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NEAR-COMPACTIFICATION OF INVERSE LIMIT SPACE

The main purpose of this paper is the investigation of the
continuity of the near-compactification.

Section One contains the definition and basic properties of
the near-compactification hX of a space X.

Section Two is the main section. We say that the
near-compactification is X-continuous if h(1limX) = 1lim hX for
some inverse system X. The necessairy and sufficient conditions
for X-continuity of the near-commpactification are given.

1. NEAR-COMPACTIFICATION hX OF A SPACE X

If X is a topological space, then the closure and the
interior a subset A £ X is denoted by Cle and IntXA or by Cl1A

and IntA.

The notion of near-compactification was introduced by
Herrmann [5] for almost completely regular spaces and by Katetov
extension for completely regular spaces (see [19]).

Now we give some exspository material concerning the Katetov
kX since near-compactification is a quotient space of kX.

A Hausdorff space X is H-closed if for every open cover U of

X there exists a finite subfamily {Ul,...,Uk} of U such that
X =ClU v ... v ClU ([17]).
A continuous mapping f:X ---> Y is said to be proper [17] if

for each y € Y and each V3 y open_}n Y there exifts a V' sy
which is open in Y and such that Intf “(C1V’) < Ci1f “(V) [17].
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An inclusion A c Y is proper if for each y € Y and each
V > y open in Y there exists a V' 3 y open in Y and such that
IntA(A n ClVv’) ¢ C1A(A n V).

1.1. LEMMA. [17]. Let f:X -—-> Y be a continouos mapping. Then:

(i) f is proper, if Y is regular;

(ii) f is proper if X is H-closed and if Y is a Hausdorff
space;

(iii) a closed subspace A of H-closed X is H-closed if the
inclusion A € X is proper;

(iv) each open and dense embedding is proper.

Let F be the family of all open free ultrafilters on a
Hausdorff space X. The Katetov extension kX of X [17] is the set
X U F with topology consisting of all open subsets of X and all
sets of the form {x} v U, where X e F and U e x, U open in
X.

1.2. LEMMA. ([17],[27]). Let X be a Hausdorf space. Then:
(1) kX is H-closed;

(ii) X is open and dense {i.e. open} embedded in kX;
(134) kX-X 1is discrete in the topology induced by the
topology on kX;
(iv) a mapping f:X ---> Y into H-closed space Y has a unique
continuous extension kf:kX ---> if and only if f is proper;
(v) if U and V are disjoint open subsets of X then ClkXU N
ClkXV c X.

We say that an extension Y of X is majorizable if there
exists an extension Z of X and a map F:Z ---> Y which is an
extension of the identity i:X ---> X.

An extension will be called r.o.-free 1if for each regulary
open subset U of X the bondary BdxU in X is the same as the
boundary BdxV of V in Y, where V is an arbitrary open subset of Y
such that U=V n X [17:1.3.].

1.3. LEMMA. [17:1.3.1]. If an H-closed extension X ¢ Y is such
that:

a) X is open in Y,

b) The remainder Y - X is discrete in the topology induced
from Y,

c) XcY if r.o.-free

then X ¢ Y is non-majorizable.
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1.4. LEMMA. An extension X < Y which satisfies a) and b) of
Lemma 1.3. is r.o.-free if the folowing condition (K) is
satisfied:
(K) If U,V is a pair of disjoint open subsets of X then ClvU’ n
CivU’ < X, where U’, V'’ are arbitrary open subsets of Y such thet
U=U nXand V=V n X

A p-cover of X is an open cover of X possessing a finite
subfamily which is dense in X [26]. A map f:X --=> Y is p-map if
for each p-cover U of Y then cover f "(U) = {f "(U):U € U) is a
p-cover of X [26].

A continuous mapping f:X ---> Y is a p-mapping if f can be
continuosly extended to kf:kX ---> kY [2B6].
1.5. LEMMA/ ([11],[22]). Let Xa be a non-empty space for each « €

A. Then k(P Xa) = P an if at least one of the following two

conditions is satisfied.
(a) Xa is H-closed for each « € A.

(b) There exists Xao which is not H-closed. Xo‘° is finite for
all o # « . MOreover, all but finitely many Xa ’s have only one

point.
Let an be the Katetov extension of an almost completely

*
regular space X and let h € C (X) ©be a real-valued bounded
function on X. Then since h(X) is a dense subset of a compact
space there exists a map H eC*(kX) such that H / X = h.

We now define an equivalence relation R on kX as follows:
xRy if H(x) = H(y) for each h € C*(X) . Let hX be the quotient
space kX / R and p:kX ---> hX the natural projection.

1.6. THEOREM. [5]. Let X be almost completely regular. [20]. Then
X is a dense subspace of a nearly-compact Hausdorff space hX with
the following properties.

(1) For each nearly-compact space Y and continuous open
f:X ——-> Y there exists a unique and continuous map F:hX ---> Y
such that F / X = f.

(2) Any nearly-compact space in which X can be densely
embedded and which possesses property (1) is homeomorphic to hX.

(3) The space hX is the projective maximum in the class of
all nearly-compact extensions of X.
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(4) X is C*-embedded in hX.

The space hX is the for a completely regular space X has
been constructed by Katetov (see [19],pp.168.,Construction
6.10.).

1.7. THEOREM. [19]. Let X be completely regular and hX the space
constructed in the Construction 6.10. Then:

(a) hX is an H-closed completely Hausdorff extension of X,

(b) The semiregularization (hX)S is isomorphic with BX,

(c) hX is the projective maximum among H-closed completely
Hausdorff extension of X,

(d) X is C*-embedded in hX.

Now we prove two properties of hX which are similar to the
properties of kX.
1.8. LEMMA. The remainder hX-X 1is discrete in the topology
induced by the topology of hX.
Proof. If hX-X is not discrete in the subspace topology then we
define a new topology t’ on hX as follows. For each x € hX-X we
define a new family of neighborhoods containing a sets of the
form {x} U (U-(hX-X)), where U is a neighborhood of x in hX. The
identity i:(hX,t’) ---> hX is continuous [9:68]. This means that
(hX,t’) is completely Hausdorff. Moreover, the space (hX,t’) is
an H-closed extension of X. By Lemma 1.7.(c) we infer that the
identity i:(hX,t’) ---> hX is a homeomorphism.
1.9. REMARK. Lemma 1.8. can be proved using the facts that hX is
a quotient space of kX and that kX-X is discrete in the subspace
topology.
1.10. LEMMA. If X < Y is a completely Hausdorff extension of X
with the properties:

(a) X is open in Y,

(b) Y - X is discrete in the subspace topology,

(c) if U and V are open in X that ClXU la) Cle = @ then

CituncCi1 V=9,
X X

then Y is no-majorizable.
Proof. Assume that Z is the completely Hausdorff extension of X
and H:Z ---> Y is a map such that H/X 1is the identity. If
suffices to prove that H/(Z2-X) is 1-1. For each pair x,y of
distinct points in Z-X there exists a neighborhood U and V of x
and y such that
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Cle ) Cle = g since Z is completely Hausdorff. Set U’ = U n X

and V' = V n X. By virtue of the condition c) we have
ClXU N Cle = g . If we suppose that H(x) = H(y) then we obtain

that H(x) e Cle’ N Cle’. We obtain a contradiction. The proof

is completed.

1.11. LEMMA. If X is normal then a completely Hausdorff H-closed
extension Y of X is near-compactification hX if Y-X is discrete
in the subspace topology and the following condition (K) is
satisfied:
(') If Fl,F2
CthU ) CthV =2 .

Proof. The "only if" part. If Y is equivalent to hX then (K’)
follows from Lemma 1.10.

The "if" part. Since hX is the projective maximum there
exists a mapping H:Y ---> hX. For each pair x,y of discinct
points in Y-X we consider sets U’ and V' as in the proof of Lemma
1.10. Using the normality of X we complete the proof in a similar
way as in Lemma 1.10.

is a pair of disjoint closed subsets of X then

2. NEAR-COMPACTIFICATION OF INVERSE LIMIT SPACE

Now we start with the key lemma of this Section.
2.1. LEMMA. Let §={Xa,faB,A} be an inverse system of Hausdorff

spaces Xa’ o € A. Then:

(i) if the mappings f are open then there exists inverse

of

system

h¥X = {hX ,hf _, A};
- 04 (04

B

(ii) if 1imX is non-empty and if the projections fa:limX ———D Xa’

o € A, are onto, then there exists a continuous mapping H:h{1limX)
--=> 1limhX which is an extension of the identity i:limX --->
1imhX; ‘

(iii) if the projections fa are onto, then H is onto and 1imhX is
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an H-closed completely Hausdorff extensions of 1imX such that
1imX is open in limhX.

Proof. (i) Apply Theorem 1.6.(1).

(ii) Now we have the open mappings f:1imX ---> hX, « € A. By
virtue of Theorem 1.6.(1) there exist a) continuous mappings
hfa:h(limX) —-—> th, o € A. The family {hf:o € A} induces a

continuous mapping H:h(limX) ---> 1imhX [2:138]. The proof is
completed.

(iii) Let us prove that H is onto. For each x € 1imhX we consider
points X, = f’a(x), a € A, where f’a:lith —-—=> th, a € A, are

the projections. For each X, We have {Xa} =n {Can: Ua is an
open neighborhood of Xa'} The family {(hfa)_l(Ua):a € A} is a

centred family of open subsets in the H-closed sppce h(1limX).
This means that there exists a point Y € n {Cl(hfa) (Ua):a € A}.

Celarly hfa (y) = X for each a« € A. Thus, H(y) = x. This means

that H is onto and that 1imhX is H-closed as a continuous image
off the H-closed space h(limX). In order to complete the pl[roof
it suffices to prove that 1imX is dense in X. This is an
immediate consequence of the definition of a base of the inverse
limit space and the assumption that fa are onto. Finally, 1limhX

is completely Hausdorff. The proof is completed.
2.2 LEMMA. Let X = {Xa’faB’A} be an inverse system with open and

onto projections fa' For each x € h(1imX)-1imX there exists a waeA
such that hf (x) € hX - X .
o o (4

Proof. Lemma is an immediate consequence of the fact that x is a
free ultrafilter and the definition of a base on inverse limit

space.
From Lemmas 1.10. and 2.1. we obtain the following
2.3. THEOREM. Let X = {Xa’faB’A} be an inverse system of
thecompletely Hausdorff spaces X , o € A, and open onto mappings
o

£ such that the projections fa 1imX -> Xa’ o € A, are onto. The

o3
mapping H:h(1imX) -> limhX is homeomorphism. If limhX \ 1limX is
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discrete the subspace topology and for each 1imX open set U.V.
from CllimgU n C111m§V = g it follows CllimgU n Cllimgv =2 .

2.4. LEMMA. let X be as Theorem 2.3. If faB are p-perfect, then
the subspace limhX-1imX is discrete If the following condition

(D) is satisfied:

For each x € an = Xa’ « € A there is a B = « such that
—]. . o i

(ka) (XB) has a single point for each xB € (kfaB) (Xa) and

each ¥ = B.

Proof. The "only if" part. Now the subspace Y = limkX - 1limX of
the space 1imkX is the 1imit of the inverse subsystem Y =

{kxa_xa’faﬁ/(kxﬁ—xﬁ)’A}' If each point y € Y is open in Y, then

{Y} contains the fiber {kf }—1(U ) for some open U c kX -X This
o o o a o

means that this fiber has a single point. Thus (D) is satisfied.
The "if" part. The proof is similar.
We say that an inverse system X = {Xa’faB’A} is an

(RS)S-system if for each pair F1 F, of disjoint (regulalry)

2
closed of 1imX there is a « € A such that le“(Fl) ) lea(F2)=z.

Clearly, each S-system is RS system.

2.5. THEOREM. Let X = {Xa’faB’A} be an inverse system of the

completeluy Hausdorff spaces X“, o« € A, and open onto p-perfect

mappings fa such that the projections falimg -3 Xa’ o« € A, are

B
onto and the condition (D) is satisfied. Then H:h(1limX) -> limhX

is the homeomorphism if X is RS systen.
Proof. Necessity. Let sth, o € A, be the semi-regularization [7]

of th. We consider the inverse system shX = {tha’ShfaB’A}’
where shf {x } = hf {x } for each x € hX , « € A. The mappings
o (73 S o o

oB

ShfaB are continuous [14. Theorem 3.1]. This means that shX is

inverse system of compact spaces and thus, S:s(limhX) -> limshX
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which is 1-1 and onto. If H is a homeomorphism, then lim hX is

nearly-compact. Thus, S is the homeomorphism. If C1lU, C1lV are
regulary closed in s(1limhX) and, thus, in limshX. Since shX is

S-system, there is a « € A such that lea(ClU) n lea(C1V) =@ in
sth. Clearlylea(ClU) N lea(C1V) = @ in th. The proof is

completed.
Sufficiency. Let U and V be a pair of open set in 1imX such

that (in 1imX) C1U n C1V = @. Since X is RS-system and fa o €A,

B,
are open we have open sets fa(U) and fa(V) such that,
lea(ClU) N lea(C1V) = g in th. This means that in limhX is C1U

NC1lV = @. The proof is completed.
2.6. COROLLARY. If X 1is an inverse system of a completely

Hausdorff nearly compact spaces and open onto bonding mappings,
then 1imX is nearly-compact.

Proof. The mappimg S in the proof of Theorem 2.5. is a
homeomorphism. Thus, limshX = 1limsX = s(limhX). We infer that

limxX is nearly-compact space is nearly-compact.

2.7. remark. Corollary 2.6. holds also from the fact that H is a
continuous surjection and that a completelly Hausdorff continuous
image of a nearly-compact space in nearly-cpmpact.

The condition (d) is satisfied in the case of open mappings
with finite fibers. We start with the following lemma.
2.8. LEgFA. Let f:X -> Y be an open p-perfect surjection such
that If "(y)l = k for each v € Y and some fixed natural number k
€ N. Let kf:kX -> kY be thqqlKatetov extension of f,X and Y
([4],091,[171,126]) Then I(kf} “(z)l = k for each z e kY.
Proof. For each z € Y we have (kf) "(z) = f “(z) since f is
p-perfect i.e. kf(kX-X) = kY-Y. Now, let z € kY-Y. Suppose that

there exist distinct points Zyoe Zpag of kX-X such that

(kf)(zi)=z,i=1,...k+1. Eagch point zi is the ultrafilter U, of

open subset of X. Similarly, z 1is the ultrafilter U of open

subsets of Y. From the fact k¥ is T2 it follows that there exist

X
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disjoint open sets Ui ¢ X,i=1,...,k+1, such {Zi} v
Ui,i=1,...,k+1, are neighborhoods of Zi' From the constructiuon
of (kf)(zi) it follows that f(Ui) € U,i=1,...,k+1. This means
that Y’ = n{f(Ui):i=1,...,k+1) # @. Thus, for each yeY’ there
exists xieUi,i=1,...,k+1, such that f(xi)=Y. This means that

f—i y) has the cardinality = k+1. This contradicts the assumption
If "=k. The proof is completed.

From the proof and the fact that f(X) = Y also follows the
next lemma. -1
2.9. LEMMA. Leglf:x -> Y be an open surjection. If f “(y) =k,
yeY, then | (kf) “(z)l=k for each z € kY-V.
2.10. LEMMA. Let f:X -> Y be an open surjection _petween
completelly Hausdorff spaces. If If "(y)l = k, then I(hf)_l(y)lsk
for every yeY-Y. Moreover, if f is p-perfect, then |(hf) " (y)I=k
for each yeY.
Proof. Apply lemma 2.7.,2.8.,2.9. and the fact that hy is the
quotent spaces of the Katetov extension kX [6].
2.11. THEOREM. Let X = {Xa’fa ,A} be an inverse system of

B -
completelly Hausdorff and open onto mappings faB' TENLF laB(xa)l§
for each «,B and xana, then the condition (D) is satisfied.

Proof. By virtue of Lemma 2.10. I(hf_laB

th—Xa. If we suppose that for each B = « and each x, €

B

X I (hf )—1(X )JI1=2 then for a sequence “535315---53n5--- we have

B By, B .

I(hfa )—1(Xa)l = 2, n -> o. This 1is impossible since

B
l(hfaB

examples of inverse S-system.

2.12. EXAMPLES OF INVERSE S-SYSTEM

a) Each inverse system of compact spaces is S-system [2].

b) Let X = {Xn,fnm,N} be an inverse sequence. If lim X is

J(x )Isk for each x €
« o

)_1(Xa)5k for each B=a. The proof is completed. Now we give

countably compact, then X is S-system [13].
c) From b) and [13:3.1. Theorem/ it follows that if X is an
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inverse sequence of countably compact spaces and closed bonding
mappings, then X is S-system.

d) Similary, if X is an inverse sequence of sequentially compact
[2] (strongly countably compact, D-compact ([13]) spaces, then X

is S-system.

e) Let m be an infinite cardinal. We say that X is m-compact if
every open cover of X of the cardinality = m has a finite
subcover. Each countably compact spaces is Ro—compact. Let

X = {Xa’faB’A} be a well-ordered inverse system (i.e. A is

well-ordered) such that cf(A) = w - If X, @ € A, are Rm—compact

and fa closed, then X is S-system.

B
f) Let hI(x) denotes the hereditary Lindeldff number of a space
X[2.284]. If X = {Xa’faB’A} be a well-ordered inverse system such

that hI(xa) < RT and cf(A) > R, the for each closed (open) set U
c limX there exist a aeA and closed (open) set Ua (a Xa such that
f'la(u(x) = U. [16.2.3.Teorem]. This means that X is S-systen.

g) We say that X = {Xa’fa ,A} if f-system if for each continuous

real-valued function f:liﬁ% -> |=(0,1)! there exist a a € A, and
continuous real-valued function ga:Xa—>I such that f = gafa [21].
Clearly, if X is f-system and 1imX is normal, then X is S-system.
In the paper [21:28] has been proved that X is f-system in the

following cases:
gl) X is 8-directed inverse system with Lindel&t limit limX,

g2) X is m-directed inverse system with open projections and the
spaces Xa whose Souslin number c(x) = m.
Let us recall that X = {X ,f
= o’ o3

B c A with IBl = m there is « € A such that « 2 B for each B € B.
If X is m-directed for m=RO, then we say that X id d-directed.

,A} is m-directed it for each
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2.13. THEOREM. Let X = {Xn,fnm,N} be an inverse sequence such
that fnm are open and onto. If Xa are completelly Hausdorff, limX

is countably compact space and if (D) is satisfied, then the
spaces h(limX and limhX are homeomorphic.

Proof. Apply Theorem 2.5. and Example 2.12.b).
2.14. THEOREM. If in Theorem 2.13. lfnm(x n)l = k for all neN

and X € Xn’ then the mapping H:h(1imX) -> 1imhX) 1is the

homeomorphism.
Proof. Apply Theorem 2.13. and Theorem 2.11.
2.15. THEOREM. Let X = {Xn,fnm,N} be an inverse sequence of

completelly Hausdorff countably compact spaces Xn such that fnm
are open, closed onto mappings with lf—lnm(xn)l = k, then limhX
is near-compactication of 1limX.

Proof. The space 1imX is countably compact [13]. Theorem 2.14

completes the proof.
2.16. THEOREM. Let X = {Xn,fnm,N} be an inverse sequence of

completely Hausdorff sequential compact (strongly countably
compact, D-compact) spaces and open onto mappings fnm such that

If_lnm(xn)l = k, then limhX is near-compactification of limX.
Proof. The mapping H:h(1imX) -> limhX is the homeomorphism since
limX is sequential compact (strongly countably compact,

D-compact) [13] and the condition of Theorem 2.14. are satisfied.
2.17. THEOREM. Let X = {Xa’faB’A} be an well-ordered inverse

system of completely Hausdorff Km—compact spaces Xa and open,
closed onto mappings fa

auch that for each x €X and each Bz«
% oo
i

o

B

B(Xa)l = k, then the mappings H:h(limX) -> 1limhX is the

homeormorphism. '
Proof. The space limX is R -compact [13]. Thus, X is S-system

[2.12.e]. Apply Theorem 2.5.
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2.18. THEOREM. Let X = {xa’faB’A} be a well-ordered inverse

system such that hI(X ) < R , « € A, cf(A) > w_ and f
]« m m a

open onto

B

mappings with £ = k. If the projections fa are onto

(x )1
(075 02
mappings anfd if Xa are completelly Hausdorff, then the spaces
h(1imX) and 1imX are homeomorphic.

Proof. Apply Theorems 2.5.,2.11. and Example 2.12.f)
2.19 THEOREM. Let X = {Xa’f ,A} be an inverse f-system of the

B
completelly Hausdorff spaces and open onto mappings faB such that
If_laB(xa)l = k. If the projections f , « € A, are onto, then the

spaces h(1imX) andilimhg are homeomorphic.

Proof. Apply theorems 2.5.,2.11., and Example 2.12 g).
2.20. THEOREM. let X = {Xa’faB’A} be a d-directed inverse system

of completelly Hausdorff spaces such that fa
=1
I £
o

are open onto

B

B(Xa)l = k . If the limit limX is Lindeldf and if the

projections are onto, then the spacesh(limX) and 1limhX are

homeomorphic.

Proof. Apply Theorem 2.20. and Example 2.12.gl).

2.21. THEOREM. Let X = {Xa’faB’A} be m-directed inverse system of
completelly Hausdorff spaces such that c(x ) = m and that faB' fa

o
are open onto mappings with (xa)l = k. If limX is normal,

!faB
then h(limX) and 1imhX are homeomorphic.

Proof. Apply Theorems 2.5.,2.11. and Example 2.12.g2).

We close this Section by some theorems concerning the
inverse systems with closed irreducible bonding mappings.

A mapping f:X -> Y is called an irreducible mapping if for
each non-empty open set U ¢ X the set f (U) = {y:yeYa (y)cU} is
non-empty. Clearly, if is closed irreducible, then f (U) is open
and non-empty.

2.22. LEMMA. Each closed irreducible mapping f:X -> Y is
p-mapping.
Proof. Let U be a p-cover of Y (see the definition after LEmma
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1.4.) such that there exists a finite subfamily U1 = {Ul,...,Uk}
such that u{CIUi;i=1,...,k}=Y. Suppose that the cover f ~(U) is
not p-cover. This means that U=X-U{CIf_1(Ui);i=1,...,k} is
non—emptyippen set. Since f is closed and irreducible we infer
tgat £ () is non-empty and open. goreover,
f (U)CX—U{CIUi;i=1,...,k}=z. The contraction f (U)#zeaf (U) = @

completes the proof.
2.23. corollary. Each closed irreducible mapping f:X -> Y has a
unique extension kf:kX -> kY.
Proof. Apply Lemma 2.22. and TRheorem 2.5. of [26].

Since hX is the quotient space of kX we have as in the proof
of Theorem 1. in [5] the following lemma.
2.24. LEMMA. Each closed irreducible mapping f:X -> Y has a
unique extension hf:hX -> hY.
2.25. LEMMA. If f:X -> Y is closed irreducible, then for each y €
kY-Y there exists a single point x € kX-X such that hf(x) = y.

Proof. Suppose that there exist two disjoint point X)Xy € hX-X

such that f(xl) = f(xz) = y. By virtue of the construction of kf

[26:208] it follows that f_l(V)ex1 and f_l(v)ex for each Vey.

2
This means that f 1(V)nU = W is non-empty and open for each Uexl.
Since f is closed and iEPeducible the set f#(W) is open and
non-empty. Clearly, Vnf (W)#. Thus, f (Ul)ey,f (Uz)ey i.e.
f#(Ul)nf#(Uz)iz since y 1is the wultrafilter. The proff is

completed.

2.26. COROLLARY. Lemma 2.25. holds for the mapping hf:hX ->hY.
Proof. Trivial since hX is the quotient space of kX.

2.27. THEOREM. Let X = {Xa’faB’A} be an inverse system with

irreducible bonding mappings faB' Then the projections fu:lim§ =>
xa,a € A, are irreducible.

Proof. Let U be any open subset of limX. We prove that for each
fixed ¢« € A the projection fa is irreducible. It suffices to

prove that f#(U) is non-empty. Let x be any point of U. From the
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definition of a base in 1imX we infer that there is a BeA and

open set UB c XB such that xef_lB(UB) c U. Let ¥y =2 o,8 and let
U =f ! (U). The set f# (U) 1is non—empty since f is
4 B oy Y oy
irreducible. Clearly, this means that f (U) is non-empty. The

proof is completed.

2.28. THEOREM. Let X = {Xa’faB’A} be an S-system with onto

projections. The projections fazlim§'—> Xa,aeA, are closed if faB
are closed.
Proof. Necessity. If F, is is a closed subset of X, . then from

B B
the f B(FB) = f fB (FB) and from the cosedness of fa it follows
that f B(FB) is closed. This means that f o8 is closed.

Sufficiency. Let us prove that fa is closed. Let U be any
open set about f 4 (x ). Since X is S-system, there is a B =z «

such that f (x ) n CIf_(1imX-U) = &. Since f is closed,
af B aB

g !
there 1is open Ua about X, such that f aB(Xa) c £ B(Ua) c

XB—CIfB(limX—U). Clearly, f~1“(Ua) < U. The proof is completed.

2.29. LEMMA. Let X = {Xa’f ,A} be an S-system of completelly

B
Hausdorff spaces and closed irreducible onto mappings faB' Then
there exists the inverse system hX = {th’hfaB’A}'
2.30. LEMMA. Let X = {Xa’faB’A} be an inverse S-system with

closed p-perfect onto mappings f and Hausdorff spaces X“. Then

af

the projections fa’ o € A, era closed p-perfect.

Proof. From [26:Lemma 3.9.] it follows that p-mapping f is
p-perfect if f 1is absolutely closed. A mapping f:X -> Y is
absolutely closed [28.Lemma 3.8] if f(B) is closed for every
regulary closed B ¢ X and if for each,free ultrafilter U e kX-X
and each yeY there is ueU such that £ “(y)nCIU = @. By virtue of
Theorem 2.28. it suffices to prove that for each free open
ultrafilter U of 1limX and each xa,Xa there is an ueU such that
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f‘_l(y)nCIU = @. For each B = a we have a set YB = n{CIfB(U):ueU}.

If we suppose that Y_, is non-empty, then it has exactly one point

B

26:208}. Since f ) = , o =< < %, we have a point =
yB[ } B?[(y?/ Vg B =7 p y

(yB) € limX. By virtue of the definition of a base in 1limX it

follows that each neighborhood of y intersects each ueU i.e.
yen{CIU:ueU}. This is impossible since u is free. Thus, there

exist B =z « such that yB is empty. Then U ={U g’ UB} open in XB and

o B(UB)E U is free open ultrafilter on XB[26 208]. There exists
1

A —1 e
a QB € U’3 such that f aB(Xa)nCIUB = @. Clearly, f oc(x“)nC1f‘

@. The proof is completed since £ ~_(u,) e U.

B B

2.31. COROLLARY. Let X = {Xa’faB’A} be an inverse system. If the

mappings faB are closed, p-perfect and irreducible, then the
condition (D) holds.
2.32. THEOREM. Let X be as in LEmma 2.31. Then the limhX- 1imX is

B

discrete in the subspace topology.
2.33. THEOREM. Let X = {Xa’f ,A} be an inverse system of

B
completelly Hausdorff spaces and closed p-perfect irreducible
onto mappings faB' The mapping H:h(1limX) -> 1limhX 1is the

homeomorphism if X is RS-system.

2.34. THEOREM. Let X = {Xn,fnm,N} be an inverse sequence with
closed p-perfect irreducible onto mappings fnm and countably
compact completelly Hausdorff spaces Xn' Then H:h(1limX) -> limhX

is a homeomorphism.

2.35. THEOREM. Let X = {Xa’faB’A} be an well-ordered inverse

system of completelly Hausdorff Rm—compact spaces Xa and closed

p-perfect irreducible onto mappings f Then the mapping H is a

o’
homeomorphism.
2.36. THEOREM. Let X be the inverse system from the example
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2.12.f). If the spaces Xa € X are completelly Hausdorff and faB

closed p-perfect uirreducible onto mappings, the h(limX) and
limhX are homeomorphic.

2.37. THEOREM. Let X = {Xa’fa ,A} be an inverse f-system with

B

normal limit (&8-directed inverse system with Lindeldf 1limit or
m-directed inverse system with C(Xa) <= m with open projections)
and completely Hausdorff spaces Xa' If the mapping fa are closed

B

p-perfect irreducible and onto, then H is homeomorphism.
Proof. Apply Theorem 2.33. and Example 2.12.g).
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LonCar I. Bliska kompaktifikacija inverznog limesa
SADRZAJ

U radu se izuCava bliska kompaktifikacija limesa 1limX
inverznog sistema X = {X&'faB’A}' Blisku kompaktifikaci ju

definirao je Herrman u radu [5].
U drugom odjel jku se najprije konstruira inverzni sistem hX

= {(hX ,hf _,A} pa svaki inverzni sistem X = (X ,f _,A} se
o o = o’ " of

B

otvorenim preslikavanjima f“ pri cCemu su th, o« € A, bliske

B}
kompaktifikaci je prostora Xa’ U lemi 2.1. je nadalje konstruirano
neprekidno preslikavanje H:h(1limX) -> limhX. Teoremi 2.3. i 2.5.

su osnovni teoremi koji daju dovoljne uvjete uz koje je
H-homeomorfizam. Jedan od tih uvjeta je da X bude S-sistem ili

RS-sistem. Kako ima niz takvih sistema (Examples 2.12), to iz
teorema 2. 3. i 258 slijedi niz teorema 2:13 =

s g



