Hence, W(x,y,z) is metrizable. It follows that each
Wa(x,y,z) is metrizable since Pa(W(x,y,z)) = Wa(x,y,z) [4, Theorem 4.4.17J.
Conversely, if W(x,y,z) is metrizable, then X is a continuous image of an arc
[11, Theorem 4.4J.•

THEOREM 2.17 Let X = {Xa, Pab, A}be a well- ordered inverse system such
that cf( A)I- WI. If the mappings Pabare monotone surjections and if the spaces
X; are continuous images of arcs, then X = limX is the continuous image of
an arc.

Proof.If cf(A) = ~o, then X is the continuous image of an arc (see Theorem
1.9). Suppose that cf(A)~ W2. Let Y be a cyclic element of X and let Z be as
in Theorem 2.7. This means that Y and Z = limZ are homeomorphic. Let x,
y and z be distinct points of Z. By virtue of Theorem 1.3 each W(Xa, Ya, za)
is metrizable. Moreover, by virtue of Theorem 1.5 (for -r =~I) W(x, y, z) is
metrizable. Theorems 2.8 and 2.9 complete. the proof .•

REMARK 2.18 Theorem 2.17 is not true if cf(A) = ~I. This shows the fol-
lowing example of Nikiel [12J. Let L denote the long interval [4, p. 297]. For
each ordinal number a, 0< a < WI, let £,:[O,lJxL-+[O,l] x [O,aJL be defined by

{
(s,t) ift::;L a,

I(s, t) =
(s, a) if a ::;L t.
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Each X; = [0,1]x [O,a]L is homeomorphic to [0,1]x [0,1] and it is a continuous
image of an arc. Moreover, w(Xa) = ~o. Let faP = fai[0,l]X [O,,B]L, ,B < a. We
obtain an inverse system {Xa, faP, a < WI} whose limit is [0,1]xL which is not
a continuous image of an arc .•

THEOREM 2.19 Let X = {Xa, Pab, A}be a (T - directed CMC - system. Then
X = limX is the continuous image of an arc if and only if there ezisis an aEA
such that PabiWdz, y, z): Wdz, y, z}-+ Wa(z, y, z} is a homeomorphism for
each b'2.a.

Proof. Apply Theorems 1.7 and 2.16.•

LEMMA 2.20 Let X be a locally connected continuum, Y a cyclic locally con-
nected continuum and f:X-+ Y a monotone surjection. Let Wx ~X, Wy ~ Y
be a pair of T - sets such that g = f1 Wx is a homeomorphism. If B~ Wy is
a T - set, then A = g-I(B} is a T - set.

Proof. Let J be any component of X\A. Then there exists a component K of
X\Wx such that K~J. Let Bd(K) = {a, b}. By virtue of Theorem 3.12 [11]
there are finitely many components J1, •••, In of Y\ Wy such that

J1U···UJn ~ f(K) ~ CI(J1U···UJn)

and Bd(Jd = ...= Bd(Jn) = f(Bd(K)) = {f(a), f(b)}. It is clear that f(a)=I=f(b)
since g is a homeomorphism and a, bEW x- The continuum L = Cl(J1 U ...
UIn) is contained in some component 1 of Y\B with Bd(l) = {c, d}, c=l=d.
Then f-1(1) is a continuum containing K. Thus, f-1(1) is contained in J _The
points c' = g-1(C) and d' = g-l(d) are distinct points and are the members of
Bd(J). It is clear that card(Bd(J)) = 2 since g is a homeomorphism .•

THEOREM 2.21 Let X = {X ••, Pd, A}be au - directed CMC - &y&tem. Then
X = limX is the continuous image of an arc if and only if there ezists an aEA
such that PabiTb: Tb -+ Tv. i& a homeomorphism for each b'2.a.

Proof. Sufficiency. If there exists an aEA such that PdiTb : Tb -+Tv. is a
homeomorphism, then we have the inverse system T = {T,, PecfiTcha~c~d}
of metrizable T - set such that PecfiTcfare homeomorphisms. This means that
T = limT is metrizable. By virtue of Theorem [11, Theorem 3.13] T is a T -
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set containing x, y, z. From Theorem 2.9 it follows that X is the continuous
image of an arc.
Necessity. By virtue of Theorem 2.19 X is the continuous image of an arc if
and only if there exists an cEA such that Wd(X, y, z) is metrizable for each
d2:c. From Theorem 1.7 it follows that W(x, y, z) is metrizable if and only
if there exists an aEA, a2:c, such that PbIW(x, y, z) : W(x, y, z)-tWb(x, y,
z) is a homeomorphism. It is clear that PablWb(X,y, z) is a homeomorphism.
By virtue of Theorem 2.20 the set T = (PabIWb(X,y, z))-l(Ta) is a T - set
containing x~, s, and Zb~' Since' Tb' IS the minimal T - set containing Xb, Yb',
Zb, we infer that Tb ~T. Thus Pab(T);:2Pab(Th)' This means that Pab(Tb)~Ta.
In fact, Pab(Tb) = 'I', since 'I', is the minimal T - set containing Xa, Ya, Za'
Since PblW(x, y, z) is a homeomorphism, we infer that PablTb : 'I', -tTa is a
homeomorphism .•

We close this section with the following theorem.

THEOREM 2.22 Let X = {Xa, Pab, (A,~)} be an inverse system of contin-
uous image of arcs with monotone surjective bonding mappings. Then X =
limX is the continuous' image of an arc if and only if for each cyclic element
Z of X and the points z, y, zEZ there exists a countable directed subset (E,
<) of (A, ~) such that for each countable directed subset (C, ~) of (A, ~)
with C2E the restriction hBc = PBcllim{Wd(x,y,z),PddllD} of the canonical
projection PBC is a homeomorphism

Proof. By virtue of Theorem 1.6, X is homeomorphic to lim.X, where X",
= {XA' PAP, A",}. We assume that X = limX",. Let Z be any cyclic element
of X and let Z be the inverse system from Theorem 2.7. Let x, y, zEZ. By
virtue of Theorem 2.21 there exists a CEA", such that for each DEA", with
D;:2C the canonical projection PCD: TD -tTc is a homeomorphism. Let us
recall that Xc and XD are inverse limits of the inverse sequences {Xc, PCCllC}
and {Xd, Pddl' D} respectively. From Lemma 2.15 it follows that Tc is the
limit of {Wc(x, y, z), PccIIWCl(X,y, z), C}. Similarly, TD is the limit of {Wd(x,
y, z), PddllWdl(X, y, z), D}. Hence hBc = PBcI1im{Wd(x, y, Z),Pddll D},

hBC : lim{Wd(x., y, Z),Pddl,D} -t lim{Wc(x, y, Z),PCCll C}

is a homeomorphism.
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Loncar 1. Inverzni limes neprekidnih slika lukova

SAZETAK

U radu su izucavani inverzni limesi neprekidnih slika lukova. Dokazano je: a)
Ako je X = {Xa, Pab, A}dobro uredeni inverzni sistem neprekidnih slika lukova
s monotonim surjektivnim veznim preslikavanjima i ako je cf(A)# ~l' tada je
X ;;:;:HmXneprekidna slika luka. (Teor.em 2.17).
b) Neka je X = {Xa, Pab, (A,:S)} inverzni sistem neprekidnih slika lukova s
monotonim surjektivnim veznim preslikavanjima. Tadaje X = limX neprekidna
slika luka onda i sarno onda ako za svaku trojku tocaka x, y, z bilo kojeg
ciklickog elementa Z limesa X postoji prebrojiv usmjeren podskup (B, :S)
skupa (A, ~) sa svojstvom daje za svaki prebrojiv usmjeren skup (C, ~)skupa
(A, ~), C;2B, restrikcija hBC = PBc!lim{Wd(x, y, z), Pddl' D} homeomorfizam
(Teorem 2.22).

Kljucne rijeCi: inverzni sistem i limes, neprekidna slika luka.
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