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H-CLOSED EXTENSIONS AND ABSOLUTE OF INVERSE LIMIT SPACE

The main purpose of this paper is the application of the
Katetov extension kX to an inverse system and its limit.

By the method of the extension theory the theorems concerning
continuity of the Katetov functor, H-closedness and
nearly-compactness of an inverse limit space are given.

H-closed extension, inverse system

1. KATETOV EXTENSION OF A LIMIT SPACE

If X is a topological space, then the closure and the
interior of a subset A € X is denoted by Cle and IntxA or by C1A

and IntA.

A Hausdorff space X is H-closed if for everey open cover U of
X there exists a finite subfamily {Ul, maT S R Uk) of U such that
X=C1U1 Ul s Y ClUk ([171).

A continuous mapping f:X --->Y is said to be proper [17].
if for each y € Y and each V 3 y open,in Y there Qﬁists aV >3y
which is open in Y and such that Intf “(C1V’') < Cif (V). | ¥}

An inclusion A & Y is proper if for each y € Y and each V € y

open in Y there exists a V' € y open in Y and such that IntA (A n

ci v V') ¢ ClA(A n V).
1.1.LEMMA. [17]. Let f:X ---> by a continuous mapping. Then:

(1) f is proper, if Y is regular;
(ii) f is proper if X is H-closed and if Y is a Hausdorff space;
(iii) a closed subspace A of H-closed X is H-closed iff the
inclusion A ¢ X is proper;
(iv) each open and dense embedding is proper.
Let F be a family of all open free ultrafilters on a
Hausdorff space X. The Katetov extension kX of X [17] is the set
X v F with topology consisting of all open subsets of X and all
sets of the form {x} u U, where x € F and U € x.
1.2.LEMMA. ([16]), ([B]). Let X be a Hausdorf space. Then:
/(1) kX is H-closed;
(ii) X is open and dense (i.e. proper) embedded in kX;
(iii) kX-X is discrete in the topology induced by the topology on

kX;
(iv) a mappinf f:X ---> Y into H-closed space Y has a unique
continuous extension kf:kX ---> Y if and only if f is proper;
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(v) if U and V are dijoint open subsets of X then Clka n

Clkxv < X.

We say that an extension Y of X 1is majorizable if there
exists an extension Z of X and a map F:2 --->Y which is an
extensin of the identity i1:X ---> X.

An extension will be called r.o.-free if for each regularly
open subset U of X the boundary deU in X is the same as the

bondary BdVV of V in Y, where V is an arbitrary open subset of Y

such that U=V n X [17 : 1.3.].

1.3.LEMMA. [17:1.3.1]. If an H-closed extension X < Y is such

that:

a) X is open in Y,

b) The remainder Y-X is discrete in the topology inducede from Y,

c) Xc Y is r.o. - free

then X ¢ Y is non-majorizable.

1.4.LEMMA. An extension X c¢ Y which satisfies a) and b) of Lemma
1.3. is r.o.-free iff the folowing condition (K) is satisfied: (K)
If U, V is a pair of disjoint open subsets of X then ClvU'nClvV’' <
X, where U’, V’ are arbitrary open subsets of Y such that U=U’" n X
and V=V’ n X.

A p-cover of X is an open cover of X possessing a finite
subfamily which is dense in X 526] A map f:X ---> is p-map if for
each p-cover U of Y a cover f ~(U)= (f (U):UelU) is a p-cover of X
[26].

A continuous mapping f:X ---> Y is a p-mapping iff f can be
continuosly extended to kf:kX ---> kY [26]. )
1.5.LEMMA. ([11], [22]). Let Xa be non-empty spaces for each ae€A.

Then k(PuXa) = PakX iff at least one of the following two

conditions is satisfied.
(a) Xa is H-closed for each a € A.

(b) There exists Xa which is not H-closed. Xa is finite for all

« # a . Moreover, all but finitely many Xa 's have only one point.

In contrast of the above Lemma we show that the functor k is
continuous in some non-trivial cases i.e. that k (limX) = limkX.
Now we start with the key lemma of this Section.

1.6.LEMMA. Let X = (Xa, faB,A} be an inverse system of a Hausdorff

spaces Xa,BeA. Then:

(i) if the mappings faB are p-map then there exists inverse system

= {kX , kf  , A};
« ab
(ii) if limX is non-empty and if the projections fazlimX == Xa,
a€A, are p-map, then there exists a continuous mapping K:k (1imX)
---> 1imkX which is an extension if the identity i:1imX --->
1imkX;

(iii) if the projections fa are p-map and onto, then K is onto and

1imkX is an H-closed extension of limX such that 1imX is open in
1imkX.
Proof. (i) Apply Lemma 1.2. (iv).
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(ii) Now we have the p-map mappings fa : limX ---> an, xeA. By
virtue of Lemma 1.2. (iv) there exist a continuous mappings kfa
:k (limX) ---> an, acA. A family (kfa :x€A} induces a continous

mapping K:k (1imX) ---> 1imkX |2:138]. The proof is completed.

(1ii1) Let us prove that K is onto. For each x € 1imkX we consider
a points X" fa’ (x), a€A, where f’ : 1limkX ---> an, a€A, are
the projections. For each X, e have (xa) = (Can :Ua is the open
neighborgood of xa). A family ((kfa)-l(Ua):aeA} is a centred

/’family of open subsets in H-closed space k(1imX). This means that
there exists a point y € n (Cl(ki‘a) (Ua):a € A}. Clearly kfa
(y)= X for each a € A. Thus, K (y) = x. This means that K is onto

and that 1imkX is H-closed as a continuous image of H-closed space
k (1imX). In order to complete the proof it suffices to prove that
1imX is dense in X. This is an immediate consequence of the
definition of a base of the inverse limit space and the assumption

that fa are onto.

1.7.LEMMA. Let X=(Xa,fab,
fa which are onto p-map. For each x € k(1imX)-1imX there exists a

A} be an inverse system with projections

a € A such that kf (x) € kX - X .
[+4 Q a

Proff. An immediate consequence of the fact that x is free
ultrafilter and the definition of a base on inverse limit space.
From Lemmas 1.3. and 11.7. we obtain the following.

1.8.LEMMA. Let X be an inverse system with projections fa which

are p-map onto. Then limkX = k(1imX) if and only if the following
conditions are satisfied:
a) limkX - 1imX is discrete in the topology induced by the
topology on 1imkX,
b) each open subset U € limX is r.o.-free in limkX.

A mapping f:X ---> Y is said to be p-perfect if f is
a p-map and f(kX - X) = kY - Y [2B].
1.9.LEMMA. Let X be an inverse system with p-perfect onto
mappings faﬁ such that fa are p-perfect and onto. Then fa (l1imkX -

l1imX) € kX - X , a € A.
[0 a

1.10.LEMMA. Let X be an inverse system as in Lemma 1.9.A subspace
limkX - 1imX 1is discrete ifr the following condition is

satisfied: (D) For each point X € an— X“ there exists a 8 € A, B
=z «, such that for each ¥y € A, a = B = 7y, the fiber (kaT) !
(xB)contains a single point for each g 1S (kfab)‘1 (Xa)'

Proof. The "only if" part. Now the subspace limkX - lim X = Y of

the space 1imkX is the limit of inverse subsystem Y = (an =

Xa' kfaB / (kXB - XB), A}. Each point y € Y is ai open subset of

Y. This means that {y} contains” the fiber (kfa)_ (Ua) for some
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open subset Ua of kxa = Xa‘ Thus (D) is satisfied.

The proof of the "if" part is similar.
1.1Y.THEOREM. Let X = { Xa’ faB’ A} be an inverse system such that
faB are p-perfect mappings. If the projections fa i LimX ===> Xa,

a € A, are onto p-map, then limkX and k (limX) are homeomorphic
iff X satisfies the condition (D) and 1imkX satisfies the
condition (K).
Proof. The "if" part. By virtue of Lemmas 1.8. and 1.10. ‘it
follows that limkX satisfies the conditions of Lemma 1.3. Thus,
the mapping K is a homeomorphism.
The "only if" part follows from the fact that kX satisfies the
conditions of Lemma 1.3.
1.12.DEFINITION. A mapping f:X --> Y is sald to be e-continuous if
for each x € X and each open V » f(x) there is an open U 3 x such
that f (ClU) € C1V.

If Y is regular, then each e-continuous mapping f:X ---> Y is
cont inuous.
1.13.DEFINITION. A mappling fﬂﬁ ---> Y is a e-homeomorphism if f is
1 - 1 onto such that f and f ° are both e-continuous. We say that
two extensions Y and Z of a space X are e-equivalent if there
exists a o-homeomorphism H:Z ---> Y which is the extension of
identity i: X ---> X.
1.14. LEMMA. Let X be an inverse system with p-perfect bonding
mappings and proper onto projections. The space 1limkX |is
e-equivalent to the space k (1imX) iff the condition (K) 1is

satisfied.
Proof.The "if" part. Apply the Fomin modification (limkX), [S:46]
which ih homeomorhic to k (limX). Moreover, (1limkX), is

O-homeomorphic to 1imkX [2:46m Lemma 7.] since K is 1-1.
The "only if" part is obvious since K is e-homeomorphism.
For an inverse system of a regular spaces we have the
following corollary of Theorem 1.11.
1.15.COROLLARY.Let X be an inverse system of a regular spaces and
perfect onto bonding mappings. The spaces k(l1imX) and limkX are
equivalent iff the conditions (D) and (K) are satisfied.
Now we define some special kinds of the proper mappings.
A mapping f:X ---> is said to be skeletal (HJ) if for each
open (regularly open) U & X we have Intf™} (Clu) < cie’? (u) [17].
1.16.LEMMA.[17]. Each HJ-mapping is a proper mapping.
A mapping f:X---> Y is semi-open if Intf (U) is non-empty for
each non-empty open subset U ¢ X.
Each semi-open mapping is HJ and proper. Each open mapping is
semi-open.
We say that a mapping f:X ---> Y is lirreducibleifthe set &
(u) (y:i"1 (y) € U} is non-empty for any non-empty open subset
Use
Every closed irreducible mapping is a semi-open mapping.
-1A mapping f:X ---> Y has the inverse property if £ (ClV) =
Clf ~ (V) for any open set V < Y.
Every open mapping has the inverse property and every mapping
‘with the inverse property is HJ-mapping.
/ In the paper [15] it was proved the following theorem.
1.17.THEOREM.Let X = (Xa. faB' A} be an inverse system with
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HJ-mapping faB' If the projections fa: L 1imX ---> Xa, a € A, are

onto, then the projections fa are HJ-mapping.

A mapping f:X ---> Y is absolutely closed if there do not
exists a proper extension T of X and an extension f:T --> Y of f
[26:211].
1.18.LEMMA. [26]. Let f:X ---> Y be a continuous mapping. The

following are equivalent:

(1) f is absolutely closed.

(2) (a) If A € X is regularly closed, then f (A) is closed,

“q (b) If x €e kX - Xand y € Y, then there exists U € x such that
f ((yynClU=g9o

1.19.LEMMA. [26:211]. A p-mapping f:X ---> Y is p-perfect iff f is
absolutely closed.
Now we have the following corollary of Theorem 1.11.

1.20.COROLLARY. Let X = (Xa, faB’ A} be an inverse system with
absolutely closed HJ-mapping faB and onto proJjections fa ;o limX

=D Xa’ a € A. The space k (limX) is equivalent to the space

limkX iff the conditions (K) and (D) are satisfied.
A special role play a closed irreducible mapping since we

have the following
1.21.LEMMA.If f:X ---> Y is p-perfect closed irreducible mapping,

then the restriction kf/(kX - X) is one-to-one i.e. kf/(kX - X) is

a homeomorphism the space kX - X onto kY - Y.

Proff.If x = (Ua : « € A) is a free ultrafilter, then (f# (U) : U
€ x) is a free ultrafilter. It is easy to prove that for y = (V“ E
n e M y # x it follows that {f# (Ua) : o« € A} ® {f" (Vu) : p o€

M}. This means that kf/(kX - X) is one-to-one. The proof is
completed.

1.22.THEOREM.Let X = (Xa, faB, A} be an inverse system with
perfect irreducible onto mapping faB' Then limkX = k (1imX).

Proof. The pprojections fa ;o limk ---> Xa’ a € A, are perfect
(=closed with compact fiber f‘m—1 (x,)). It is easy to prove that
fa’ a € A, are irreducible. We infer that 1limkX - limX is
homeomorphic to each an - Xa, a A. Thus the condition (D) is

satisfied. Let us prove that the condition (K) is satisfied. Let
U, V be a pair of disjoint open subsets of 1imX. A sets f"(U) and
f7(V) are disjoint open subsets of Xa' « € A, since fa' a € A. are

perfect and irreducible. Since Xa satisfies the condition (K) we
have the following relation in an:leaa(U) mle“a (v) < Xa' By
virtue of the irreducibility of fa it follows that in 1limkX we

have the relation ClU n C1V 1imX. The condition (K) is satisfied.

By 1.11. the proof is completed.
We close this Section with theorems concernig the inverse

systems of H-closed spaces. The "only if" part of the following
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theorem is new.

1.23.THEOREM.Let X = (Xa, faB' A} be an inverse system of H-closed

spaces X“, A space 1imX is H-closed iff the projections fa are

proper.

Proof.The "only if" part. If 1imX is H-closed, then by Lemma 1.1.

(ii) the projections fa are proper.

The "if" part. Now kX = {an, kfaB, A} = (Xa, faB' A} = X since

the mapping definied in the proof of Lemma 1.6. We have limX § K

[k(1imX)] <€ 1imkX. Since limkX = lim X we infer that limX = X
/[k(1imX)] = 1imkX. As a continuous image of H-closed space k(1limX)

the space K [k(1imX)] is H-closed. The proof is completed.

1.24. REMARK: The "if" part of Theorem 1.23. has been proved in

the paper [3].

A space X is said to be nearly-compact(7] if for each open
cover U = (Ua : « € A} of X there exists a finite subfamily

(U1""’Uk) of such that X = intClU1 W a0 EntClUL

It is known that X is neaarly-compact iff X is H-closed and
completely Hausdorff [7]. Let us recall that a space X is
completely Hausdorff 1if each two distinct point of X have a
neighborhoods with disjoint elosures.

1.25.LEMMA. Let X = (Xa, faB’ A} be an inverse system of a
completely Hausdorff spaces Xa. A limit 1imX is completely
Hausdorff.

Proof.Trivial.
1.26 . THEOREM. Let X = {X , £ _,
a o

limX 1is nearly-compact iff the spaces Xa, a € A, are

A} be an inverse system. A space

nearly-compact and if the projections fa’ « € A, are proper.

Proof. Apply Theorem 1.23. and Lemma 1.25.
2. FOMIN EXTENSION 38X

Let X be a Hausdorff sppace. We now define a topology on the
set X u F as follows. For each U open in X let Ou be the union of

U and all ultrafilters of F which contain U. It is easy to prove

that
0O nv=0 noO (1)
U V) v

This means that a family {OU:U is open in X} is a base for

topology on X u F. We denote the set X u F equpped with this
topology by dX. The space 8X is called the Fomin extension of a
space X [9]
2.1.LEMMA.[S]. The space 3dX is H-closed extension of a
Haus-dorff space X. If Y is any H-closed extension of X, then
there exists a e-continuous extension of f:X --> Y of the identity
X ==>Xec Y.

Let f:X ---> Y be a continuous mapping. For each

ultrafilter x = (Ua : Ua is open in X} € 38X - X we consider a
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filter-base 4f(x) = {V:V is open in Y such that there exists a Ua
€ x wWith f(Ua) < V}. It is easy to prove that if f is a p-map,

then 8f(x) is an open ultrafilter in Y. By virtue of H-closednes
of 8Y the intersection 2 = n {ClV : V € 8f(x)} is non-empty. As in
the case od the Katetov extension kX it is easy to prove the
folloving Lemma.

2.2.LEMMA. (a) If f:X ---> Y is a p-mapping, then 8f(x) contains a

single point of Y,
(b) The mapping 8f:8X ---> 3Y is e-continuous,

(c) If £ is p-perfect then 8f is continuous,
(d) If Y is regular and if f is p-mapping then 3f Iis
cont inuous.
By the proof similar to proof of Lemma 1.6. we obtain
2.3.LEMMA. Let X = (Xa, faB’ A} be an inverse system of a

Haus-dorf spaces Xa and a p-mapping faﬂ.Then:

(i) There exists 1inverse system 8X = (BXa, afaB' A}  with
e-continuous mappings afaB'

(ii) If the mappings faB are p-perfect or if Xa' @ € A, are

regular, then the mappings afaﬁ are continuous. Moreover, there

exists a continuous mapping S : 8(limX) ---> 1iméX.
(141) If-in.(4%) faB are onto then S is onto.
2.4. PROBLEN. Under what conditions the mapping S is a
homeomorphism?

If the bonding mapping are perfect and irreducible then we
have
2.5.THEOREM. let X = (Xa’ faB’ A} be an inverse system of a

/ Haus-dorff spaces Xa and perfect closed irreducible onto mapping
faB' Then the mapping S : 8(1imX) ---> lim 8X is a homeomorphism.
Proof. By virtue od Lemma 1.21. the mapping S is onto and 1-1. It
remains to prove that S is an open mapping. A subspace 8(1imX) -
1imX is homoemorphic to each 6Xu = Xa, « € A, since the

projections faB are perfect onto and irreducible. This means that
the subspace 8(1imX) - 1imX is homeomorphic to the subspace 1imdX.
The proof is completed.

3. ABSOLUTE OF AN INVERSE LIMIT APACE

The space oX. Let eX denotes a family of all open (fixed or free)
ultrafilters on a Hausdorff space X. We introduse a topology into
eX in the following way. Let OU be the set of all ultra-filters

that contain U, where U is open in X [8]; OU is to be a base on

oX. That this definition is correct it follows from the relation

OUV=OUUOV (2)

It is easy to prove that
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0 =eX -0 (3)
v x-ClU

This means that OU is open and closed subset of eX.

3.1.LEMMA.If X 1is a Hausdorff space then X is zero-dimensional

and compact.
Proof. See [9].
A space X 1is called extreally disconnected 1if for each

disjoint open sets U,V & X we have ClU n ClV = o

If X is extremally disconnected and Y is dense in X, then Y
is extremally disconnected [9].
3.2 LEMMA. [9:41]. If X 1a a Hausdorff . space, then X |1is
extremally disconnected zero-dimensional compact space. The
equation X = eX holds iff X is a compact extremally disconnected
Haudsorff space.

The absolute wX of a space x. A subspace wX of eX containing all
fixed open ultrafilters on X is called the absolute (in the sense
od Iliadis) of the space X or the extremally disconnected
resolution of the space X.

3.3.LEMMA.The absolute wH is dense in X and, consequently, wx is
extremally disconnected.

/Proot’. See [9:41]
3.4.LEMMA. [9:44]. The absolute wX is e-homeomorphic to X iff X is

extremally disconnected. If X is regular extremally disconnected,
then wX is homeomorphic to X.

For each x € wX we define a point px(x) such that p (x) = n
X
(ClU: UEx).
X
3.5.LEMMA. [9:55]. The natural projection p :wx ---> X is
X

e-continuous, irreducible and perfect. It is continuous iff X is

regular.
3.6.THEOREM. [9:58]. Let f:X ---> Y be a e-continuous irreducible

perfect mapping of a Hausdorff space X onto a Hausdorff space Y.
Then there exists a homeomorphism wf:wX ---> wY onto wY such that
fp = p wf.

xX v
The absolute wX and the extensions of a space X.
3.7.LEMMA. [9:60] Let ¥X be an arbitrary extension of a Hausdorff
space deThen therglexists a homeomorphism h:e(yX) ---> eX such
that h(p x(x)) =P (x) for each x € X.

3.8.COROLLARY.[3]. e(BX) = o(kX) = eX.
3.9.COROLLARY.[8]. If bX is an arbitray extension of X, then w(bX)
= B(wX). In particular:w(gX) = B (wX).

The absolute in the sense of Mioduszewski. Now we enlarge the
Iliadis topology defﬁnied at the begin of this Section by adding
sets of the forma P, (U), U being an open subset of X. It is easy

to verify that the sets of the form O n p "H(V) may be taken as a
X

members of a topology on the set wX. We denote this space by aX.
3.10.LEMMA.The space aX is ‘extremally disconnected and the
mapping px:aX ---> X is continuous, Iireducible and perfect.

The space aX is minimal in the following sense:
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3.11.LEMMA. [17:33] For any extremally disconnected space E and any
HJ-mapping h:E ---> X there exists a unique mapping ah:E ---> aX
such that h = px(ah).

The following theorem plays a spacial role in our
investigation of the absolute of na inverse limit space.
3.12.THEOREM. Let f:X ---> Y be a continuos mapping. A mapping f
has a unique absolute af such that, pvaf = fpx iff the mapping f is

HJ.
3.13.REMARK. A) The "if" part of Theorem 3.12. has been proved in
the paper [17:24] and the "only if" part in the paper: Shapiro

L.B., Ob absoljutah topologiceskih prostranstv 1 nepreryvnyh
otobrazeni jah, DAN SSSR 226:3(1976), 523-526.

B) Let us note that the absolute of a continuous
mapping always exists but need not be unique.

C) From the proof of the "if" part of Theorem 3.12.
it follows that the "if" part holds for the absolute wX in the
sense of Iliadis.

D) Another construction of the absolute for regular
spaces can be found from [1:363-370]

3.14.LEMMA. ([18:124] or [1:363-370]). Let f:X ---> Y be a
continuous mapping. Then there exists the absolute af:aX ---> aY.
Moreover:

a) If f is bicompact, then af is bicompact;

b) If f is irreducible and perfect (into, onto) Y, then af is a
homemorphism (into, onto) aY.

3.15.LEMMA.{18}. If f>X ---> Y is an open onto mapping, then af:aX
---> a¥Y is onto.

The absolute of the inverse limit space
Now we apply this expository material to the inverse systems

and their limits. X
3.16.THEOREM. let X = (Xa, faB' A} be an inverse system of a Haus-

dorff spaces Xa. If the mappings faB are HJ-mapping then there
exists an inverse system wX = (an. wfaB’ A} and a mapping W:w

(1imX) ---> limwX.
Proof. Apply Remark 3.13. C) and the fact that the projections fa

are HJ-mappings. Then modify the proof of Theorem 1.6.
3.17.REMARK. A) Similarly from Theorem 3.12. it follows that there
exists an inverse system aX = (aXa, afaﬁ, A} for an inverse system

/as in Theorem 3. 16.

B) There exists inverse syétem eX = (eXa. efaB’ A} if

X is the inverse system of Hausdorff spaces and HJ bonding
mappings.

C) If X 1is an inverse sequence then by total
induction on can construct the inverse systems wX (aX, eX) without
the assumption that the absolute wf (af, ef) are unique.
3.18.THEOREM. Let X = {Xa. faﬂ’ A} be an inverse system of a

Hausdorff spaces Xa with irreducible perfect mappings faB such
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that the projections fa are onto. Then the mapping W:w(limX) --->

limwX is a homeomorphism.
Proof. From Theorem 3.6. it follows that wfaﬁ are homemorphisms.

Similarly we infer that wfa are homeomorphisms. This means that
the spaces w (1imX) and limwX are homeomorphic to an, a € A. The

proof is completed.

3.19.THEOREM. Let X = (Xa. faB. A} be an inverse system of

Hausdorf spaces Xa and HJ bonding mappings faB such that the
projections fa are onto. Then the spaces o(1imX) and limeX are

homemorphic iff the following concition (S) is satisfied:
(S) For each two disjoint open subsets U and V of 1imX there is a
« € A such that fa(U) and fa(V) have a disjointneighborhoods.

Proof. The "if" part. Let x and y be two distinct points in the
space o(limX). This means that there exists a pair U, V of
disjoint open subsets of 1imX such that U € x, V € y. From the
condition (S) it follows that efa(x) = {W:W open in Xa and there

exists U’ € x such that fa(U’) S W} is not equal to efa(y) = {W:W -
is open in X and there exists V' € y such that fa(V') € W}. This

means that the mapping e:e(1imX) ---> lim eX is 1-1. Since e is
onto and eo(1imX) is compact we infer that e is a homeomorphism.
The proof of the"if" part is completed. The proof of the "only if"
part is similar.

3.20.LEMMA. The condition (S) is satisfied : (a) if the projectins
fa are closed irreducible or (b) if for each open subset U & 1limX

there exists a @« € A and an open subset Ua of X such that fa—l(Ua)

= U.
Proof. Obvious.
3.21.THEOREM. Let X = (Xa, faB' A} be an inverse system of a

Hausdorff spaces Xa such that faB are closed irreducible and the
projections fa are closed onto (or the condition (b) of 3.20. is

satisfied), then e(limX) = limeX.

Proof. Apply Lemma 3.20. and Theorem 3.18.

3.22.COROLLARY. Let X = (Xf AL ff ..., N} be an inverse sequence of
n n

a Hausdorff spaces Xn with close irreduciblem onto mappings f .
mn

Then the spaces o(limX) and limeX are homeomorphic.

Proof. It 1s well known that the projections f‘m are closed and

irreducible onto mappings. Now apply Theorem 3.21.
If the mappings faB and the projections fa in Theorem 3.21.

are p-perfect then a restictions efaB/wXB, B € A, are identical
with wfaB. Similarly a restriction efa/w(limx) is identical with

Wfa. Thus we have
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3.23.THEOREM. Let X = (Xa, faB' A} be an inverse system as in
3.21. If the mappings faB an the projections fa are p-perfect,

then the spaces w(limX) and limwX are homeomorphic.
If the bonding mappings faB are perfect irreducible then from

3.23. holds Theorem 3.18.
For the absolute aX in the sense of Mioduszewski we now prove

3.24.THEOREM. Let X = (Xa, fa,e' A} be an inverse system of a
‘Hausdorff spaces Xa. If the spaces w (limX) and 1imwX are

homeomorphic, then the spaces a(limX) and limaX are homeomorphic.
Proof. Let G be any open neighborhods of x € a(limX). By the
definition of a base in a(limX) there exist a neighoborhood of x
of the form Ou NPt (V) contained in G, where V is open in

1imX and Ou is open in w(limX). From the relations w(limX) = limwX
and x € O it follows there exists an open Ua (< Xoc such that a set
(wf )7'(0, ) 1is a neighborhod of x contained in O, Similarly
there exists an open V < X such that f‘a_l(Va) € V. is a
neighborhood of x. This means that a set Pt f‘a‘l(V) n (wfm)-l
(0O ) is a neighborhood of x which is contained in O n p -1
v i b= v, lim
(V) = (wf ) P
a a a X0

infer that there exists a neighborhood p (V)nOoO =G caX

ol xa a va a «
such that (wi'a) (G) = (afa) is contained in G. This means that G

(V). From the relation p -1 f (V )we
limx a

is open in limaX. Thus the mapping A:a(limX) ---> limaX is 1-1
continuous and open mapping onto limaX i.e. A is a hemeomorphism.

The proof is completed.
We closed this Section with some theorems concerning the

non-emptiness of the inverse limit space.

3.25. LEMMA. A Hausdorff space is H-closed iff eX = wX.

Proof. If X is H-closed, then each open ultrafilter on X is fixed.
Thus eX = wX. Conversely, if oX = wX, then X is H-closed since the
mapping px:wX = oX ---> X is e-continuous and eX is compact. The

proof is completed.
3.26 . THEOREM. let X = (on' faB' A} be an inverse system of

H-closed spaces Xa and HJ-mapping faB' The space 1imX is non-empty
iff the spaces Xoc’ « € A, are non-emppty. Moreover, 1if the
mappings faB are onto, then the projections fa are onto.

Proof. By Theorem 3.16. we obtain the inverse system wX = {wXa,

wfaB' A} which is the inverse system of compact spaces an = exa.

It 1s well known that limwX is non-empty. This means that 1imX is
non-empty since there is a mapping.p:wX ---> X, p = {p o *E A}
X

3.27.COROLLARY. Let X = (Xa, focB’ A} be an inverse system of a

Hausdorff spaces Xa and p-maps faB such that kf‘uB:kXB ey an are
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™

HJ onto mappings. Then 1imX is non-emppty.
3.28.COROLLARY. Let X = {Xa' faB’ A} be an inverse system of a
Hausdorff spaces Xa such that for each Xy € Xa and each B = «

_l(xa) = YB is non-empty H-closed subspace of XB. If the

By
If the mappings f are open, then the restrictions f 7Y
pping o8 pe By e

g

restrictions f P Y7 are HJ, them 1imX is non-empty.

are open [2:95]. Thus we have
3.29.COROLLARY. If X is an inverse system of a Hausdorff spaces Xa
-1
i : (HEP
and open onto mappings faB such that each raB (xa) is H-closed,
then 1imX is non-empty.

4. ALMOST REALCOMPACTIFICATION rX

A class of almost realcompact spaces was introduced by Frolik

(see [26]).

We say that an open ultrafilter U = {U“:p € M, UM < X).

is countably almost centred if each countable subfamily (Ulp.”
Un,...} of U has the property that n {Cl Ul:i € N} is non-empty.
X

4.1.DEFINITION. A Hausdorff space X is almost realcompact if each
countably almost centred open ultrafilter on X is fixed.

Frolik has been proved the followings theorems.
4.2.THEOREM. The Cartesian product af almost realcompact spaces is
almost realcompact.
4.3.THEOREM. Each closed subset of a regular almost realcompact
space X is almost realcompact.

It is well-known that an inverse limit of a Hausdorff spaces
is closed in the Cartesian product [2]. Thus we have the following
theorem.
4.4.THEOREM. Let X = {Xa. faB' A} be an inverse system of a
regular almost realcompact spaces Xa, then 1imX is a regular
almost realcompact space.
4.5.THEOREM. [26]). For each completely regular space X there
exists an almost realcompact space rX with the following

properties:

a) X € rX € BX, where BX is the Stone-Cech's compactification of
X;

b) If foX —==D Y is a  mapping into any almost
realcompact completely regular space, then there exist rf:rX ---»>

Y such that f = rf/X.
Let us note that rf is the restriction of Bf onto rX.
4.6.THEOREM. Let X = (Xa. faB' A} be an inverse system of a

completely regular spaces Xa such that the projections fa are

onto. If B(1limX) = 1imBX then r(limX) = limrX. _

Proof. From the properties of the Stone-Cech’s compactification
and from Theorem 4.5. b) it follows that there exist inverse
systems BX = {BXa, BfaB, A} and rX = (rXa, rfaﬁ' A}. The inverse
system rX is the subsystem of the system BX. By virtue of the
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/lsurjectivity of the mappings faB we infer that 1imX is densely

embedded in limrX and 1im8X. On can also construct a mappings
R:r(1imX) ---> limrX and B:B(1imX) ---> 1imBX. Moreover, R is the
restriction of B onto 1limX. It is clear that if B 1is the
homeomorphism, then R is the homeomorphism. The proof |is
completed.

4.7.REMARK. The notion of the almost realcompactification is a
generalization of the Hewitt realcompactification vX of a
completely regular space X [2:277]. The space vX is the subspace
of BX such that each real-valued functin f:X ---> R has an
extension on X. It is evident that Theorem 4.7. holds also for the
spaces v(limX) and limvX.

4.8 .THEOREM. Let X be an inverse system as in 4.6. The spaces
limrX and r(limX) are homeomorphic if the following condition (CS)
is satisfied:

(CS) For every pair Fl, Fz of completely separated subsets of 1limX

there exists a a« € A such that fa(Fl) and fa(Fz) are completely

separated subsets of Xa.

Proof. Aplly theorem 4.6. and Lemma 1.1. of the paper [7].
If the spaces 1limX and Xa. « € A, are normal then each pair

of a closed subsets of these spaces are completely separated. Thus
the condition (CS) can be replaced by the following condition:
(S) For each pair F1’ F2 of disjoint closed subsets of 1imX there

exists a « € A such that C1 f (F.) nCl f (F) = e.
> N I x a 2

There condition (CS) is satisfied if the inverse system X is
a factorizable or f-system [17]. This means that for each
real-valued function f:1imX ---> R there exists a a« € A and a
real-valued function ga:Xa ---> R such that f = gafa‘

4.9.THEOREM. If X is an f-system with onto projections fazlimX
—-—=> Xa, a € A, then r(limX) = limrX.

Proof. Each f-system satisfies the condition (CS). Apply Theorem

4.8.
4.10.THEOREM. Let X be an dJd-directed inverse system with onto
projections fa such that a space 1imX 1s a Lindelof space. Then

r(limX) = limrX. e
Proof. From [17:Theorem 1.10] it foollows that B(limX) = 1imgX.

Apply Theorem 4.8.
4.11.THEOREM. Let X = (Xn, f., N} be an inverse sequence of a
nm

normal spaces X“ and onto bonding mappings f . If a space 1limX is
nm

countably compact, then r(limX) = limrX.
Proof. By virtue of Theorem 1.3. of the paper [17] it follows
that B(1imX) = 1imBX. Apply Theorem 4.8. replacing the condition
(CS) by the condition (S).

If the spaces Xn are countably compact and if the mappings

f‘m‘l are closed, then limX is countably compact [13]. Thus we have
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4.12.THEOREM. let X = {X, f , N} be an inverse sequence of a
n nm
normal countably compact spaces Xn and a closed onto mappings fnm

Then r(limX) = limrX.

By the same method of proof on can prove for a sequentially
compact (strongly countably compact, D-compact) spaces the
following
4.13.THEOREM. Let X be an inverse sequence of a normal
suquentially compact (strongly countably compact, D-compact)
spaces. Then r(limX) = limrX.
4.14.THEOREM. let X = (Xa, faB’ A} be an inverse system with a
perfect fully closed onto mappings faB. If the spaces Xa, o € A,

are normal countably compact, then r(limX) = lim rX.
Proof. Let us recall that a mapping f:X ---> Y [17] is fully
closed if for each point y € Y and each finite open cover (Uiu =

=1, .... s} of f_l(y) by open sets U, 1 =1,..., s, the set {y}
v (f#(Ul) U ... u f"(U_)} is an open set in Y. Now from Theorem
1.16. of [17] it follows that B(limX) = 1lim BX. Theorem 4.8.

completes the proof.

We say that a Hausdorff space X is m-compact, m = S\S, if
o

each open cover U of X has a subcover W of the cardinality
|Wl < m. s
Each countably compact space X is an S\o—compact space.

4.15.THEOREM. let X = (Xa' faB’ A} be an well-ordered inverse

system of S\s—compact normal spaces Xa such that faB are closed
m

onto mappings and cf(A) < S\sm. Then r(limX) = limrX.

Proof. Let us recall that cf(A) is the smallest ordinal number
which is cofinal in A. Now the condition (S) is satisfied [13].
Theorem 4.8. completes the proof.

4.16. REMARK. By the same method of proof on can see that Theorems
4.6. - 4.15. holds for the realcompactification v(1limX).

We close this Sectin by the consideration of the almost
realcompactification r(limX) of an inverse system of a Hausdorff
spaces.

If X is a Hausdorff space then an almost realcompactification
rX has been definied by Liu and Strecker [12] as follows. Let rX
be a subspace of the Katetov extension kX containing a points of
X and all countably almost centred open ultrafilters on X. The
topology on rX is the subspace topology.

Liu and Strecker was proved the following lemma.
4.17.LEMMA. [12). a) The space rX is the almost realcompact
Hausdorff space in wich X is densely embedded.

b) If Y is any almost realcompactification of X

then there exists an extension f:rX ---> Y of the identity 1:X
-—> X < Y.
4.18.THEOREM. let X = (Xa’ faB’ A} be an inverse system of a

Hausdorff spaces Xa and p-perfect onto faB such that the mapping

rfa are onto. If k(1imX) = limkX then r(limX) = limrX.
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Proof. There exists the inverse system kX since faB are perfect.

The inverse system rX is the subsystem of kX. Clearly, if the
spaces k(1limX) and 1imkX are homeomorphic, then the spaces
r(1imX) and limrX are homeomorphic. The proof is completed.

4.19. REMARK. Now on cannot be proved that the inverse limit of any
almost realcompact spaces is almost realcompact since a closed
subset of any nonregular almost realcompact space need not be
almost realcompact.

4.20.THEOREM. lLet X be an inverse system as in theorem 4.18. If
the spaces Xa, a € A, are almost realcompact, then 1imX is almost

realcompact.
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Loncar I. H-zatvorena proSirenja i apsolut inverznog limesa

SADRZAJ

U radu su istrazivana H-zatvorena proSirenja inverznog limesa.
Pri tome je posebna pa%nja posvetenja nuznim i dovoljnim uvjetima
koje mora ispunjavati inverzni sistem da bi Katetovljevo
prosirenje k(1limX) bilo ekvivalentno limesu inverznog sistema kX
(Theorem 1.11.). pomolu ovog teorema dobiveni su neki teoremi za
H-zatvorenost i blisku kompaktnost inverznog limesa (Theoremi
1.23. - 1.26.). Za Fominovo proSirenje 8(1limX) dobiven je Teorem
2.5. Teorem 3.19. daje nuzne i dovoljne uvjete da bi apsolut
inverznog limesa bio ekvivalentan inverznom limesu apsoluta.
Pomodu pridruZzenog inverznog sistema aX moguce je dobiti neke
teoreme za nepraznost inverznog limesa (Teoremi 3.25. - 3.29.)
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