UDK: 513 Originalni znanstveni rad

INFINITE-DIMENSIONALITY OF INVERSE LIMIT SPACE

Dr. Ivan Lončar

Fakultet oraganizacije i informatike, Varaždin

Among other results we prove: (1) If $f:X \rightarrow Y$ is a closed surjection between normal countably compact spaces such that |Fr f-1(y)| < k, then a weak infinite-dimensionality of X implies a weak infinite-dimensionality of Y; (2) If X is a limit of noramalcountably compact strongly infinite-dimensional spaces and closed bonding mappings fabsuch that |Fr f-lab(xa)| < k, then X is countably compact and strongly infinite-dimensional; (3) Let $X = \{Xa, fab, A\}$ be an inverse system of infinite-dimensional Cantor-manifolds Xa. If the mappings fab are monotone such that |Fr f-lab(xa)| < k, then $\lim X$ is an infinite-dimensional Cantor-manifold.

Mathematics subject classification (1980): Primary 57N20; Secondary 54B25.

Keywords and phrases: Infinite-dimensionality, Cantor-manifold, inverse system.

0JNTRODUCTION

We say that a space X is A-weakly (S-weakly) infinite-dimensional [2] if for each sequence $\{(A_i, B_i):i \in \mathbb{N}\}$ of the pairs A_i, B_i of closed disjoint subsets A_i, B_i of X there exist the partitions C_i between A_i and B_i such that $\cap \{C_i:i \in \mathbb{N}\} = \emptyset$ ($\cap \{C_i:i=1,2,...,k\} = \emptyset$).

A space X is A-strongly (S-strongly) infinite-dimensional if X is not A-weakly (S-weakly) infinite-dimensional.

Frequently we use the words weakly infinite-dimensional instead of the words A-weakly infinite-dimensional.

A space X is **infinite-dimensional Cantor-manifold** if X is compact and X-F is connected for each closed weakly infinite-dimensional subset F of X.

The cardinality of a set A is denoted by |A| or by card(A).

If A is well-ordered, then cf(A) means the cofinality of A, i.e. the smallest ordinal number which is cofinal in A.

We use the notion of the inverse system as in [3].

1. THE MAIN RESULTS

We start with the following lemma.

1.1.LEMMA.A countably compact space X is A-weakly infinite-dimensional iff X is S - weakly infinite-dimensional.

Proof.Lemma follows from the definitions of the countable compactness, A-weak and S-weak infinite-dimensionality.

1.2.LEMMA.[2:543]. If X is normal S-weakly infinite-dimensional, then the Stone-Cech's compactification βX is weakly infinite-dimensional.

1.3.REMARK.Clearly, if βX is weakly infinite-dimensional, then X is S-weakly infinite-dimensional and A-weakly infinite-dimensional.

From 1.2. and 1.3. we infer

1.4.LEMMA. A normal countably compact space X is weakly infinite-dimensional iff βX isweakly infinite-dimensional.

In the sequel we use the following

1.5.LEMMA.[1:23].Let $f:X \to Y$ be a mapping from a weakly infinite-dimensional compact space X.If the space Y=f(X) is strongly infinite-dimensional, then there exists $y \in Y$ such that $card(f^{-1}(y)) \ge c = 2^{\aleph_0}$.

1.6.COROLLARY.Let $f: X \to Y$ be a mapping between compact spaces such that each fiberis countable. If X is weakly infinite-dimensional, then Y is weakly infinite-dimensional.

1.7.COROLLARY.Let $f:X \rightarrow Y$ be a closed surjection between normal spaces such that for each $y \in Y$ card $(f^{1}(y)) \le k.$ If X is S-weakly infinite-dimensional, then Y is so.

Proof.Let $\beta f:\beta X \rightarrow \beta Y$ be the Stone-Cech extension of f. By Lemma 1. of [9] we infer that card($(\beta f)^{-1}(y) \le k.By 1.2., 1.3.$ and 1.6. we complete the proof.

1.8.THEOREM.Let $f:X \rightarrow Y$ be a closed mapping between normal countably compact spaces such that $card(f^{1}(y)) \le k$ for each $y \in Y$. If X is weakly infinite-dimensional, then Y is weakly infinite-dimensional.

Proof.Let $\beta f: \beta X \to \beta Y$ be Stone-Cech's extension of f.From [9:Lemma 1.] it follows that $card((\beta f)^{-1}(y)) \leq k$ for each $y \in \beta$. Since X is weakly infinite-dimensional (1.4. Lemma) it follows that βY is weakly infinite-dimensional. Lemma 1.4. completes the proof.

1.8.1.REMARK.Let us note that it suffices to assume that card (Fr $f^{-1}(y) \le k$.

1.9.THEOREM.Let $\underline{\mathbf{X}} = \{X_n, f_{nm}, N\}$ be an inverse sequence of normal countably compact spaces X_n and closed mappings f_{nm} such that card $(\operatorname{Fr} f^{-1}_{nm}(x_n)) \leq k$. If the spaces X_n are strongly infinite-dimensional, then $X = \lim \underline{\mathbf{X}}$ is strongly infinite-dimensional.

Proof.From [7] (or [3:260]) it follows that X is countably compact. One readily sees that $\operatorname{card}(f_n^1(x_n)) \le k$. Theorem 1.8. completes the proof.

1.10.THEOREM.Let $X = \{X_a, f_{ab}, A\}$ be an inverse system of compact spaces X_a such that card $(f_{ab}^{1}(x_a)) \le k$. If the spaces X_a are strongly infinite-dimensional, then $X = \lim X$ is strongly infinite-dimensional.

Proof.Apply Lemma 1.4.

1.11.THEOREM.Let $X = \{X_a, f_{ab}, A\}$ be a σ -directed inverse system of compact spaces X_a such that each fiber $f^{1}{}_{ab}(x_a)$ is finite. The space limX is strongly infinite-dimensional iff the spaces X_a are strongly infinite-dimensional.

Proof. Suppose that $\operatorname{card}(f^1_a(x_a)) = \aleph_0$ for some $x_a \in X_a$. For each pair $x_y \in f^1_{ab}(x_a)$ there exists $a_0 \in A$ such that $f_b(x) \neq f_b(y)$ for each $b > a_0$. From the σ -directedness of A it follows that there is an $c \in A$ such that $\operatorname{card}(f_c f^1_a(x_a)) = \aleph_0$. This contradicts the fact that the fibers are finite. Thus, $\operatorname{card}(f^1_a(x_a)) = \aleph_0$ for each $a \in A$ and each x_a . From Lemma 1.5. it follows that limX is strongly infinite-dimensional. The converse follows from the following

1.12.THEOREM.Let $X = \{X_a, f_{ab}, A\}$ bean σ -directed inverse system of compact spaces X_a . If the spaces X_a are weakly infinite-dimensional, then $X = \lim X$ is weakly infinite-dimensional.

Proof.Let $\{(A_i, B_i), i \in N\}$ be any sequence of pairs of disjont closed subsets of X. There exists an $a_i \in A$ such that $f_{ai}(A_i) \cap f_{ai}(B_i) = \emptyset$. Since X is σ -directed there exists $a > a_i$ such that $f_a(A_i) \cap f_a(B_i) = \emptyset$ for each $i \in N$. By virtue of the weak infinite-dimensionality of X_a we have the partitions C_i between $f_a(A_i)$ and $f_a(B_i)$ with $\cap C_i = \emptyset$. The sets $f^1_a(C_i)$ are thepartitions between A_i and B_i such that $\cap f^1_a(C_i) = \emptyset$. The proof is completed.

1.13.COROLLARY. Let $X = \{X_a, f_{ab}, A\}$ be a σ -directed inverse system of compact spaces X_a . If the spaces X_a are weakly infinite-dimensional and the fibers $f^1{}_{ab}(x_a)$ are finite, then $X = \lim X$ is weakly infinite-dimensional.

1.14.REMARK. If X in Theorems 1.11.,1.12. and 1.13. is \aleph_1 -directed, then one can assume that card($f_{ab}^1(x_a)) \leq \aleph_0$.

We say that $X = \{X_a, f_{ab}A\}$, is a factorizable [10] inverse system of f-system if or feach function f: $X = \lim X \to [0,1]$ there is an $a \in A$ and $g_a: X_a \to [0,1]$ such that $f = g_a f_a$.

For each $\mathbf{X} = \{\mathbf{X}_{a}, \mathbf{f}_{ab}, \mathbf{A}\}\$ we denote by $\beta \mathbf{X}$ the system $\{\beta \mathbf{X}_{a}, \beta \mathbf{f}_{ab}, \mathbf{A}_{c}\}$.

1.15.LEMMA.Let $X = \{X_a, f_{ab}, A\}$ be an inverse system with a limit X, then βX is homeomorphic with $\lim \beta X$.

Proof.Apply 3.6.3. Corollary of [3].

1.16.THEOREM.Let $X = \{X_a, f_{ab}, A\}$ be a σ -directed inverse system of the Lindeloff spaces X_a and closed mappings f_{ab} such that all the fibers $f_{ab}^1(x_a)$ have at most k points.

I. Lončar

Then $\lim X = X$ is S-weakly (S-strongly) infinite-dimensione iff the spaces Xa are S-weakly (S-strongly) infinite-dimensionel.

Proof. We consider the system $\beta \mathbf{X}$. From [10:28] it follows that \mathbf{X} is a f-system. Hence, $\beta \mathbf{X}$ is homeomorphic with $\lim \beta \mathbf{X}$. The system $\beta \mathbf{X}$ satisfies the conditions of Theorem 1.11. and Corollary 1.13.By Lemma 1.2. we complete the proof.

1.17.THEOREM.Let $X = \{X_a, f_{ab}, A\}$ be a well-ordered inverse system of normal spaces with $hl(X_a) < \omega_{\tau}$ and $cf(A) > \omega_{\tau}$. If the mappings f_{ab} are closed such that card $(f^1_{ab}(x_a)) \le k$, then $X = \lim X$ is S-weakly (strongly S-weakly) infinite-dimensional iff the spaces X_a are S-weakly (strongly S-strongly) infinite-dimensional.

Proof.By virtue of [8] it follows that for every closed subset F of X there is a $a \in A$ such that $F = f_a^1(F_a)$ for some closed subset F_a of X_a . This means that \underline{X} is an f-system [10:27]. Applying the system $\beta \underline{X}$ as in the proof of Theorem 1.16. we complete the proof.

1.18.THEOREM.Let $X = \{X_a, f_{ab}, A\}$ be an σ -directed inverse system of the spaces X_a suc that the Souslin number $c(X_a) \le \aleph_0$ and that the mappings f_{ab} are open and closed. A space $X = \lim X$ is S-weakly (S-strongly) infinite-dimensional iff the spaces X_a are S-weakly (S-strongly) infinite-dimensional.

Proof. From [10:28] it follows that \underline{X} is an f-system. By virtue of [6] and [9] we infer that $\beta f_{ab}:\beta X_b \rightarrow \beta X_a$ are open and closed with $\operatorname{card}((\beta f_{ab})^{-1}(x_a)) \leq k$ for each $x_a \in \beta X_a$. From Lemma 1.15. it follows that βX is homeomorphic with $\lim \beta \underline{X}$. Since $\lim \beta \underline{X}$ is weakly (strongly) infinite-dimensional (Theorem 1.12.), we infer that βX is weakly (strongly) infinite-dimensional. Lemma 1.2. completes the proof.

We close this Section with the inverse systems of the infinite-dimensional Cantormanifolds. Firstly we prove

1.19.LEMMA.Let $f:X \to Y$ be a mapping from a weakly infinite-dimensional compact space X onto a strongly infinite-dimensional space Y. There exists $y \in Y$ such that $|Fr f^{-1}(y)| \ge c = 2^{\aleph_0}$.

Proof.Let X' be a set obtained by adjoining to the union \cup {Fr f¹(y) : y \in Y} one point from each fibre f¹(y) which has an empty boundary. The restriction $f/X' : X' \rightarrow Y$ (onto Y) satisfies 1.5. Lemma. The proof is completed.

From Lemma 1..2, Lemma 1.19. and [9:Lemma 1.] it follows

1.20.LEMMA.Let $f:X \rightarrow Y$ be a closed mapping such that $card(Fr f-1(y))| \le k$ for each $y \in Y$. If X and Y are normal spaces, then S-weak infinite-dimensional of X implies S-weak infinite-dimensionality of Y.

1.21.LEMMA.Let $f:X \rightarrow Y$ be a mapping and $F \subseteq X$ compact weakly infinite-dimensional subspace. If f(F) is strongly infinite-dimensional, then there is $y \in f(F)$ with $|Frf^{1}(y)| \ge c$.

Proof.Let X₁ be a set obtained by adjoining to the set $F \cdot \cup \{\text{Int } f^1(y) : y \in f(F)\}$ one point from $f^1(y) \cap F$ if $\text{Fr} f^1(y) \cap F = \emptyset$. The restriction $f/X_1: X_1 \rightarrow f(F)$ satisfies Lemma 1.5. The proof is completed.

1.22.THEOREM.Let $\mathbf{X} = \{X_a, f_{ab}, A\}$ be an inverse system of the infinite-dimensional Cantor-manifolds X_a . If the mappings f_{ab} are monotone such that card (Frf ${}^{1}_{ab}(\mathbf{x}_a)) \le k$, then $X = \lim \mathbf{X}$ is an infinite-dimensional Cantor-manifold.

Proof.Let F be a weakly infinite-dimensional closed subset of X.Since card (Frf ${}^{1}_{a}(x_{a})$) sk we infer that $Y_{a} = f_{a}(F)$ is weakly infinite-dimensional (1.21. Lemma). This means that $Z_{a} = X_{a} - f_{a}(F)$ is connected. From the fact that f_{a} are monotone [3:436] it follows that $f^{1}_{a}(Z_{a})$ are connected. Since X - F = $\bigcup \{f^{1}_{a}(Z_{a}):a \in A\}$ and $\bigcup \{f^{1}_{a}(Z_{a}):a \in A\}$ is connected [3:436] we infer that X - F is connected. The proof is completed.

1.23.THEOREM.Let $\mathbf{X} = \{X_{a}, f_{ab}, A\}$ be a σ -directed inverse system of the infinitedimensional X_a. If the mappings f_{ab} are monotone such that the sets Fr $f_{ab}^{1}(\mathbf{x}_{a})$ are finite, then X=limX is an infinite-dimensional Cantor-manifold.

1.24.THEOREM.Let $\mathbf{X} = \{X_a, f_{ab}, A\}$ be an \aleph_1 -directed inverse system of infinitedimensional Cantor manifolds X_a . If the mappings f_{ab} are monotone such that $|\text{Frf}_{ab}(\mathbf{x}_a)| \leq \aleph_0$, then $\mathbf{X} = \lim \mathbf{X}$ is an infinite-dimensional Cantor-manifold.

REFERENCES:

- 1. Aleksandrov P.S., O nekotoryh osnovnyh napravljenijah v obscej topologiji, UMN 19(1964), 3-46.
- 2. Aleksandrov P.S., Ponomarev B.A., Vvedenie v teoriju razmernosti, Nauka, Moskva, 1973.3. Engelkig R., General Topology, PWN, Warszawa 1977.
- 4. Engelking R., Dimension Theory, PWN, Warszawa 1978.
- 5. Gillman L. and Jerison M., Rings of continuous finctions, New York 1960.
- 6. Keesling J.E., Open and closed mappings and compactification ,Fund.Math.65(1969), 73-81.
- 7. Loncar I., Inverse limits for spaces which generalize compact spaces, Glasnik matema ticki 17(37) (1982), 155-173.
- 8. Loncar I., Lindeloffov broj i inverzni sistemi, Zbornik radova FOI Varazdin 7(1983), 115-123.
- 9. Pasynkov B.A., Faktorizacionnye teoremi v teorii razmernosti, UMN 35(1981), 147-175.
- 10. Scepin E.V., Funktory i nescetnye stepeni kompaktov, UMN 36(1981), 1-63.