
Matjaz B. Juric
Marjan Hertcko
Ivan Rozman
J6zsef Gydrkds
University of Maribor, Faculty of Electrical Engineering
and Computer Science, Institute of Informatics
Maribor, Slovenia
E-mail: matjaz.juric@uni-mb.si

UDC: 681.32.06
Review Article

Software Reuse by Using Components

Object technology is evolving into component based industry. This paper shows how to
achieve software reuse by using component technology. Basic ideas of component technology
are shown and two well-known models, COREA and DCOM, are described. It ialso shows
how distributed object models support interface and implementation reuse. The advantages
and disadvantages are indicated too. Component technology is mature enough and ready for
practical use and there is a huge potential of component technology to offer substantial
benefits in software development process.

Keywords: reuse, distributed object, component, COREA, DCOM.

1. Introduction

The vision of building new systems out of reusable software components rather
than creating each new application from scratch is so compelling that hardly anyone
questions the value of reuse. Reuse is often mentioned as a feature of object
technology, universally regarded as an inherent good. Object technology is believed to
be crucial to achieve the long-sought after goal of widespread reuse.

Unfortunately, many people naively equate reuse with objects, adopting it to
»automatically« ensure reuse, but often do not get much reuse. There are also many
examples of successful reuse using non-object oriented languages (function libraries
for example). Success of these libraries depends on the programmer's knowledge and
motivation for searching and using the code.

Thus objects are neither necessary nor sufficient for effective reuse. Without an
explicit reuse agenda, object oriented reuse will not succeed. In almost all cases of
successful reuse, non-technical issues such as management support and a stable
domain seem to dominate over specific language or design methodology.

77



Juric M.B., Hericko M., Rozman 1., Gyorkos J. Software reuse by using components

2. Components and reuse

The concept of component is still evolving, although the general thought is that most
software artifacts can be considered as components. Definitions of a component are:

• A component is a subsystem, use case, actor, or any object class;
• A component is a good abstraction for higher-level design, with access
restricted by visibility rules;

• A component is not bound to any specific application;
• A component is a high-quality product due to careful design and testing;
• A component is packaged for reuse with well-designed interface,
documentation;

• A component is general so that it can be used in several places;
• A component is specialized when used.

This emphasizes components as high-quality, generic software products with well-
defined public interfaces, designed to be used in many contexts.

Another possible, though much simpler, definition of a component is: A
component is a package of functionality, deployed within specific technology
framework [1]. Here, »package of functionality« refers to a high-level, reusable
abstraction with one or more public interfaces. This emphasizes that a component is
not necessarily restricted to object technology. In fact, components have been in
existence for decades in the form of high-quality libraries of routines and functions.

A reusable component is any component, developed for reuse and actually used in
more than one context [5]. Reusable components can be code, design specifications,
processes, methods, documentation, system or subsystems, models, patterns,
frameworks, classes, object implementations etc.

Before something can be reused, we must assure that it is ready for reuse. Before
the reuse is possible, we have to:

• locate the component,
• know, what the component is doing and
• know, how to reuse the component.

It this article the way software code can be reused will be discussed. There are two
ways, the code can be reused:

• source code reuse and
• binary reuse.

Source code reuse has been known for-long time. In object oriented programming
languages it is achieved through inheritance. Binary reuse is extremely difficult to
achieve and hasn't been used recently.

78



Zbornik radova 2(23), 1997.

3. Components or distributed objects

In developing computer software, object-oriented programming offers a model
different from traditional structured programming and design, which is based on
functions and procedures [3]. In simplified terms, object-oriented programming is a
way to develop software by building self-contained modules, that can be more easily
replaced, modified and reused.

The proponents of object-oriented programming (OOP) promised that this new
style of programming would help solve all application deployment problems. In fact,
C++, the most widely used OOP language, has proved to be the language-of-choice for
independent software vendors developing commercial applications, and also for the
architectural components of many corporate information systems. On the other hand,
OOP languages have not achieved all of their promised benefits, and the vision of a
world of reusable, interchangeable business objects to aid in software development
and system deployment has not been achieved.

A »classical« object - of the C++ or Smalltalk variety - is a blob of intelligence
that encapsulates code and data. However, classical objects exist only within a single
program. Only the language compiler that creates the objects knows of their existence
[4]. The outside world does not know about these objects and has no way to access
them.

The OOP languages have merely defined a way to specify the internal details for a
component, they have not provided a standard interface for these components to
connect. As a result, all OOP objects are dependent on the implementation of other
objects (that is, they can only connect to components that they were specifically
designed to work with).

In contrast, a distributed object is a blob of intelligence that can live anywhere on
a network. Distributed objects are packaged as independent pieces of code that can be
accessed by remote clients via method invocations. The programming language and
compiler used to create distributed objects are totally transparent. Clients do not need
to know, where the distributed object resides or what operating system it executes on.
Distributed objects are intelligent pieces of software that can message each other
transparently.

When we talk about distributed objects, we are really talking about independent
software components. A component can be seen as an object, that is not bound to a
particular program, computer language, or implementation [2]. Notice that we have
been using the terms »components« and »distributed objects« interchangeably. In
distributed object systems, the unit of work and distribution is a component.

4. Distributed object models

To make distributed objects reality a distributed object model is needed.
Distributed object model is a middleware that allows objects to distribute across the

79



Juric M.B., Hericko M., Rozman I., Gyorkos 1. Software reuse by using components

network and to communicate with each other [9]. Corporate application developers
can use distributed object models to create new solutions that combine in-house
business objects, off-the-shelf objects, and their own custom components.

Today several object models exist. The most important are Common Object
Request Broker Architecture (COREA) from Object Management Group (OMG) and
Distributed Component Object Model (DCOM) from Microsoft.

COREA is the most important and ambitious middleware project ever undertaken
by industry [7]. It is a product of a consortium - called the Object Management Group
- that includes over 700 companies I, representing the entire spectrum of the computer
industry. COREA was designed to allow intelligent components to discover each other
and interoperate on an object bus. However, COREA goes beyond just interoperability
(Figure 1). It also specifies an extensive set of bus-related services and common
facilities.

Common facilities
(user interface. information,

system management)

Object services
(transactional, relational. naming, query, lifecycle •.. )

Figure 1: COREA architecture

I University of Maribor, Faculty of Electrical Engineering and Computer Science, Institute of Informatics is
member of Object Management Group (OMG) since January 1996.

80



Zbornik radova 2(23), 1997.

DCOM is an extension of the Component Object Model (COM), which has been
part of the Windows family of operating systems for many years as the underlying
framework that makes OLE, and more recently ActiveX, possible. COM's binary
interoperability standard facilitates independent development of software components
and supports deployment of those components in binary form. The result is that
independent software vendors can develop and package reusable building blocks
without shipping source code. DCOM extends COM to the network with remote
method calls, security, scalability, and location transparency (Figure 2).

Figure 2: DCOM provides location and packing transparency.

Despite the ongoing debate about which technology is superior, you will find
striking similarities. Both CORBA and DCOM provide separation of an object's
interface from its implementationfs). This separation enables much greater software
reuse, by freeing the user of an object from knowledge of implementation details.
Clients of an object depend only on its interface. Once the interface is defined, any
number of implementations can be written to support that same interface.

Both architectures achieve this separation through the use of their own interface
definition language (IDL). IDL is an independent programming language allowing
clients and servers to be written in different languages.

Another key attribute shared by CORBA and DCOM is location transparency.
The code to access methods of local objects is the same as that for accessing remote
objects. However, under the covers, the distributed object architecture does substantial
work to make remote method invocation easy for developers. To provide this
transparency, both models provide marshaling code that ensures proper data
representation regardless of object location. To support location and access
transparency, memory management rules and routines are also provided. Each

81



Juric M.B., Hericko M., Rozman 1., Gyorkos J. Software reuse by using components

architecture provides build-in error handling support to complete the method
invocation mechanism.

Both architectures support interface inheritance and provide polymorphism when
dispatching method invocation requests. CORBA and DCOM store interface
definitions in a repository. Both also support dynamic method invocation. Finally,
server registration and activation are integral to the two architectures.

CORBA and DCOM are similar, but there are differences. It is difficult to make an
objective comparison, because there is only one implementation of DCOM (from
Microsoft) and nearly a dozen different CORBA products. The differences are in
following areas:

• platform and language support,
• cost,
• integration,
• robustness.

Integration of legacy systems is in both object models, quite simple. Since all
communication is based on interfaces, not implementations, it is only necessary to
build the interface. This interface is then connected to the legacy system, which is not
necessaryly object oriented. This approach with the interface and the proxy code is
called object wrapper.

5. Source code reuse

An important goal of any object model is that component authors can reuse and
extend objects provided by others as pieces of their own component implementations.
One way this can be achieved is implementation inheritance: to reuse code in the
process of building a new object, you inherit implementation from it and override
methods in the tradition of C++ and other languages. However, as a result of many
years experience, many people believe traditional language-style implementation
inheritance technology as the basis for object reuse is simply net robust enough for
large, evolving systems composed of software components.

The problem for system-wide object interaction using traditional implementation
inheritance is that the contract (the interface) between objects in an implementation
hierarchy is not clearly defined. In fact, it is implicit and ambiguous. When the parent
or child object changes its implementation, the behavior or related components may
become undefined, or unstably implemented. In any single application, where the
implementation can be managed by a single engineering team, who update all of the
components at the same time, this is not always a major concern. In an environment
where the components of one team are built through black-box reuse of other
components built by other teams, this type of instability jeopardizes reuse.

82



Zbornik radova 2(23), 1997.

Additionally, implementation reuse usually works only within process boundaries.
This makes traditional implementation inheritance impractical for large, evolving
systems composed of software components built by many engineering teams [6].

The key to building reusable components is to be able to treat the object as a black
box. This means that the piece of code attempting to reuse another objects knows
nothing, and needs to know nothing about the internal structure or implementation of
the component being used [8]. In other words, the code attempting to reuse a
component depends upon the behavior of the object and not the exact implementation.

6. Component (binary) reuse

Neither DCOM nor COREA specifies support for implementation inheritance, the
ability of one object to actually inherit code from another. IBM's implementation of
COREA, embodied in the System Object Model (SOM), does support implementation
inheritance in some cases, but the COREA specification in no way requires this. In
fact, a great majority of COREA-based products support only interface inheritance,
just like DCOM.

To achieve black-box reuse, DCOM supports two mechanisms through which one
object may reuse another. For convenience, the object being reused is called the inner
object and the object making use of that inner object is the outer object [10].

1. Containment/Delegation the outer object behaves like an object client to the
inner object. The outer object contains the inner object and when the outer
object wishes to use the services of the inner object the outer object simply
delegates implementation to the inner object's interfaces. In other words, the
outer object uses the inner's services to implement itself. It is not necessary that
the outer and inner objects support the same interfaces; in fact, the outer object
may use an inner object's interface to help implement parts of a different
interface on the outer object especially when the complexity of the interfaces
differs greatly.

2. Aggregation the outer object wishes to expose interfaces from the inner object
as if they were implemented on the outer object itself. This is useful when the
outer object would always delegate every call to one of its interfaces to the
same interface of the inner object. Aggregation is a convenience to allow the
outer object to avoid extra implementation overhead in such cases.

These two mechanisms are illustrated in Figures 3 and 4. The important part to
both these mechanisms is how the outer object appears to its clients. As far as the
clients are concerned, both objects implement interfaces A, B, and C. Furthermore, the
client treats the outer object as a black box, and thus does not care, nor does it need to
care, about the internal structure of the outer object - the client only cares about
behavior.

83



Juric M.B., Hericko M., Rozman I., Gyorkos 1. Software reuse by using components

A DCOM interface defines the behavior or capabilities of a software component as
a set of methods and properties. An interface is a contract that guarantees consistent
semantics from objects that support it. Each DCOM object must support at least one
interface called IUnknown, although it may support many interfaces simultaneously.
IUnknown defines methods that provide the basic building blocks for managing object
life cycles and allowing graceful evolution of interfaces supported by an object.

External
interfaces

A

B

c

!Unknown knows
A, Band C

Figure 3: Containment of an inner object and delegation to its interfaces.

Containment is simple to implement for an outer object: during its creation, the
outer object creates any inner objects it needs to use as any other client would. This is
nothing new - the process is like a C++ object that itself contains a C++ string object
that it uses to perform certain string functions even if the outer object is not considered
a string object in its own right.

Aggregation is almost as simple to implement, the primary difference being the
implementation of the three IUnknown functions: Querylnterface, AddRef, and
Release. The catch is that from the client's perspective, any IUnknown function on the
outer object must affect the outer object. That is, AddRef and Release affect the outer
object and Querylnterface exposes all the interfaces available on the outer object.
However, if the outer object simply exposes an inner object's interface as it's own, that
inner object's IUnknown members called through that interface will behave differently
than those IUnknown members on the outer object's interfaces, a sheer violation of the
rules and properties governing IUnknown.

84



Zbornik radova 2(23), 1997.

The solution is for the outer object to somehow pass the inner object some
JUnknown pointer to which the inner object can re-route (that is, delegate) JUnknown
calls in its own interfaces, and yet there must be a method through which the outer
object can access the inner object's JUnknown functions that only affect the inner
object.

External
interfaces

A

B

c

/Unknown knows
A, Band C

Figure 4: Aggregation of an inner object where the outer object exposes one or more
of the inner object's interfaces as its own.

7. Reuse - just another software fad?

Let's reconsider software reuse in the light of business rather than technical goals.
There are three major benefits when reuse is properly managed:

• It helps a company develop new applications faster, responding more quickly to
changes in the business environment.

• It provides a shared view of the business through development of common
objects to represent customer, products, services, and other key business
components.

• It minimizes the total amount of code, that must be maintained by a company.

These are powerful benefits. They provide good reasons for investing in reusable
components. Unfortunately, only few companies recognize these benefits and make

85



Juric M.E., Hericko M., Rozman 1., Gyorkos J. Software reuse by using components

the investment required to achieve them. Most companies make one or more of the
following mistakes in pursuing reuse within their object-oriented development efforts.

Reuse is not free. An object designed for one application is not likely'to satisfy
the needs of other applications unless a special effort is made by developers to ensure
reuse. Such an effort consumes considerable time and resources, slowing down the
development process.

Do not focus on code reuse. It is rare to see the requisite analysis and design go
into an object to make it generic - 'actually coding and testing capabilities that are not
needed for the first application are almost unheard of. It may just happen to reuse
code. But this is the most dangerous mistake of all because of inconsistent use of
objects.

Objects are not functions so do not design objects like functions. In most object
oriented languages it is possible to write code, that in fact is not object oriented. There
is little or no object autonomy, minimal use of polymorphism and inheritance, and
only the loosest form of encapsulation. These »objects« have little or no potential for
reuse.

Do not ignore internal reuse. As powerful as the reuse of objects, developed in
one application and reused in new application, is internal reuse. The code embedded in
objects is reused within an application through the mechanism of inheritance.

The waters of software problems are rising. Numerous organizations have attained
business benefits by reusing software assets. Companies that have already reached
higher ground know that software reuse is critical to getting there. Regardless of how
long the road to managed reuse will be for organizations, they should get on that road
now. They should work on maturing its development process and adopt object based
reuse techniques. Reuse efforts will payoff only in conjunction with effective
frameworks. And remember, a component is not reuse.

References:

[1) Baster G. (1997), »Business Components for End-User Assembly«, Object
Magazine, Vol 6(11)

[2) Guttman M., Matthews J. R. (1995), »The Object Technology Revolution«, John
Wiley & Sons, Inc., USA

[3] Juric M. B., Hericko M., Rozman I. (1997), »Objektni modeli porazdeljenega
procesiranja«, Dnevi slovenske informatike, Portoroz 1997

[4] Juric M. B., Hericko M., Rozman I. (1997), »CORBA - objektni model
porazdeljenega procesiranja«, Uporabna informatika, janlfeb/mar 1997

[5] Krmac Vatovec E. (1997), »Ponovna uporaba - kaj, zakaj, kdaj inkako«, Dnevi
slovenske informatike, Portoroz 1997

86



Zbornik radova 2(23), 1997.

[6] McGregor D. 1., Doble J., Keddy A. (1996), »A Pattern for Reuse«, Object
Magazine, Vol. 6(2)

[7] OMG (1995), »The Common Object Request Broker: Architecture and
Specification«, Revision 2.0

[8] Rajeev V. (1997), »Reusing Business Objects«, Object Magazine, Vol. 6(11)

[9] Soley R. M., Ph.D. (1995), »Object Management Architecture Guide«, OMG,
John Wiley & Sons, Inc., Revision 3.0, Third Edition

[10] Weiying C. (1997), »ActiveX Programming Unleashed«, Sams.net Publishing,
Indianapolis

Received: 1997-08-15

Juric M. B., Hericko M., Rozman 1., Gyorkos J. Ponovno koristenje softvera
upotrebom komponenata

Sazetak

Objektna tehnologija razvija se u industriju temeljenu na komponentama. Ovaj rad pokazuje
kako postici ponovno koristenje softvera upotrebom komponentne tehnologije. Prikazane su
osnovne ideje komponentne tehnologije, kao i dva dobro poznata modela - COREA iDCOM
Rad takoder prikazuje kako distribuirani objektni modeli podriavaju ponovnu upotrebu
sucelja iprimjenu. Naznacene su prednosti i nedostaci. Komponentna tehnologijaje dovoljno
zrela ispremna za prakticnu primjenu. Postoji ogromni potencijal kompoentne tehnologije za
pruianje znacajne dobrobiti u procesu razvoja softvera.

Kljucne rijeci: ponovno koristenje, distribuirani objekti, komponenta, COREA, DCOM.

87


