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A note on approximate limits

The main theorems of this paper are the following theorems.
THEOREM 2.7. Let X={X,, Pmn, IN} be an approzimate sequence
of non - empty Cech-complete paracompact spaces X, such that each
Pam(Xm) 18 dense in X, then imX is non-empty and Cech-complete.
Moreover, p,(limX) is dense in X, for each n€ IN .

THEOREM 2.11. Let X={X,, pmn, IN} be an approzimate inverse
sequence of absolute G; - space. Then there ezist:

a) a cofinal subset M = {n; : i€IN} of IN,

b) a usual inverse sequence Y = {Y;, ¢:;; , M} such that Y; = X, and
% = Pii+1 Pitii42 --- Pj-1j for each i,j€ IN,

c) a homeomorphism H : imX—himY.

Keywords: Approximate inverse system and limit.
Classification: 54B25, 54D30.

1 Preliminaries

A space means a Tychonoff space and a mapping means a continuous
(not necessarily surjective) mapping.

Cov(X) is the set of all normal coverings of a topological space X.For
other details see [1].
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In this paper we study the approximate inverse system in the
sense of S. Mardesié [12].

DEFINITION 1.1 An approzimate inverse system ts a collection X
= {Xa, Pav, A},where (A,<) is a directed preordered set,X,,acA,is a
topological space and p.;:Xy, —X,,a<b,are mappings such that p,,=id
and the following condition (A2) is satisfied:

(A2) For each acA and each normal cover UE Cov(X,) there is an index
b>a such that (PacPedsPaa)< U,whenever a<b<c<d.

The inverse system in the sense of [6, p. 135.] we will call usual inverse
system.

DEFINITION 1.2 An approzimate map p = {p.:a € A}:X—X into
an aproximate system X={X,,pa,A} is a collection of maps p,:X—X,,
a€A such that the following condition holds

(AS) For any a€A and any & €Cov(X,) thereis b>a such that (ps.pe,ps)=<
U for each c>b.(See [14]).

DEFINITION 1.3 Let X = {X,, pa, A}be an approximate system
and let p = {p.:a € A}:X—X be an approximate map.We say that p
is a limit of X provided it has the following universal property:

(UL) For any approximate map q = {q.:a € A}:Y—X of a space Y
there exists a unique map g:Y—X such that p,g=q.,.

DEFINITION 1.4 Let X={X,,p.;,A} be an approximate system.A
point x=(x,)€ [[{X, : @ € A} is called a thread of X provided it satisfies
the following condition:

(L) (Va €A) (VU € Cov(X,))(Tb > a)(Ve > b)pac(x.) € st(xq,U).

REMARK 1.5 IfX, is a T; 5 space,then the sets st(x,,U),U € Cov(X,),
form a basis of the topology at the point x,.Therefore,for an approximate
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system of Tychonoff spaces condition (L) is equivalent to the following
condition:

(L)* (Va € A) im{p,.(x.):c>a} = x,.

The existence of the limit of any approximate system was proved in [14,
(1.14)Theorem).

THEOREM 1.6 Let X = {X,, pa, A}be an approzimate system.Let
XC I{X, : a € A} be the set of all threads of X and let p,:X— X, be
the restriction p,=m,|X of the projection m,:I1X, —X,,a€ A.Then p =
{p.:a € A}:X—X is a limit of X.

We call this limit the canonical limit of X = {X,, pas, A}.

We say that a statement T on elements of a directed set D is fulfiled
[16]:
1. For almost all n€D if there exists an element ny, €D such that T is
fulfiled for every n>n,.
2. For arbitrarily large n€D if the set of all n€D for which T is fulfiled
is cofinal with D.
A net{A,n€D}is afunction [16] defined on a directed set D. If { A, ,neD}
is a net of subsets of X,then:
3. A limit inferior LiA,, is the set of all point x€X such that every neigh-
bouhood of x intersect A, for almost all n€D.
4. A limit superior LsA, is the set of all point x€X such that every
neighbouhood of x intersect A, for arbitrarily large neD.
5. A net {A,,n€D} is said to be topologically convergent (to a set A) if
LsA,=LiA, (=A) and in this case the set A will be denoted by LimA,.

2 Approximate limit of paracompact Cech-
complete spaces

We start with the following theorem.
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LEMMA 2.1 Let X ={X,, pa, A}be an approzimate inverse system of
non-empty compact Hausdorff spaces with limit X. If A’ 15 a cofinal sub-
set of A, then for each family N ={z,:z, €X,,ac A’} the set Ls{p;*(z.)
: acA'} 1s non-empty and p,(Ls{p;'(z.) : a€A'}) C Ls {pas(z):5€4A"
b>a}.

Proof.For each a€A we consider the net N,={p.;(x;):bEA’ , b>a}.
From the compactness of X, it follows that the set C, of all cluster points
of N, is non-empty.Clearly,each C, is closed and compact in X,.First,we

prove
(a) For each acA, C, is a subset of p,(X).

If we suppose that some c, €C,\p.(X),then c, and p,(X) respectively,
have disjoint neighborhoods U and V.By virtue of the property (B3) [14,
pp. 606,615] there is a b>a such that p,.(X.)CV for each c>b , c€A’.
This is impossible since there exists ¢>b such that p,.(x.)€U (c, is a
cluster point of the net A,).

From (a) it easily follows that

(b) For each acA, the set p;*(C,) is non-empty.
By (b) there is y* €p;!(C,)ClimX, acA’. Since imX is compact, there
is a cluster point yelimX of the net Y = {y® : acA'}. Let us prove

(C) Pa(y)ECa , aEA.

It suffices to prove that for each neighborhood U, of p,(y) and each b,
there exists a d>by such that p,s(xs)€U,. Let U be a normal cover of
X, such that

st*(pa(y),U) C V.. (1)

Let U, € U be such that p,(y)€U;. Then p;*(U,) is a neighborhood of
y. The set B of all beA’ with y* €p;*(U,) is cofinal in A’ since y is a
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cluster point of ). By virtue of (AS) the set B’ CB of all beB, b>b,,

such that
(PmPube) <U (2)

is cofinal in A. Similarly, by (A2), the set B” CB’ of all b€B’ such that
(pae,pabpbc) = u, c Z b (3)

is cofinal in A. Let beB”.Then y® €p;!(U,). Thus

Pa(y): Pa(y’) € Uy (4)
By virtue of ( 2) it follows
Pa(¥"), Paspe(y") € Uz € U. (5)
This and ( 4) imply
Pasps(y’) € St(pa(y),U) (6)

Now , ps(y*)€C; since y* €p;*(C;). We infer that p!(St(p.(y) , U)) is
a neighborhood of py(y®). Since p;(y®) is a cluster point of N, = {x,
: a€A'} there is a d>b>bg,d€A’ such that pe(xs)Ep(St(p.(y) , U)).
This means that p,s(psa(xa))ESt(Pa(y) , U). Using ( 3), paa(xa)€St 2(pa(y)
,U). Thus , by (1)

Pai(24) € U.. (7)

We infer that p,(y)€eC, , i.e. , yép;*(C,) for each acA.l
In the sequel we shall use

LEMMA 2.2 Let cX and cY be ezxtensions of Tychonoff spaces X and
Y and let f,g:X—Y be a pair of continuous mappings which have the
eztensions cf:cX—cY and cg:cX—cY. If U,V s a pair of normal covers
of cY such that stV< U, then if f and g are V|Y-near, cf and cg are

U-near.
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Proof.Consider the normal cover W=(cf)"*(V)A(cg) *(V). For each
x€cX there is a We W such that xéW. Moreover,there is a point
yEXCcX such that yeW.Now, cf(x)eV; € V and cg(x)eV, € V.
Furthermore,f(y)eV, € V and g(y)eV, € V. There exists a V3 € V
such that {f(y),g(y)}CV; since f and g are V|Y-near. We infer that
{cf(x),cg(x)}Cst(V;,V). This means that there is an U€ U such that
{cf(x),cg(x)}CU since stV< . We infer that cf and cg are U-near.The
proof is completed.l

LEMMA 2.3 Let X = {X,, pa, A}be an aprozimate inverse system of
Tychonoff spaces. If c,X,, a€A, are Hausdorff extensions of the spaces
X, such that the mappings p,, have the eztensions cupes, then cX =
{caXa, CavPas, A}is an approzimate inverse system.

Proof. It suffices to verify the condition (A2) for cX. Let a€A be fixed
and let 4/ be any normal cover of ¢,X,.Choose a normal cover V such
that stV < U.By virtue of (A2) for X there is an index b>a such that p,,
and p,.p.s are V|X,-near.By virtue of the above Lemma we infer that
CadPad a0d Coq(PacPea) are U-near.Finally, from Coq(PacPea) = CacPacCeaPed
it follows that c,4p.s and c,cpscCeapea are U-near.The proof is complete.ll

If X is a Tychonoff space, then by 8X the Cech-Stone compactifica-
tion of X is denoted.

COROLLARY 2.4 Let X = {X,, pa, A}be an approzimate inverse
system of Tychonoff spaces. Then X = {#X., Bpa, A}is also an ap-

prozimate tnverse system.

In the sequel we shall denote by P, the natural projection P, :imBX—
BXa.

LEMMA 2.5 Let X = {X,, pa, A}be an approzimate inverse system
of non-empty Tychonoff spaces. If for some family N ={z,:z, €X,,ac A}
the set C, = Ls{pas(2s) : b>a} ts non-empty and compact, then limX is

non-empty.
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Proof. Consider the approximate system X = {#X,, Bps, A}. By
virtue of 2.1 there exists y€ SlimX such that y,=P,(y)€D,, where D,
is a limit superior of {p,(x;) : b>a} in BX,. On the other hand C, =
Ls{pas(xs) : b>a} in X, is compact. This means that D, = C,. We infer
that y, €X,. Thus, y€limX. The proof is complete.ll

LEMMA 2.6 Let X = {X,, pa, A}be an approzimate inverse system
of non-empty Tychonoff topologically complete spaces. If there ezists a
cofinal subset A’ of A such that for some family N ={z,:z, €X,,acA'}
the set C, = Ls{pas(zs) : bEA'} is non-emply and compact, then limX
1s non-empty.

Proof.Consider the approximate system Y = {X,,pa,A’}. By virtue of
Theorem 2.5 imY is non-empty. Theorem (2.14) of [15] completes the
proof.l

We give the following application of Lemma 2.6.

We say that a space X is Cech - complete if X is a Tychonoff space
which is a G; - set in X [6, p. 251.]. We shall say that the diameter of
a subset Y of topological space X is less than a cover A = {A, : s€S}
of the space X, and we shall write §(Y)< A, provided there exists s€S
such that YCA, [6, p. 252.]. A Tychonoff space X is Cech - complete iff
there exists a countable family {.A; : i€ IN} of open covers of the space
X with the property:

(C) Any family F of subsets of X, which has the finite intersection
property and contains sets of diameter less than A ; fori =1, 2, ..., has
non - empty intersection N{CIF : Fe F} ([3, p. 183.], [6, p. 252.]).

THEOREM 2.7 Let X={X,, Pma, IN} be an approzimate sequence
of non - empty Cech-complete paracompact spaces X, such that each
Pam(Xm) is dense in X,, then limX is non-empty and Cech-complete.
Moreover, p,(limX ) is dense in X, for each n€ IN .
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Proof.The proof is broken into several steps.
Step 1. Let us prove that for each point x;, €X;, and for each open set
U,, 3x;, there exists a point x€imX such that p; (x)€U,,. Let {A,; :
i€ IN} be a family of open covers of X,, with the property (C). There
exists a normal cover U of X;, such that st ?(x;,,/)CU, . Moreover, there
exists a normal cover V of X;, such that stV refines both A, ; and U.
Now, we denote V again by A;, ;.
Step 2. By induction , for each i€ IV, we will choose n; € IN ,n; >i,,
and the normal covers U ,;, j<n; , such that :
(P1) stl;,, , j<n; , is a refinement of the covers A;; for k<n; ,
(P2) stUy,n, is a refinement of the covers q;;'(Un;n.) ,j<i, the covers
A..x , k<n;,and the cover p;;i(u,-,,.i), whenever j<n;,
(P3) (Pjn ’ ijPmn)'< Ujns » n> m> ng , j<n; .

Let n, =i, and let «,,, »,, be a normal cover of X,, .., such that sti,, .,
is a refinement of the cover A,, ,,. By (A2), there is a number n, € IN,
n, >n,, such that (P3) is satisfied for j = n; and n, , i.e. ,

(pnm)pn:mpmu) -< u‘u;,n;, n Z m Z nz- (8)

In each space X;, j<nj, there is a normal cover U, ,, such that (P1) is
satisfied (i.e., st ,, is a refinement of the covers A;; , k<n,) since X;
is a paracompact space. Similarly, one can define a normal cover U, .,
such that (P2) is satisfied.

Suppose that n,, ... , n;_; , 1>2 , and the covers U;,, ,, j<n;_; ,
with (P1) - (P3) are defined. Let us define n;. Firstly , we define the
covers Ujn, ., j<D;_1, Uy, , ., such that (P1) and (P2) are satisfied.
This is possible since X, , j<n;_; , is paracompact and since any two
normal coverings admit a normal covering which refines both. By (A2)
there is a number n; >n;_; such that (P3) is satisfied. This completes
the construction of an usual inverse sequence Y = {Y; , q;; , M} such
that Y; = X, and q;; = Pii41 Pit1i+2 --- Pj—1; for each i,j€ IN, i.e., the
sequence

p Pr;_yn; Pr;n;
% e oy B el g )

i
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Step 3. By virtue of Michael’s theorem for usual inverse sequences [6,
p. 257.], imY is non-empty. Moreover, there exists y = (y,,) in imY
such that

(Pio(y), 2i0) < Aig1- (10)
By (P3) it follows
(Pajanss PrjoansaPajsn;) < Un;_sn; s (11)
This means that
(Prjoan; (Un; )y Ynsa) < Un;_yms_s (12)

since Pa,_,n;_,Pn;_in;(Yn; = ¥n;_,- By (P2) we have
(pﬂj—aﬂj—zpﬂj—zﬂj(yﬂj)7pﬂj—;ﬂj—2(ynj_2)) —< uﬂj—a,ﬂj—s’ (13)

or
(pﬂj-:ﬂ:i-zpﬂj—z"j (yﬂj )7 yﬂj—s) = uﬂj—:»"i—s ? (14)

since Pn;_yn;_,(¥n;_,) = ¥n;_,- Using (P3) for n;_5 , n;_, , n; and y,, we

obtain

(pnj_;nj(ynj)’pnj—snj—zpﬂj—zﬂj(yﬂj)) _< aﬂj—a,“j—a’ (15)
We infer that
Paj_sn;(Yn;) € St (Yn;_ssUns_sin;s) (16)
Repeating this , we infer that for fixed i€ IN and each k>i + 3
Pain, (ym.) = St(yﬂnuus,ns)' (17)

Step 4. We see that {pi,,(¥a.) : nx >i} has the diameter less than
Un, a;- It is obvious that Ls{pia,(¥n,) : nx >i} is compact. By virtue of
Lemma 2.6 there exists x€limBX such that P;(x)ELs{pin, (¥n.) : 1 >i}.
This means that x€limX. From ( 17) it follows that p; (x)€st(p;,(y),
A;,1). Moreover, ( 10) implies (p;,(y) , Xi,)< Ai,1- By virtue of Step 1.
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st 2(x;,,4i,1)CU;,. We infer that p; (x)€U;,. This means that p; (imX)
is dense in X;,. The proof is completed .l

QUESTION. Let X={X,, Pmn, IN}be an approximate inverse se-
quence of non-empty Cech-complete spaces X,,. Does it follow that imX
is non-empty?

A Tychonoff space X is called locally Cech - complete if every point
x€X has a Cech - complete neighbourhood [6, p. 297.]. Every locally
Cech - complete paracompact space is Cech - complete. From [6, p.
423.] it follows that if X={X,, pma, IV }is an approximate sequence of
paracompact Cech - complete spaces , then imX is paracompact and
Cech - complete. By virtue of Theorem 2.7 it follows

COROLLARY 2.8 Let X={X,, Pma, IN} be an approzimate inverse
sequence of non-empty locally Cech - complete paracompact spaces such
that p;;(X;) ts dense in X;,i<j.Then p;(limX) is dense in X;. Moreover,
limX is paracompact and Cech - complete.

From Theorem 2.7 it follows the approximate version of Theorem of
Arens [2, Theorem 2.4.]. (See also [6, p. 257,Exercise 3.9.H.]).

COROLLARY 2.9 Let X={X,, pmn, IN} be an approzimate sequence
of non - empty complete metric spaces X,. If pom(Xm) is dense in X, ,
m>n, then imX is non - empty complete metric space and p,(limX) is
dense in X,,.

A metric space X is said to be locally complete if for each x€X there
exists an open set USx such that CIU is complete.

Let X = U{Rx{2}m:n=1,2,...} be the subspace of the space R’. Then
X is locally complete,but not complete since the sequence {(1,2) : n=1,2,3,..}
is a Cauchy non-convergent (in X) sequence.Similarly,the subspace Y =
{(x,y):x>0, y=sin} of R? is non-complete locally complete space.
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COROLLARY 2.10 Let X={X,, pmn, IN } be a usual inverse sequence
of non-empty locally complete metric spaces such that p;;(X;) is dense
in X;,1<j. Then p;(limX) 1s dense in X;.

A metric space X is an absolute G; - space [6, p. 342] if X is a G5 - set
in any metrizable space in which it is embedded. A metrizable space X
is a G4 - space iff it is completely metrizable.

The main theorem of this Section is the following theorem.

THEOREM 2.11 Let X={X,, Pun, IN } be an approzimate inverse se-
quence of absolute Gs - spaces . Then there ezist:

a) a cofinal subset M = {n; : icIN} of IN,

b) a usual inverse sequence Y = {Y; , ¢; , M} such that Y; = X,
and qij = Piit1 p"+1;+2 v’ pj—lj fOT each i,jE ﬂV,

c) a homeomorphism H : imX—lmY.

Proof.Let {A,; : i€ IN} be a family of open covers of X, with the
property:
(UNO) the members of A, ; are sets of diameter less than 1/i.

By induction , for each i€ IN, we will choose n; € IN and the normal
covers Uj ., j<n; , of X; such that :
(UN1) stld;,, , j<n; , is a refinement of the covers A;; for k<n, ,
(UN2) stly,,n, is a refinement of the covers q;;'(Uy; ..) ,j<i, the covers
Ak » k<n;,and the cover p; (U ..), whenever j<n;,
(UN3) (Pjn » PimPmn)=< Ui, » B2 M2 Dipy 5, JSN;
(UN4) (Pj sPim Pm)“< u',ﬂa ’ jSIL ) m2>n;.

Let n; =1 and let ,,, ,, be a normal cover of X,,, ., such that sti/,, .,
is a refinement of the cover A, ,,. By (A2) and (AS) ([12, p. 242.] , [15,
p. 113.]) there is a number n, € IV, n, >n,, such that

(pnnz,pﬂ.‘mpmn) -< u‘n;,n,, n Z m Z nZ) (18)

11
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and
(pnlapnlmpm) '< unl,ﬂl, m 2 n2' (19)

In each space X, j<n,, there is a normal cover U, ,, such that (UN1) is
satisfied (i.e., stlf;,, is a refinement of the covers A;; , k<n,) since X;
is a paracompact space. Similarly, one can define a normal cover U,, ,,
such that (UN2) is satisfied.

Suppose that n,, ... , n;_; , i>2 , and the covers U;,, ,, j<n;_, ,
with (UN1) - (UN4) are defined. Let us define n;. Firstly , we define
the covers U, ,, j<Di_1 , Un, ., such that (UN1) and (UN2) are
satisfied. This is possible since X; , j<n;_; , is paracompact and since
any two normal coverings admit a normal covering which refines both.
By (A2) and (AS) there is a number n; >n;_; such that (UN3) and
(UN4) are satisfied. This completes the construction of an usual inverse
sequence Y = {Y,, q;; , M} such that Y; = X, and q;; = Painiy: Paiyaniss
.- Pn;_;n; for each ije IV, i.e., the sequence

P Prn;_yn; Pn-ni+
DO = . (20)

Now we shall define a homeomorphism H : imX—limY. Let x be any
point of imX. We shall prove that for each cover A,;, of X, thereis a
me€ IN such that the diameter

6({%,:1)",‘(2:) B2 2 m}) = ‘Aﬂj,k' (21)

From the above construction it follows that there is a cover U, .., j<i,
which satisfies (UN1), (UN3) and (UN4).We set m = n;. Let n;, > m.
By virtue of (UN3) and (UN4) it follows

(pﬂk—zﬂkpﬂk(z)7pﬂh—zﬂk—lp”k—xﬂkpﬂk(z)) ~ Z"m.-z,nu_: 3 (22)

and
(pﬂk—z(z)’ pﬂh—zﬂl.pﬂk (23)) _< uﬂk—mﬂk—z © (23)
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We infer that
(p”h—:(m),pﬂh—zﬂh—lpnh—lﬂkpnk(z)) = St(pﬂh—zﬂhpﬂk(z)7 z’{ﬂk—z,ﬂh—z)' (24)

From (UN2) it follows that st 2, _, .,_, refines the coverp;! .~ (Ua,_yn,._,)-
Thus, ( 24) implies

MNe—3Np—2LMNk—-2 T MNp—3N -2 L Np—2N 1 LN p 1T LT T
(p Pas_s(Z), P p PrusnnPra(2)) (25)
—<Z'{11k—3,ﬂh—s'

Moreover , (UN4) implies
(Pais (2)s PrcsmncsPria(2)) < Uni_y s (26)
Hence
(Pres (%) 5 Gk-3kPns(2)) € 5U(Prs_snuaPris(T)s Unu_s mis)- (27)
Repeating this , we infer that
(Pai(2) ) 4:4Pni(2)) € $H(PrinissPriss () ) Unini), B 2 3. (28)
Using (UN2) for the cover U, ,, we have that st *U,, ., refines q;;'U,; ..
Now, ( 28) implies
{gi1pai(z) < k 2 13} < Unjm.- (29)

Hence , the relation ( 21) is proved. We infer that {q;xp.,(x) : k€ IN }
is a Cauchy sequence. Set

yﬂj = lim{‘]jkpm(z) 1k € N } (30)

This is possible since each X; is completely metrizable. Moreover , we

have
qi; (yﬂj) = Yn,» (31)
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since qi:i(Yn,-) = qij(lim{qjkpuh(x) : ke W} = lim{qijqjkpnh(x) : ke W}
= lim{Qitpn,(x) : k€ IN }) = y,,. Hence y = (ya,) is a point of imY.
We define a maping H,, : imX—X,, by

H, (&) =9, (32)

Claim 1. The mappings H,, , i€IN, induce a mapping H:limX—limY
such that ¢,.H = H,. , 1€IN.
Claim 2. H and H,, , i€ IN , are continuous.

Let x be any point of imX and let H(x) = y. Consider any open
neighbourhood U of yelimY. There exists an open set U,, such that
y€q;*(U,,)CU. This means that q;(y)€U,,. By virtue of (UNO) there
exist V, € A, ;, such that V =V, CU,,.. Let n; = max{n; , j}.Consider
the cover Uy, .,. By virtue of (UN2) W = st 3(q;(y) , Un, ;) is contained
in q;'(V). Hence, q;*(W) is a neighbourhood of y contained in U. Let
W, be any member of U, ., containing q;(y). There is an my, € IN such
that qjmpa,.(x)EW;. By virtue of ( 28)

(Pa;(2): gimPan(2)) € 5H(PasnsiiPasia(2), Unsins)-

We infer that p,;(x)€st 2(q;(y) , Un,.n;)- Let W, be any member of U, a;
which contains p,,(x). There is an open set W3 containing x such that
Pn;(W3)CW,. By virtue of (UN4) we have p,,(z)€st *(q;(y)  Un;a;) for
each zEW;. This means H(z)€q;'(W)CU. The proof of the continuity of
H is completed. The continuity of H,, follows from q,.H = H,,, ,i€ IN.
Claim 3. H is one - to - one.

Let x; , x; be any pair of distinct points of imX. There exists an
indeks i€ IN such that p,,(X;1)#pm(X2) for all m>n;. There exists a cover
U,.; of X, such that p,,(x;) and p,,(x;) are in the members W; , W,
of U, ; with disjoint closures. By virtue of ( 29) we have

{gkPnu(z1)} s k > i} C W, (33)
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and
{gxpn(z2) : k > 1} C W,

(34)

We infer that lim{gq;ipa.(21)} : k > i} # lim{gjxpa.(z1)} : kK > i}. By
virtue of ( 32) we infer that H, (x;)#H.,(x;) and H(x,)#H(x;). Hence ,

H is one - to - one.
Claim 4. H s onto.

Let y = (ya,) be any point of imY. We will define a point x€limX

such that H(x) = y. By (UN3) it follows

(p"j—zﬂj ) Pnj-:ﬂj—xpﬂj—xﬂj) = u":‘—?w"i—= :

This means that
(pnj—zﬂj (ynj )s Ynja ) < Un; 2nja-
By (UN2) we have

(p‘nj_gnj_zpﬂj_zﬂj(yﬂj)7pnj-3nj-2y"j—3) =< u"j—:r”.i—s’
or
(Pnj_,nj_zpnj_:ﬂj(yﬂj)’ yﬂj—s) = u".i—--h"‘j-”
Using (UN3) for n;_3 , nj_, , n; and y,; we obtain
(pﬂj—anj(yﬂj),pﬂj-sﬂj-zpﬂj—:ﬂj(yﬂj)) < Un;_sinis

We infer that

(Pn,-_,n,- (ynj )) yﬂj—a) = St(pﬂj—sﬂj-zpﬂj—zﬂj (y"j )’ uﬂj—h"‘i—s)

Repeating this , we infer that for fixed i€ IN and each k>i 4 3

Drson(Uns) € 88 (Ynes Ui 5:)-

(35)

(36)

(37)

(38)

(39)

(40)

(41)

15
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Arguing as in ( 28) and ( 29) we see that {p;,,(¥.,.) : nx >i} is a Cauchy
sequence in X;. Let

Le = lim{piﬂh(yﬂh) ‘g Z i}' (42)

By virtue of Lemma 2.5 there exists x€limX such that p;(x) = x;. It
remains to prove that H(x) = y. From ( 41) and ( 42) it follows that

Tq; € St(ynnuna,ni)'
Arguing as in ( 35)-( 41) we infer that
Yo: = im{qij(za;) 1 nj > 1} = lim{g;pa,(2) : n; > i} (43)

By virtue of ( 32) and Claim 1. it follows that H,,(x) = y,, , i€IN , and
H(x) = y. The proof of the surjectivity of H is completed.

Claim 5. H is open. We shall prove that G = H~! is continuous. Let
y be any point of imY and let U be any open neighbourhood of x =
G(y). By virtue of the definition of a base in imX, there is an open set
U; CX; such that xep;!(U;)CU. We infer that x; = p;(x)€U;. Let V; be
an open set such that x; €V; CCIV; CU,. There exists a cover A, ; such
that st(x; , A ;) is contained in V. Moreover, by (UN1), there exists a
normal cover U;,, such that

stU ., < A ;. (44)
By virtue of ( 42) and ( 41) it follows that there exists a n, >i such that
Pinn(Yn.) € st(zi, Us 1) s o > g (45)

and
Pronn(Ynn) € 58 (Yn, s Un,n,)y e 2 (46)

Let V., = st(Ya, , Un,,)- Then q;}(V.,,) is a neighbourhood of y.For
each z€q;*(V,,) we have z,, = q.,(2)€5t(Ya,,Un, . )- By virtue of ( 41)

pnlnm(znm) E St(zﬂl 3 %L,ﬂl)’nﬂl 2 nt‘ (47)
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This means that

Dot Zna ) € 88 (Hiny 5:eas o) - By 2 Tt (48)
By (UN2) we infer that
PinPinn(Zan) € 582 (2i,Usn, )y Mm 2 1. (49)
Using (UN3) for i and U; ,,, we infer that
Pinn(2n,) € st(2i, U n,) y Tom > g (50)
From ( 44) it follows that
Pinn(2n,) € Vi i 2 10 (51)

We infer that lim{pi._ (2., ) : nm > n,} €CIV; CU;. By virtue of ( 42)
we infer that p;G(z)€U; , i.e. , G(z)€U. Thus, G = H™' is continuous.
This means that H is is open. The proof of Theorem 2.11 is completed .l

COROLLARY 2.12 Let X={X,, Pma, IN} be an approzimate inverse

sequence of compact metric spaces . Then there exist:

a) a cofinal subset M = {n; : i€IN} of IN,

b) a usual inverse sequence Y = {Y;, ¢; , M} such that Y; = X,,
and gi; = Piiy1 Pitiiyz --- Pj—1j for each 1,5€ IN,

c) a homeomorphism H : imX—lmY.

Proof. Each compact metric space is complete. Apply Theorem 2.11.H

REMARK 2.13 An alternate proof of the above Corollary can be
found in Proposition 8. of [4] since each normal cover of a compact
metric space X has a Lebesgue number [6, p. 344.]. Thus, each approxi-
mate inverse system of compact metric spaces is an approximate inverse
system in the sense of M.G. Charalambous [4]. This is not true for non
- compact metric spaces. M.G. Charalambous [4, Proposition 8| has a
more general result for the inverse sequences of complete metric spaces
and uniform bonding mappings.

17



18 Lonéar I. Biljeska o aproksimativnim limesima

3 Applications

We start with the following theorem.

THEOREM 3.1 Let X={X,, pmn, IN} be an approzimate inverse se-
quence of non-empty complete metric spaces and let P be a topological
property which satisfies the following condition:

(C) If Z = {Z,,fna,N} is an inverse sequence of spaces having pro-
perty P, then limZ has property P.
Then limX has the property P.

Proof. Let Y = {Y; , q;j , M} be an usual inverse sequence from
Theorem 2.11. From (C) it follows that imY has the property P. By
virtue of Theorem 2.11 it follows that imX has property P since imX
is homeomorphic to imY.H

In the sequel we shall give some application of Theorem 3.1.

THEOREM 3.2 Let X={X,, pmn, IN} be an approzimate inverse sy-
stem of complete metric spaces. If dimX, <k, then dim(limX )<k.

Proof. Apply Theorem 3.1 and the usual inverse limit theorem of
Nagami [17].1

If the spaces X, are separable metric spaces, then we have the next
theorem which is an approximate version of Theorem 1.13.4 of [7, p.
149.].

THEOREM 3.3 Let X={X,., pmn, IN} be an approzimate inverse se-
quence of separable metric spaces such that dimX; <k,i€N.
Then dim(limX )<k.

Proof. By virtue of Lemma 1.13.3. there are compact metric spaces cX,
which are the extensions of X,, such that dim(cX,)<dimX, and such that
each p,, is extendable to a continuous mapping cp,». Thus, we have
the approximate inverse sequence cX = {cX, , ¢cpPam , IV }. By virtue of
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the above Theorem dim(lim c¢X)<k. It follows that dim(limX)<k. The
proof is complete.ll

A space X is locally connected (semi-locally connected) if for each
x€X and each open subset U of X such that x€U there is an open subset
V with x€VCU and V is connected(X\V has only a finite number of
components).

THEOREM 3.4 Let X={X,, Pmn, IN} be an approzimate inverse sy-
stem of complete metric spaces. If the spaces X;,i€ N,are connected (lo-
cally connected) and if the mappings p;; are hereditarily quotient mono-
tone surjections,then limX is connected (locally connected).

Proof. Consider the inverse system Y={X,,,,q;;,M} as in Theorem 2.11.
By virtue of [6, p. 134.] and [6, Theorem 6.1.28.] the system Y has
the hereditarily quotient monotone surjective bonding mappings.If the
spaces X; are connected,then imY is connected [18, Theorem 11.]. By
virtue of Theorem 11. [18] limX is connected.Moreover,by virtue of [18,
Theorem 9.] and [18, p. 71.,Corollary] it follows that the projections
q;:limY —X,,. are hereditarily quotient and monotone.If the spaces X,,,
are locally connected,then from the definition of a base of topology of
LmY and [6, Theorem 6.1.28.] it follows that imY is locally connec-
ted.Clearly,limX is locally connected .l
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Loncar I. Biljeska o aproksimativnim limesima
SAZETAK

U radu su izucavani limesi aproksimativnih inverznih sistema X =
{X., Pab, A}u smislu S. Mardesi¢a [10].Glavni rezultati rada su slijedeéi:
(a) Ako je X={X., Pma, IV } aproksimativni inverzni niz nepraznih
Cech - kompletnih parakompaktnih prostora,tada je imX neprazan Cech
- kompletan prostor (Teorem 2.7.).

(b) Ako je X={X,, Pmn, IV} aproksimativni niz apsolutno G; - pro-
stora, tada postoji obi¢ni inverzni podniz koji ima limes homeomorfan
limesu polaznog aproksimativnog niza (Teorem 2.11.).

(c) U treéem odjeljku dane su neke primjene rezultata (b).



