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H-CLOSED EXTENSIONS AND ABSOLUTE OF INVERSE LIMIT SPACE

The main purpose of this paper is the application of the
Katetov extension kX to an inverse system and its limit.

By the method of the extensiOQ theory the theorems concerning
cont inuity of the Katetov functor, H-c losedness and
nearly-compactness of an inverse limit space are given.

H-closed extension, inverse system

1. KATETOV EXTENSION OF A LIHIT SPACE

If X is a topological space, then the closure and the
interior of a subset A ~ X is denoted by C1xA and IntxA or by C1A
and IntA.

A Hausdorff space X is H-closed if
X there exists a finite subfamily {U1,
X=CIU

1
v ... v ClUk ([17).

A continuous mapping f:X --->Y is said to be proper [17].
if for each y E Y and each V 3 Y ope~lin Y there ~1ists a V' 3 Y
which is open in Y and such that Intf (CIV') ~ Clf (V) L17J.

An inclusion A ~ Y is proper if for each y E Y and each V E Y
open in Y there exists a V' E Y open in Y and such that IntA (A n

C1 v V') ~ C1A(A n V).
1.1.LEHHA. [17]. Let f:X ---> by a continuous mapping. Then:

for everey open cover U of
. . , Uk} of U such that

(i) f is proper, if Y is regular;
(ii) f is proper if X is H-closed and if Y is a Hausdorff space;
(i ii ) a closed subspace A of H-closed X is H-closed iff the
inclusion A c X is proper;
(iv) each open and dense embedding is proper.

Let F be a family of all open free ultrafilters on a
Hausdorff space X. The Katetov extension kX of X [17] is the set
X v F with topology consisting of all open subsets of X and all
sets of the form {x} v U, where x E F and U E x.
1.2.LEHHA. ([16]), ([6J). Let X be a Hausdorf space. Then:

lei) kX is H-closed;
(ii) X is open and dense (i.e. proper) embedded in kX;
(iii) kX-X is discrete in the topology induced by the topology on
kX;
(iv l a mappinf f:X ---) Y into H-closed space Y has a unique
continuous extension kf:kX ---) Y if and only if f is proper;
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(v) if U and V are dijoint open subsets of X then C\.U (\
ClkxV ~ X.

We say that an extension Y of X Is mejor i z eb l e If there
exists an extension Z of X and a map F: Z ---)Y which is an
extensin of the identity i:X ---) X.

An extension wi 11 be called r. o. -Fr ee if for each regularly
open subset U of X the boundary BdxU in X Is the same as the
bondary BdvV of V in V, where V is an arbitrary open subset of Y
such that U = V (\ X [17 : 1.3. J.
1. 3. LEHHA. [17: I.3.1]. If an H-closed extension X c V is such
that:
a) X is open in V,
b) The remainder V-X is discrete in the topology inducede from V,
c) X c V is r.o. - free
then X c V is non-majorizable.
1.4.LEHNA. An extension X c V which satisfies a) and b) of Lemma
1. 3. is r.o. -free iff the folowing condi tion (K) is satisfied: (K)
If u, V is a pair of disjoint open subsets of X then ClvU'nClvV' ~
X, where U', V' are arbitrary open subsets of V such that U=U' (\ X
and V=V' (\ X.

A p-cover of X is an
subfamily which is dense in
each p-cover U of Y a cover
[26J.

A continuous mapping f:X ---) V is a p-raappt ng iff f can be
continuosly extended to kf:kX ---) kV [26]. .
1. 5. LEHHA. ([11], [22]). Let \: be non-empty spaces for each aEA.
Then k(PaXa) PakX iff at least one of the following two
conditions is satisfied.
(a) X is H-closed for each a E A.a
(b) There exists Xa

o

open cover of X possessing a finite
X f26]. A map foX ---) is p-map if for
-1 -1f (U)= (f (U):UEU) is a p-cover of X

which is not H-closed. X
a is finite for all

a ~ a
o
' Moreover, all but finitely many Xa 's have only one point.
In contrast of the above Lemma we show that the functor k is

continuous in some non-trivial cases i.e. that k (limX) = limkX.
Now we start with the key lemma of this Section.

1.6.LEHHA. Let X = {Xa, f~,A} be an inverse system of a Hausdorff
spaces Xa,~EA. Then:
(i) if the mappings f~ are p-map then there exists inverse system
kX = {kXa, kfab, A};

(jj) if limX is non-empty and if the projections fa: limX ---) Xa,

aEA, are p-map, then there exists a continuous mapping K:k (limX)
---) IimkX which is an extension if the identi ty I:IimX ---)
limkX;
(iii) if the projections fa are p-map and onto, then K is onto and
limkX is an H-closed extension of limX such that limX is open in
limkX.
Proof. ( L) Apply Lemma 1.2. (iv l.
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(11) Now we have the p-map mappings fa: IimX ---> kXa, aEA. By
virtue of Lemma 1.2. f t v ) there exist a continuous mappings kf

0:

:k (limX) ---> kXa, aEA. A family {kfa :o:eA} induces a continous
mapping K:k (limX) ---> limkX L2: 138J. The proof is completed.
(iii) Let us prove that K is onto. for each x E limkX we consider
a points xo:= fa' (x), aEA, where r: limkX ---> kXo:, aet«, are
the projections. for each xa we have {xa} = {C1Ua :Ua Is the open
neighborgood of x~}. A family {Lkf )-l(U ):o:eA} is a centred

_ 0: a
( family of open subsets in H-closed spa~? k(limX). This means that

there exists a point ye r. {C1(kfa) (Ua):a EA}. Clearly kfa
(y)= xa for each 0: E A. Thus, K (y) = x. This means that K is onto
and that limkX is H-closed as a continuous image of H-closed space
k (limX). In order to complete the proof it suffices to prove that
1imX is dense in X. This is an immediate consequence of the
definition of a base of the inverse limit space and the assumption
that f are onto.

0:

1.7.LEHHA. Let X={Xa,fab,A} be an inverse system with projections
fa which are onto p-map. for each x E k(limX)-limX there exists a
a E A such that kf (x) E kX - X .

a a a
Proff. An immediate consequence of the fact that x is free
ultrafilter and the definition of a base on inverse limit space.
From Lemmas 1.3. and 11.7. we obtain the following.
l.B.LEHHA. Let X be an inverse system with projections
are p-map onto. Then limkX = k(limX) if
conditions are satisfied:
a) 1imkX - limX is discrete in the topology induced by the
topology on limkX,
b) each open subset U ~ limX is r.o.-free in limkX.

A mapping foX ---> Y is said to be p-perfect if f is
a p-map and f(kX - X) = kY - Y [26].
1.9.LEHHA. Let X be an inverse system
mappings fa{3 such that fa are p-perfect and
limX) ~ kXa - Xa, a E A.
1.10.LEHHA. Let X be an inverse system as in Lemma 1.9.A subspace
limkX - limX is discrete iff the following condition is
satisfied: (D) For each point xa E kXa- Xa there exists a f3 E A, f3

-1
2:: a, such that for each. E A, a ~ f3 ~ '1, the fiber (kf

f3
)

-1 •each "e E (kfab) (xa)·

the subspace limkX - lim X = Y of
of inverse subsystem Y = {kXa

Xa, kfa(3 / (kX/Ol- Xf3), A}. Each point y E Y is an open subset of
Y. This means that {y} contains" the fiber' (kf )-1 (U ) for some

a a

f whicha
and only if the following

with p-perfect onto
onto. Then f (limkX-a

(x/3)contains a single point for
Proof. The "only if" part. Now
the space limkX Is the limit
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open subset Va of kXa - Xa' Thus (D) is satisfied.

The proof of the "if" part is similar.
1.11.THEOREH. Let X = { Xa, f~, A} be an inverse system such that

f~ are p-perfect mappings. If the projections fa : limX ---) Xa,

a E A, are onto p-map, then I imkX and k (I imX) are homeomorphic
iff X satisfies the condition (D) and limkX satisfies the
condi t ion (K).
Proof. The "if" part. By virtue of Lemmas 1. 8. and 1.10. it
follows that I imkX satisfies the condit ions of Lemma 1. 3. Thus,
the mapping K is a homeomorphism.
The "only if" part follows from the fact that kX sat isfies the
conditions of Lemma 1.3.
1. 12. DEFINITION. A mapping f:X --> Y is said to be a-continuous if
for each x e X and each open V 3 f(x) there is an open U 3 x such
that f (CIU) ~ CIV.

If Y is regular, then each e":'continuous mapping f: X ---> Y is
continuous.

~.~\D!~~~J:~~~. t~a~aPt~d f;_1 t: :at
i
: :_:;:t;:~=:.Ph~:ms~~ ~h~~

two extensions Y and Z of a space X are e-equ iv ei ent if there
exists a e-homeomorphism H: Z ---> Y which is the extension of
identity i:X ---> X.
l.14. LEHHA. Let X be an inverse system with p-perfect bonding
mappings and proper onto project ions. The space I imkX is
e-equivalent to the space k (IimX) iff the condition (K) is
satisfied.
Proof.The "if" part. Apply the Fomin modification (limkX), {9:461
which ih homeomorhic to k (limX). Moreover, (limkX). is
O-homeomorphic to limkX [2: 46m Lemma 7. J since K is I-I.
The "only if" part is obvious since K is a-homeomorphism.

For an inverse system of a regular spaces we have the
following corollary of Theorem 1.11.
1. 15. COROLLARY. Let X be an inverse system of a regular spaces and
perfect onto bonding mappings. The spaces k I I imX) and I imkX are
equivalent iff the conditions (D) and (K) are satisfied.

Now we define some special kinds of the proper mappings.
A mapping f:X ---> is said to be skeletal (HJ) if for each

open (regularly open) U ~ X we have Intf-I (ClU) ~ cir " (V) [17).
1. 16.LEHHA. [171. Each HJ-mapping is a proper mapping.

A mapping f:X---> Y is semi-open if Intf (U) is non-empty for
each non-empty open subset U ~ X.

Each semi-open mapping is HJ and proper. Each open mapping is
semi -open.

We say that a mapping f: X ---> Y is irreduciblelfthe set fll
(U) = {y: f-I (y) s: U} is non-empty for any non-empty open subset
V ~ X.

Every closed irreducible mapping Is a semi-open mapping.
A mapping f:X ---> Y has the inverse property if f-1 (CIV)

Clf-I (V) for any open set V ~ Y.
Every open mapping has the inverse property and every mapping

'with the inverse property is HJ-mapping.
I In the paper [151 it was proved the following theorem

1. 17.THEOREH.Let X = {Xa, f~, A} be an Inverse system with
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HJ-mapping fo$' If the pr-o.jec t l ons fo:: L 11m)( ---) Xo:' 0: E A, are

onto, then the projections fo: are HJ-mapping.

A mapping f: X ---) Y is absolutely closed if there do not
exists a proper extension T of X and an extension f: T --) Y of f
[26: 211J.
1.18. LEI1I1A. [26]. Let f: X ---) Y be a continuous mapping. The
following are equivalent:
(1) f is absolutely closed.
(2) (a) If A ~ X is regularly closed, then f (A) is closed,

-1 (b) If x E kX - X and y E Y, then there exists U E x such that
f (y) () CIU = 121

1. 19.LEI1I1A. [26:211]. A p-mapping f:X ---) Y is p-perfect iff f is
absolutely closed.

Now we have the following corollary of Theorem 1.11.
1.20. COROLLARY. Let X = {Xo:' fo$' A} be an inverse system with

absolutely closed HJ-mapping fo:(3 and onto projections fo: limX

---) Xo:' 0: E A. The space k (l i mX) is equi val ent to the space

limkX iff the conditions (K) and (D) are satisfied.
A special role play a closed irreducible mapping since we

have the following
1.21. LEI1I1A.If f: X ---> Vis p-perfect closed irreducible mapping,
then the restriction kf/(kX - X) is one-to-one i.e. kf/(kX - X) is'
a homeomorphism the space kX - X onto kY - Y.
Proff.If x = (Uo: : a E A) is a free ultrafilter, then (f~

E x) is a free ultrafilter. It is easy to prove that for y

a E A} ~ {f" (V )
11

one-to-one. The proof is

(U) : U

{V
11

: 11 E11 E M} y ~ x it follows that {f# (Ua)

M}. This means that kf/(kX - X) is
completed.
1.22.THEOREI1.Let X {Xo:' fo:(3' A} be an inverse sys t em with

perfect irreducible onto mapping fo:(3' Then limkX = k (limX).

Proof. The pprojections f : 1i'in)? ---> X, 0: E A, are perfect
a 0:

(=closed with compact fiber f -1 (x »). It is easy to prove that
0: a

0: E A, are irreducible. We infer that limkXf ,
0:

homeomorphic to each kXo: - Xo:' 0: A. Thus the condition (D) is

satisfied. Let us prove that the condition (K) is satisfied. Let
U. V be a pair of disjoint open subsets of 1 im)(. A sets f" (U) and
f (V) are disjoint open subsets of Xa' a E A, since fa' a E A. are

perfect and irreducible. Since Xa satisfies the condition (K) we

have the following relation in kX .cir" (U) nClf" (V) S; X . Bya a 0: 0:

virtue of the irreducibility of fa it follows that in limkX we

have the relation CIU () CIV l imx. The condition (K) is satisfied.
By 1.11. the proof is completed.

We close this Section wi th theorems concernig the inverse
systems of H-closed spaces. The "only if" part of the following

l imx is
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theorem is new.
1.23. THEOREI1. Let X = {Xa, f cx.j3' A} be an inverse system of H-closed

spaces Xa' A space limX is H-closed iff the projections fa are

proper.
Proof. The "only if" part. If 11rnX is H-closed, then by Lemma 1.1.
(iil the projections fa are proper.

The "if" part. Now kX = {kXa, kfcx.j3' A} = {Xa' fcx.j3' A} = X since

the mapping definied in the proof of Lemma 1.B. We have limX ~ K
[k(lirnXl] S; limkX. Since limkX = lim X we infer that lirnX = K

/[k(lirnXl] = limkX. As a continuous image of H-closed space k(lirnXl
the space K [k(lirnXl] is H-closed. The proof is completed.
1.24. REI1ARK: The "if" part of Theorem 1.23. has been proved in
the paper [3].

A space X is said to be nearly-compact[1l if for each open
cover U = {Ua a E A} of X there exists a fini te subfami Ly

{U
1

, ... ,Uk} of such that X = intClU
1

U ... u IntCIU.

It is known that X is neaarly-compact iff X is H-closed and
completely Hausdorff [7]. Let us recall that a space X is
completely Hausdorff if each two distinct point of X have a
neighborhoods with disjoint elosures.
1.25.LEI1HA. Let X = {Xa' fcx.j3' A} be an inverse system of a

completely Hausdorff spaces Xa' A limit lirnX is completely

Hausdorff.
Proof. Trivial.
1. 26. THEOREI1. Let X = {Xa' fcx.j3' A} be an inverse system. A space

limX is nearly-compact iff the spaces Xa, a E A, are

nearly-compact and if the projections fa' a E A, are proper.

Proof. Apply Theorem 1.23. and Lemma 1.25.

2. FOHIN EXTENSION ax

Let X be a Hausdorff sppace. We now define a topology on the
set X u F as follows. For each U open in X let 0u be the union of

U and all ul trafi lters of F whi ch contai n U. It is easy to prove
that

o IIv=O 110
U U v

(1)

This means that a fami ly {OU: U is open in X} is a base for

We denote the set X u F equpped wi th this
space ax is called the Fomin extension of a

topology on X u F.
topology by ax. The
space X [9]
2. 1.LEHHA. [9]. The space ax is H-closed extension of a
Haus-dorff space X. If Y is any H-closed extension of
there exists a a-continuous ext ensIcn of f: X --> Y of the
i:X-->XcY.

Let f: X ---> Y be a cont i nuous mappi ng. For each

X, then
ident ity

ul trafi 1ter x = {Ua Ua is open in X} E ax - X we consider a
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filter-base af(x) = {V:V is open in Y such that there exists a Ua
e x with f(Ua) ~ V}. It is easy to prove that if f Is a p+rnap .

then af(x) is an open ultrafilter in Y. By virtue of H-closednes
of ay the intersection Z = ~ {ClV : V E 8f(x)} is non-empty. As in
the case od the Katetov extens ion kX it is easy to prove the
folloving Lemma.
2. 2. LEI'fI'fA.(a) If f:X ---> Y is a p-mapping, then af(x) contains a
single point of Y,

(b) The mapping 8f:8X ---> ay is e-continuous.
(c) If f is p-perfect then af is continuous,
(d) If Y is regular and if f is p-mapping then 8f is

cont inuous.
By the proof similar to proof of Lemma 1.6. we obtain

2.3.LEI'fI'fA. Let X = {Xa' f~, A} be an inverse system of a
Haus-dorf spaces Xa and a p-mapping f~.Then:
(i) There exists inverse system ax {axa, af~, A} with
e-continuous mappings 8f~.
(1\) If the mappings f~ are p-perfect or if Xa' C( E A, are
regular, then the mappings 8f~ are continuous. Moreover, there
exists a continuous mapping S : 8(limX) ---> limaX.
(iii) If in (ii) f~ are onto then S is onto.

2.4.PROBLEI'f. Under what conditions the mapping S is a
homeomorphism?

If the bonding mapping are perfect and irreducible then we
have

/2.5. THEOREI'f. Let X = {Xa, f~, A} be an inverse system of a
!Haus-dorff spaces Xa and perfect closed irreducible onto mapping

f~. Then the mapping S : 8(limX) ---> lim ax is a homeomorphism.
Proof. By virtue od Lemma 1.2l. the mapping S is onto and 1-l. It
remains to prove that S is an open mapping. A subspace 8(limX) -
limX is homoemorphic to each aXa XC(' C( E A, since the

onto and irreducible. This means thatprojections f~ are perfect
the subspace 8(limX) - limX
The proof is completed.

Is homeomorphic to the subspace lim8X.

3. ABSOLUTE OF AN INVERSE LII'fIT APACE

The space eX. Let eX denotes a family of all open (fixed or free)
ultrafilters or a Hausdor-f'f space X. We introduse a topology into
eX in the fo llowi ng way. Let au be the set of all ul tra-f iIters
that contain U, where U is open in X [9]; 0u is to be a base on
eX. That this definition is correct it follows from the relation

a v=a uOu u
It is easy to prove that

(2)

105



Loncar I. H-closed extensions Zbornik radova (1989),13

This means that
a = eX - a

v x-CIU
av is open and closed subset of eX.
is a Hausdorff space then eX is zero-dimensional

(3)

J.1.LEHHA.If X
and compact.
Proof. See [9J.

A space X is called extreally disconnected
disjoint open sets U,Y ~ X we have ClU ~ CIY = 0

If X is extremally disconnected and Y is dense
is extremally disconnected [9].
J.2.LEHHA. [9:41]. If X ia a Hausdorff space,
extremally disconnected zero-dimensional compact
equation X = eX holds iff X is a compact extremally
Haudsorff space.

if for each

in X, then Y

then eX is
space. The

disconnected

The absolute wX of a space x. A subspace wX of eX containing all
fixed open ultrafilters on X is called the absolute (in the sense
od Iliadis) of the space X or the extremally disconnected
resolution of the space X.
J.J.LEHHA.The absolute wH is dense in eX and, consequently, wx is
extremally disconnected.

;/proof. See [9: 41]
J.4.LEHHA. [9:44]. The absolute wX is e-homeomorphic to X iff X is
extremally disconnected. If X is regular extremally disconnected,
then wX is homeomorphic to X.

For each x E wX we define a point p (x) such that p (x) = ~
x x

{Cl U : U E x}.
x

J. 5. LEHHA. [9: 55]. The natural projection p: wx ---> Xis
x

e+cont lnuous , irreducible and perfect. It is continuous iff X is
regular.
J.6.THEOREH. [9:56]. Let foX ---> Y be a e-continuous irreducible
perfect mapping of a Hausdorff space X onto a Hausdorff space Y.
Then there exists a homeomorphism wf:wX ---> wY onto wY such that
fp = P wf.x v
The absolute wX and the extensions of a space X.
J.7.LEHHA. [9:60] Let ,X be an arbitrary extension of a Hausdorff
space X. Then there exists a homeomorphism h:e( ,X) ---> eX such
that h(p-1 (x)) = P -l(x) for each x E X.

x x
J.B.COROLLARY. [9]. e(~X) = e(kX) = eX.
J.9.COROLLARY. [9]. If bX is an arbitray extension of X, then w(bX)
= /3(wX). In par t icu lar-tvlSx ) = /3 (wX).

The absolute in the sense of Hioduszewski. Now we enlarge the
Iliadis topology definied at the begin of this Section by adding
sets of the forma p -l(U), U being an open subset of X. It is easy

x
to verify that the sets of the form a ~ p -ley) may be taken as a

v x

members of a topology on the set wX. We denote this space by aX.
3.10.LEHHA.The space aX is extremally disconnected and the
mapping p:aX ---> X is continuous, ireducible and perfect.

x
The space aX is minimal in the following sense:
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3. 11.LEHHA. [17:33] For any extremally disconnected space E and any
HJ-mapping hoE ---> X there exists a unique mapping ah:E ---> aX
such that h = p (ah ).

x
The following theorem plays a spacial role in our

investigation of the absolute of na inverse limit space.
3.12. THEOREI1. Let f: X ---> Y be a continuos mapping. A mapping f
has a unique absolute af such that Fvaf = fpx iff the mapping f Is
HJ.
3. 13.REI1ARK. A) The "if" part of Theorem 3.12. has been proved in
the paper [17:24J and the "only If" part In the pape r : Shapiro
L.B., Ob absoljutah topologiceskih prostranstv 1 nepreryvnyh
otobrazenijah, DAN SSSR 226:3(1976), 523-526.

B) Let us note that the absolute of a continuous
mapping always exists but need not be unique.

C) From the proof of the "if" part of Theorem 3.12.
it follows that the "if" part holds for the absolute wX in the
sense of Iliadis.

D) Another construction of the absolute for regular
spaces can be found from [1:363-370J
3. 14.LEI1I1A. ([18:124] or [1:363-370]). Let foX ---> Y be a
continuous mapping. Then there exists tbe absolute af:aX ---> aY.
Moreover:
a) If f is bicompact, then af is bicompact;
b) If f is irreducible and perfect (into, onto) Y, then af is a
homemorphism (into, onto) aY.
3. 15.LEI1I1A.{18}. If f>X ---> Y is an open onto mapping, then af:aX
---> aY is onto.

The absolute of the inverse limit space
Now we apply this expository material to the inverse systems

and their limits.
3. 16.THEOREI1. Let X = {Xa, f~, A} be an inverse system of a Haus-
dorff spaces Xa' If the mappings f~ are HJ-mapping then there
exists an inverse system wX = {wXa, wf~, A} and a mapping W: w
(limX) ---> limwX.
Proof. Apply Remark 3.13. C) and the fact that the projections fa
are HJ-mappings. Then modify. the proof of Theorem 1.6.
3.17. REI1ARK. A) Simi lar-ly from Theorem 3.12. it follows that there
exists an inverse system aX = {aXa' af~, A} for an inverse system
as in Theorem 3.16.

I B) There exists inverse system eX = {eXa, ef~, A} if
X is the inverse system of Hausdorff spaces and HJ bonding
mappings.

C) If X is an inverse sequence then by total
induction on can construct the inverse systems wX (aX, eX) without
the assumption that the absolute wf (af, ef) are unique.
3.18. THEOREI1. Let X = {Xa, faf3' A} be an inverse system of a
Hausdorff spaces Xa with irreducible perfect mappings f~ such
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that the projections fQ are onto. Then the mapping W:~(limX) --->
limwX is a homeomorphism.
Proof. From Theorem 3.6. it follows that wfa:f3are homemorphisms.
Similarly we infer that wfQ are homeomorphisms. This means that
the spaces 10' (limX) and limwX are homeomorphic to ~XQ' Q E A. The
proof is completed.
3. 19.THEOREM. Let X = {XQ, fa:f3.A} be an inverse system of
Hausdorf spaces Xa: and HJ bonding mappings fa:f3such that the
projections fQ are onto. Then the spaces e(JimX) and 1ImeX are
homemorphic iff the following concition (S) is satisfied:
(S) For each two disjoint open subsets U and V of limX there is a
a:E A such that fQ(U) and fQ(V) have a disjointneighborhoods.

Proof. The "if" part. Let x and y be two distinct points in the
space e(limX). T~is means that there exists a pair U, V of
disjoint open subsets of IimX such that U E x, V E y. From the
condition (S) it follows that efQ(x) = {W:W open in Xa: and there
exists U' E x such that fQ(U') ~ W} is not equal to efa:(y) = {W:W
is open in X and there exists V' E y such that fQ(V') ~ W}. This
means that the mapping e:e(JimX) ---> 11m eX is 1-1. Since e is
onto and e( limX) is compact we infer that e is a homeomorphism.
The proof of the"if" part is completed. The proof of the "only if"
part is similar.
3.20. LEMMA. The condition
f are closed irreduciblea:
there exists a Q E A and an open subset UQ of X such that

(S) is satisfied: (a) If the projectins
or (b) if for each open subset U ~ limX

f -1 (U )
Q Q

= U.
Proof. Obvious.
3.21. THEOREM. Let X = {XQ, fa:f3'A} be an inverse system of a
Hausdorff spaces XQ such that fa:f3are closed irreducible and the
projections fQ are closed onto (or the condi tion (b) of 3.20. is
satisfied), then e(limX) = limeX.
Proof. Apply Lemma 3.20. and Theorem 3.19.
3.22. COROLLARY. Let X = {Xfn... , ffn ..., N} be an inverse sequence of
a Hausdorff spaces X ~ith close irreduciblem onto mappings f .

n =
Then the spaces e(limX) and limeX are homeomorphic.

Proof. It is we II known that the projecti ons f are closed and
IIIll

irreducible onto mappings. Now apply Theorem 3.21.
If the mappings fa:f3and the projections fQ in Theorem 3.21.

ar-e p-perfect then a resticlions efQ{3/~X{3' (3 E A, are idenlical
with wfa:f3.Similarly a restriction efQ/w(limX) is identical with
Wf . Thus we have

Q
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3. 23.THEORE1'f. Let X '" {Xa, faj3' A} be an Inverse system as In
3.21. If the mappings faj3 an the projections fa are p-perfect,
then the spaces w(limX) and limwX are homeomorphic.

If the bonding mappings faj3 are perfect irreducible then from
3.23. holds Theorem 3.18.

For the absolute aX in the sense of Mioduszewski we now prove
3.24. THEOREl'f. Let X = {Xa, faj3' A} be an inverse system of a

/Hausdor-f'f'spaces X. If the spaces w (limX) and limwX are! ahomeomorphic, then the spaces a(limX) and limaX are homeomorphic.
Proof. Let G be any open neighborhods of x E a( 1 imX). By the
definition of a base in a(limX) there exist a neighoborhood of x
of the form 0v " PII.-1 (V) contained in G, where V is open in
limX and 0v is open in w(limX). From the relations w(limX) = limwX
and x E 0v it follows there exists an open Ua c Xa such that a set
(wf )-1(0 ) is a neighborhod of x contained in O. Similarly

a ~ v
there exists an open V c X such that f -l(V) ~ V is a

a a a
neighborhood of x. This means that a set p -1 f -l(V) " (wf )-1

II.. a 0.

(O~) is a neighborhood of x which is contained in 0v " PI1••-1

(V). From the relation p -1 f -I (V) = (wf )-1 P -I (V )we
IIIIX a a a xa a

infer that there exists a neighborhood p -1 (V ) ,,0 = G c aXxa a ~ a a
such that (wf )-1 (G) = (af ) is contained in G. This means that GIX a
is open in limaX. Thus the mapping A:a(l imX) ---> l1maX is 1-1
continuous and open mapping onto llmaX i.e. A Is a hemeomorphism.
The proof is completed.

We closed this Section with some theorems concerning the
non-emptiness of the inverse limit space.
3.25.LEl'fl'fA. A Hausdorff space is H-closed iff eX = wX.
Proof. If X is H-closed, then each open ultrafilter on X is fixed.
Thus eX = wX. Conversely, if eX = wX, then X Is H-closed since the
mapping p :wX = eX ---> X is e-cont inuous and eX is compact. The

x

proof is completed.
J.26.THEOREH. Let X = {Xa, faj3' A} be an inverse system of
H-closed spaces Xa and HJ-mapping faj3' The space limX is non-empty
iff the spaces XIX' a E A, are non-emppty. Moreover, if the
mappings faj3 are onto, then the projections fa are onto.
Proof. By Theorem 3.16. we obtain the inverse system wX = {wXa,
wfaj3' A} which is the inverse system of compact spaces wXa = eXa.
It is well known that limwX is non-empty. This means that limX is
non-empty since there is a mapping ..p: wX ---) X, P = {pxa: a E A}
J.27.COROLLARY. Let X = {Xa, faj3' A} be an inverse system of a
Hausdorff spaces Xa and p-maps faj3 such that kfaj3:kX~ ---> kXa are
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HJ onto mappings. Then IlmX is non-emppty.
3.28. COROLLARY. Let X = {Xu' fa{3' A} be an Inverse system of a
Hausdorff spaces Xu such that for each Xu E Xu and each f3 2: u

-1fa{3 (Xu) = Yf3 is non-empty H-closed subspace of Xf3' If the
restrictions fa I Y are HJ. them lirnX is non-empty.

"I' I'
If the mappings fa{3 are open. then the restrictions f{3, I Y'(

are open [2:95]. Thus we have
3. 29. COROLLARY. If X Is an Inverse system of a Hausdorff spaces Xu

-1and open onto mappings fa{3 such that each fa{3 (xu) Is !I-closed.
then lirnX is non-empty.

4. ALHOST REALCOHPACTIFICATION rX

A class of almost realcompact spaces was introduced by Frollk
(see [26]).

We say that an open ultrafilter U = {U:11 E M. U !; X}
11 11

is countably almost centred If each countable subfamily {U
I
•...•

Un' ... } of U has the property that ~ {ClxU
I
: I E N} is non-empty.

4. 1. DEFINITION. A Hausdorff space X is almost realcompact If each
countably almost centred open ultrafilter on X is fixed.

Frolik has been proved the followings theorems.
4. 2. THEOREH. The Cartesian product af almost real compact spaces is
almost realcompact.
4.3. THEOREI'1.Each closed subset of a regular almost real compact
space X is almost real compact.

It Is well-known that an Inverse limit of a Hausdorff spaces
is closed in the Cartesian product [2]. Thus we have the following
theorem.
4.4. THEOREI1. f a{3' A} be an

spaces Xu'
inverse system of aLet X = {X ,

u
regular almost real compact then IimX is a regular
almost realcompact space.
4.5. THEOREI1. [26]. For each completely regular
exists an almost real compact space rX with

space X there
the following

properties:
a) X ~ rX ~ f3X, where (3X Is the Stone-Cech's compactlfication of
X'
b) If f: X ---> Y is a mapping into any almost
realcompact completely regular space. then there exist rf:rX --->
Y such that f = rf/X.

Let us note that rf Is the restriction of f3f onto rX.
4. 6. THEOREI1. Let X = {Xu' fa{3' A} be an Inverse system of a
completely regular spaces Xu such that the project Ions fu are
onto. If (3(lirnX) = lIm{3X then r IlirnX) = lImrX. _
Proof. From the pr-opert ies of the Stone-Cech's compactiflcation
and from Theorem 4.5. b) It follows that there exist Inverse
systems f3X = {f3Xu' f3fa{3' A} and rX = {rXu' rfa{3' A}. The inverse
system rX Is the subsystem of the system {3X. By virtue of the
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II surjectivity of the mappings fa{3 we infer that limX is densely
embedded in 1imrX and 1imJ3X. On can also construct a mappings
R:r(limX) ---> limrX and B:~(limX)
restriction of B onto limX. It
homeomorphism, then R is the
completed.
4.7. REHARK. The notion of the almost realcompactification is a
generalization of the Hewitt realcompactification vX of a
completely regular space X [2:277]. The space vX is the subspace
of ~X such that each real-valued functin f:X ---> R has an
extension on X. It is evident that Theorem 4.7. holds also for the
spaces v(limX) and limvX.
4.8. THEOREM. Let X be an inverse system as in 4.6. The spaces
limrX and r(limX) are homeomorphic if the following condition (C5)
is satisfied:
(C5) For every pair F

l
, F2 of completely separated subsets of limX

there exists a a E A such that fa(F
I
) and fa(F) are completely

separated subsets of Xa'

Proof. Aplly theorem 4.6. and Lemma 1.1. of the paper [7J.
If the spaces limX and Xa, a E A, are normal then each pair

of a closed subsets of these spaces are completely separated. Thus
the condition (C5) can be replaced by the following condition:
(5) For each pair F

l
, F2 of disjoint closed subsets of 11mX there

exists a a e A such that Cl f (F ) n Cl f (F ) = ~.
xal xa2

There condition (C5) is satisfied if the inverse system X is
a factorizable or f-system (17). This means that for each
real-valued function f: limX ---> R there exists a a e A and a
real-valued function ga:Xa ---> R such that f = gafa'
4.9. THEOREH. If X is an f-system with onto projections fa: 1imX
---> Xa, a e A, then r(limX) = limrX.
Proof. Each f-system satisfies the condition (C5). Apply Theorem
4.8.
4.10. THEOREH. Let X be an a-directed inverse system wi th onto
projections fa such that a space 1imX is a Lindelof space. Then
r-t lt mx ) = limrX.
Proof. From [17:Theorem 1.10] it foollows that /3(limX) = limJ3X.
Apply Theorem 4.8.
4.11. THEOREH. Let X = {X, f , N} be an inverse sequence of a

n run

---> 1imJ3X. Moreover, R is the
is clear that if B is the

homeomorphism. The proof Is

normal spaces X and onto bonding mappings f . If a space 1 imX is
n run

countably compact, then r(limX) = limrX.
Proof. By virtue of Theorem 1.3. of the paper [17J it follows
that ~(limX) = limJ3X. Apply Theorem 4.8. replacing the condit ion
(C5) by the condition (5).

If the spaces X are countably compact and if the mappings
n

fnm are closed, then limX is countably compact [13J. Thus we have
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4.12. THEOREI1. Let X = {X, f , N} be an inverse sequence of a
n run

normal countably compact spaces X and a closed onto mappings f
n =

Then r(limX) = limrX.
By the same method of proof on can prove for a sequentially

compact (strongly countably compact, D-compact) spaces the
following
4.13. THEOREI1. Let X be an inverse sequence of a normal
suquentially compact (strongly countably compact, D-compact)
spaces. Then r(limX) = limrX.
4.14. THEOREM. Let X = {XC(' f cx.{3' A} be an inverse system wi th a

perfect fully closed onto mappings f cx.{3' If the spaces XC(' C( E A,

are normal countably compact, then r(limX) = lim rX.
Proof. Let us recall that a mapping f:X ---) Y [17J is fully
closed if for each point y E Y and each finite open cover {U

1
:1 =

I, .... s} of f-1(y) by open sets U, i = 1, ... , s , the set {y}
. 1

V .•. v f"(U_)} is an open set in Y. Now from Theoremv {fll(U )
1

1. 16. of [171 it follows that /'l( 1 imX)
completes the proof.

'We say that a Hausdorff space X is m-cotnpec t ,

lim ex, Theorem 4.8.

sm z s-, if
o

each open cover U of X has a subcover 'Wof the cardinality
I 'WI < m.

Each countably compact space X is an S,\S -compact space.
o

4.15. THEOREI1. Let X = {Xu' f cx.{3' A} be an well-ordered inverse
S

system of S\ ••+compac t normal spaces Xu such that fcx.{3are closed

onto mappings and cf'LA) < S\S . Then r(llmX) = llmrX.
m

Proof. Let us recall that cf(A) is the smallest ordinal number
which is cofinal in A. Now the condition (S) is satisfied [13J.
Theorem 4.8. completes the proof.
4.16.REHARK. By the same method of proof on can see that Theorems
4.6. - 4.15. holds for the realcompactification v(limX).

We close this Sectin by the consideration of the almost
realcompactification r CI t mxJ of an inverse system of a Hausdorff
spaces.

If X is a Hausdorff space then an almost realcompactification
rX has been definied by Liu and Strecker [121 as fol lows. Let rX
be a subspace of the Katetov extension kX containing a points of
X and all countably almost centred open ul trafi lters on X. The
topology on rX is the subspace topology.

Liu and Strecker was proved the following lemma.
4. 17. LEMMA. [12). a) The space rX is the almost real compact
Hausdorff space in wich X is densely embedded.

b) If Y is any almost realcompactification of X

then there exists an extension f: rX ---) Y of the identity i: X
---) X ~ Y.
4.18. THEOREM. Let X = {xC(' fcx.{3' A} be an inverse system of a

Hausdorff spaces XC( and p-perfect onto fcx.{3such that the mapping

rf are onto. If k l 1imX) = 1imkX then 1"( 1imX) = 1imrX.
u
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[9]

/10]
[11]

[16]

Proof. There exists the inverse system leX since f o:j3are perfect.

The inverse system rX is the subsystem of leX. Clearly, if the
spaces k(lirnX) and limlcX are homeomorphic, then the spaces
r(limX) and limrX are homeomorphic. The proof is completed.
4. 19.REHARK. Nowon cannot be proved that the inverse limit of any
almost realcompact apace s is almost realcompact since a closed
subset of any nonregular almost realcompact space need not be
almost realcompact.
4.20. THEOREH. Let X be an inverse system as in theorem 4.18. If
the spaces Xa, a E A, are almost realcompact, then limX is almost

real compact .
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Loncar I. H-zatvorena prosirenja apsolut inverznog limesa

SADRZAJ

U radu su istrazivana H-zatvorena proslrenja inverznog limesa.
Pri tome je posebna paznja posvecenja nuznim i dovoljnim uvjetima
koje mora Ispunjavatl inverzni sistem da bi Katetovljevo
pr os i r enje k( limX) bilo ekvivalentno llmesu inverznog sistema kX
(Theorem 1. 11. ). pomoca ovog t eorema dob i veni su nek i t eor emi za
H-zatvorenost i bllsku kompaktnost inverznog limesa (Theoremi
1. 23. - 1.26.). Za Fominovo prosirenje 8(1imX) dobiven je Teorem
2.5. Teor em 3.19. daje nuz ne i dovoljne uv je t e da bi apsolut
inverznog limesa bio ekvivalentan inverznoUl lilllesu apsoluta.
Potnocu pr idruzenog inverznog sistema aX moguce je dobi t i neke
teoreme za nepraznost inverznog limesa (Teoremi 3.25. - 3.29.)
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