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INVERSE LINITS OF THE COUNTABLE-DIRMENSIOMAL SPACES

In this paper we investigate the countable-dimensionality of the inverse limit
spaces. Section One contains theorems concerning the countable-dimensionality
of a limit space of an inverse system with closed bonding mappings. In Section
. Two we give some theorems on countable-dimensionality of a limit of an inverse
system with open mapping. Section Three is devoted to the inverse system with
d-mappings or with a-reducible mappings.
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0. INTRODUCTION

0.1. A mapping f : X+Y is open (closed) if f(A) is open (closed) for each open
(closed) AGX. ,

0.2. If f : X4Y is a mapping, then we define f’(A) as the set { y:f—l(y)EA}.
0.3. The cardinality of a set A is denoted by |A|.

0.4. cf(A) means a smalest ordinal number which is cofinal in a well-ordered
set A.

0.5. The closure of a set A we denote by CI(A).

0.6. We use the notions of inverse system and of inverse limit space as in [61.

0.7. The inverse system X={ X ,f B,A} is o-directed if for each sequence a. ¢ A,

i €N, there is a acA such thatgmai for each ieN.

0.8. Let f : X+Y be a mapping of locally connected spaces and let Cl(V)euegy,
where U and V are open. The splitting number s(f,CI(V),U) is the nubmer of
components of f~1(U) which meet CI(f-1(V)). ’

The inverse system X ={X ,f ;,A} is locally connected (briefly, Ic-system) if
the spaces X, are locally connected and for each ac A and each pair CI(V,)&Ua
there is a'>a such that s(f,g,Cl(V,), Uy),8>a' , are finite and s(f,,.CI(V,),

u) = s(faB,Cl(Vu), Ua)/.
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The notion of Ic-system was introduced in [10]. See also [17].
0.9. By FrA a boundary of a set A is denoted.
1. COUNTABLE-DIMENSIONAL SPACES AND CLOSED MAPPINGS

A space X is called (ind-, Ind-) countable-dimensional [22:162] if X= U{X :ieN }
for some subspaces X, of dimension (ind, Ind) dim Xgn.

A space X is called (ind-, Ind-, dim-) countable-dimensional in the strong sense
[24:162] (or strongly countable-dimensional) if X is the countable sum of (ind,
Ind,dim( finite-dimensional closed sets. Clearly, every finite-dimensional spaces
is countable-dimensional.

In the class of (separable) metric spaces the notions of (ind-) Ind- and dim-
-countable-dimensionality is equivalent.

We say that a metric space X is countable-dimensional if X is lnd— ord dim-coun-
table-dimensional.

In the sequel we use the following theorem (see[ 2:5-3-517] and [20:163-177]).
1.1. Theorem. If X is a metric space, then the following conditions are

equivalent:

(i) X is countable-dimensional,
(ii) there exists a closed onto mapping f:X9+X of a metric space x° with dim
X09<0 such that f-1(x) < for each xeX,

(iii) there exists a_closed onto mapping f : X%sX of a metric space x° with dim
X0<0 such that f1(x)<
(iv) for all sequences {Uj : ieN} of open sets and {Fj:ieN} of closed sets

satisfying F;€ U;, i=1,2,..., there exists a sequence {Vj:i N} of open sets such
that F.cV, cU and ord {Fr V;:ie N }<N' for each x e X.

We say that f:Y+X has a weak local order iff for each xe¢ X there exists a point

a_ef (x), a neighborhood Ux of a, and positive integer,nx such that ord
f <n_.
X=X

In the paper [31: Theorem 2. 1] it is proved

1.1'. Theorem. A metric space X is strongly countable-dimensional iff there is
a 0-dimensional metric spaces B and closed, finite-to-one mapping from B onto
X with weak local order.

By a straightforward proof we have

1.1", Lemsma. If a3 mappings f:X»Y and g : Y +Z have a weak local order, then
gf : X+Z has a weak local order.

Every local homeomorphism has a weak local order. If f—l(y):keN for each
y €Y, then f:X-Y has a weak local order.

1.1, Problem. Let X ={ )(u,fuB,A } be an inverse system such that the mappings
fug have a finite local order. Is it true that the projections f,:lim X>X,, acA,
have a weak local order?
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From (iii) of Theorem 1.1. it follows

1.2. Theorem. Let f : X»Y be a closed mappi? of a metric countable-dimensional
space X onto a metric space Y. If f 1(y) <N, for each yeY, then Y is counta-
ble-dimensional.

1.3. Theorem. Let f:X-Y be a closed mapping of a metric space X onto a metric
spce Y. If ! (y) =k <N, for every yeY, then X is countable-dimensional
iff Y is countable-dimensional.

Proof. If X is countable-dimensional then so is Y (1.2. Theorem). If Y is coun-
table-dimensional, then Y = U {Yi : ieN, dim yi:O}. The mapping in : 1’“1(Yi)*Yi
is closed and f,.(y) . = k for each yeY.. By Suzuki theorem [7:286] it follows

that dim Yl = dim f (Yi)' ieN. The proof is completed since X = {f"(yi) : ieN}.

Now we apply Theorem on dimension-lowering mappings [7].

1.4, Theorem. Let f : X Y be a closed mapping onto metric countable-dimensional
space Y. If dim ! (y)<k for each yeY, then X is countable-dimensional.

Proof. Let Y = U {Y,:ieN} with dim Y, < N, The mappings in:f—'(Y.)-,_Yi, ieN,
satisfy Theorem on éimension—lowering mappings. Hence, dim F'(yﬁ: dim yifk
< N_. The proof is completed, since X = U{ f"l(Yi): ie N}

From Theorem 1.2. and 1.4. it follows

1.5. Theorem. Let f:X+Y be a closed mapping of a metric space X onto a metric
space Y such that |[f1(y)]< N, for every y €Y. The space X is countable-dimen-
sional iff the space Y is countable-dimensional.

1.6. Remark. A) Theoreni 1.3. is a corollary of Theorem 1.5. B) By the well
known method of proof it follows that in Theorem 1.2. one can assume that

Fr f“‘(y)_(_ No . C) The alternative proof of Theorem 1.5. in the case when
X has a countable network is the following. From [4:3584,Ex.97.] it follows that
if f:X+Y is a closed onto mapping with f’l(y)gﬂ, for each yeY, there exist
the subsets X., ieN, of X such that: a) X = U {X.:ieN} b) Y=U{f(X.):ieN} and
f. = f/X.:X.+f (X.) is a homeomorphism. This means that X. is countable-dimen-
sional iff J = f(X.) is countable-dimensional. From the relations a) and b) it
follows that X is 'countable dimensional iff ¥ is countable-dimensional.

Now we study the countable-dimensionality of the inverse limit space

1.7. Theorem. Let X = { X;,fyg,A} be an inverse system of a metric spaces X,
and closed mappings with . [gs‘ (xa)]: keN. If the space X = lim X is a metric
space, then X is countable dimensional iff the spaces X, are countable-dimensi-
onal.

Proof. It is readily seen that lf;l(xa)[: k. On the other hand, the projections
t; are perfec [2:148]. Now apply Theorem 1.5. Q.E.D.

Similarly, one can prove

1.8. Theorem. Let a metric space X be a limit of a o-directed inverse system
X = {Xa'fuB'A }, where Xu are metric spaces and f,g a closed mappings with
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It;el(xa)l < N'. The space X is countable-dimensional iff the spaces X, are coun-
table-dimensional.

For compact metric spaces we have

1.9. Theorem. Let a metric space X be a limit of a o-directed inverse system
X= {Xu'fa .A}, where X, are compact metric spaces. If X, are countable-dimen-

sional, then X is countable-dimensional.

Proof. Suppose U = {U.:ieN} and = {F, : ieN} are sequences as in Theorem
1.1. For every _l{i and F. €U, there exist a;e A and open set Wy, such that f“i(Fi
€ W,. and _F.s f“i (woi)s- Ui' Since A is ¢-directed, there exist a>ay, Gy, eee

Let Wi = fq. (w"i)’ ieN. From the assumption that X, is countable-dimensional it
follows that there exists a family ¥ = {v; = ieN} such that f,(F,)EV, W, ieN,
and (:l;dx {Fr(vi):ieN}<- wat every point xeX. Let U= {fy (Vi):Vieu} Clearly,
F,€f (V))gU;, ieN, and ord { F.(V):Vv e U}<+= at every point xeX. Q.E.D.
1.10. Theorem. Let X ={X ,f,..AQ} be an well ordered inverse system of metric
spaces X with the property ‘fﬁ(xak N ,aeq, and cf(a)> ww_. If the spaces
Xq are countable-dimensional and X = Ijm X is a metric space, Then X is counta-

ble-dimensional.

Proof. l;rom 061 and [ 28] it follows that every open (closed) U,eX is the form
Ui = f“i (Uy.) for some open (closed) U<;'¢=Xc;i . Thus, for every FiC'.Ui there

exists a, such that Fis f"i SE(wui):Ui for some open set w,igxai. The remaining
part of the proof coincides with the corresponding part of the proof of Theorem

1.9

If X, are separable metric spaces and a) f,g are perfect or b) fug is open or c)
X is cointinuous then w (lim X) [26] i.e. X = lim X is a metric space. Hence, we
have

1.11. Theorem. Let X = {X,,f,g,A} be a well ordered inverse system of separable
metric spaces X  such that cf(A) 2wy If Xis continuous (or fyg are perfect, or

fag are open) and X, are countable-dimensional, then X = lim X is countable-dimen-
sional.

1.12. Theorem. Let X = {Xn, fnm' N} be an inverse sequence of metric (strongly)

countable-dimensional spaces X . If fn are closed mappings such that dim
fnm (xn) <k for some keN, then X ='?I5_n X is (strongly) countable-dimensional.

Proof. From [ 7:261] it follows that dim f_r: (x_ )< k i.e. dim f_ <k, neN. Let

X, =UIX_ . : 1enN}, where X ., ieN, is finite-dimensional. Let Y,=f.1(Xp;),icN.
Clearly, X = {Yi:ieN }. The restriction /Y. ieN, are closed since f_ is a closed
mapping. From the inequality dim Yi:dim fn+dim Xni [2,pp.452] it follow that Yi
is finite-dimensional. The proof is completed.

1.13. Theorem. Let X be a limit space of an inverse system X ={ X,,f,5,A} of
compact metric (strongly) countable-dimensional spaces X . If dim f,z<k for some
keN, then X is (strongly) countable-dimensional. <
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Proof. X is a compact space and the projections f , ac A, are perfect mappings

with dim fq:k. Let Xa= {)(Oli : ieN } where X ., icN, are finite-dimensional sub-
spaces of X,. The restrictions fui = fu/Yi, ieN, are closed [ 6:pp.50.] and per-
fect. It follows that Yi = f;‘ (Xai)' icN, are paracompact subspaces of X. From
the inequality dim Yif dim f“i + dim Xai [2:pp.452.] it follows that Yi' ieN, are

finite-dimensional. The proof is completed since X = {Yl:icN ¥
The proof of the next theorem is similar to the proof of Theorem 1.12.and 1.13.

1.14. Theorem. Let X = {x fuB'A} be an inverse system of hereditary paracom-
pact spaces X, and the perfect mappings f g. If the spaces X  are (strongly)
countable-dimensional and if dim fa €k, keN, then X = lim X is a hereditary pa-
racompact (strongly) countable-dimensional space.

1.15. Problem. It is true that X in Theorems 1.12.-1.14. (strongly) countable-
-dimensional if f“ (x ) is (strongly) countable-dimensional for every o, x and
g?

1.16. Theorem. Let X = (X, aB'A} be an inverse system of the completely regu

lar (strongly) countable—dlmensaonal spaces X,. If f,g are open-closed < k-to-
-one mappings, then X = lim Xis (strongly) countable—dnmensnonal

Proof. The projections fa : X+X,, acA, are open-and- closed. It is readily seen
that f,, aecA, are k-to-one mappings. Let X = {X‘, , ieN, where )(u ., ieN, are
mite—dlmenswnal subspaces of X,. From [13]it follows that dim Xu = dim 1“‘(X¢l )
ieN. This finishes the proof since X V{f“()g! ):ieN L

A mapping f:X+Y is fully'closed [9 ] it for each yeY and each open cover
{Ul""'Uk} of the set f~1(y) the set {y} U (f#Uk) is open in Y.

A mapping f:X+Y is fully closed iff f is closed and if f(Fl)/\f(Fz) is a discrete
subspace of Y for each pair FI’FZ of a closed disjoint subsets of X.

1.17. Lemsa. [9: Lemma 3.]. Let X= {Xa'faB'A} be an inverse system with
perfect mappings f,g. The projections f: lim XeX , acA, are fully closed iff

faB are fully closed.

On can prove

1.18. Lemma. Let X = {Xn, fnm'N } be an inverse sequence with pseudoperfect
mappings fnm’ The projections fnzliln g»xn, neN, are fully closed iff fnm are

fully closed.

1.19. Theorem. Let X = {X f ,A} be an inverse system of normal spaces X
and fully closed perfect mapplngs f such that dim f“é(x J<k. If a space

I{l_m X is normal, then X is strongly countable-dimensional iff spaces Xyr
ae A, are strongly countable-dimensional.

Proof. The projections f: X+/\ , acA, are perfect fully closed such that dim
fa(x )<k. Let X, = U (x it N)for some aeX . A mapping f=fIf-T(X )+X .

. ’

a,i
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is perfect fully closed. From [ 9:Theorem 3.] it follows dim f_l(Xa j) < max { dim
fi' dim f_ }<N The proof is completed since X =\/{ f“(,\ i): {eN}. Conver-
sely, if X V{X :ieN}, where X. are closed finite- dlmensional subsets of X,

then for every acA we have Xcl U{fa(xi).ueN} and dim f(1 (Xl) <dim xl+1 [9:

Theorem 4.]. The proof is completed.

1.20. Remark. Is it true that Theorem 1.19. holds for countable-dimensionality
if we assume that X ., aceA, and X are hereditarily normal? Clearly, the "if"
part holds.

1.21. Corollary. Let X = {X f .A} be an inverse system of a normal countably
compact spaces 3, and fully cﬁ':sed perfect mappings f,; such that dim f ;(X )<k,
A space X = lim X is strongly countable-dimensional iff all X are stronigy coun-
table-dimensional.

Proof. From Lemma 1.17. and Theorem 1.19. it follows that it suffices to prove
that X = lim X is normal. If FI' F2 are disjoint closed subsets of X, then

Y = fu(Fl) /'\fa(Fz), aeA, are finite since Y  is discrete (see definition of the
fully closed mappings). This means that Y = {Y f B/YB A} is the inverse system

of compact spaces Y, If we assume that Y = hm Y # 0 then we obtain the con-
tradiction ¢ # Y& F1I\F2 §. it follows that there exist acA such that Y, = 8.
Since X is normal, there exist disjoint open sets U > f (F,), V,2f (F, ) The

space X is normal since f‘ (U )DF and f“‘(V )DF2 The proof is completed.

1.22. Remarks. A) From [9:115 ]it follows that if dim X <N then dim X<n and
dim X>n 0 [

B) From the proof of the normality of X in Theorem 1.21. it
follows that if X 4 are connected then X is connected.

C) If Xis locally connected [10] then a local connectedness of
X, implies local connectedness of X.

D) Similarly it follows that g (lim X) is homeomorphic with lim BX
where BX ={8X , f,g, A}
From Lemma 1.18. one can deduce

1.23. Theorem. Let X = (Xn, fnm’N } be an inverse sequence of a norinlal counta-
bly compact spaces X, and fully closed mappings fnm such that dim fnm(xn) <k.
A space X = Ii{r_n X is strongly countable-dimensional iff spaces Xn are strongly
countable-dimensional.

Proof. The projections fn :XaX_, neN, are fully closed by Lemma 1.18. Furthemo-
re, dim f (X ) <k [15:2.1. Theorem]. The remaining part of the proof is as in
the proof of Theorem 119,

We close this Section with the inverse systems of finite-dimensional spaces which
have infinite-dimensional (= not finite-dimensional) limit.
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1.24. Theorem. Let X = {X ,f o, A} be an inverse system of finite-dimensional
spaces X, and closed mappings f,g such that 1< f;’(x ) < k+1 for some fixed
keN. If lim X = X is normal and for every neN there is a meN sch that dim szn,
then X is infinite-dimensional.

Proof. The mappings f, : lim X+ X , acA, are closed and If_u‘(xu)[: k+1 [2].
From [ 2:Zamecdanie ] it follows that dim Xn_<_dim X+k for each Xn. This is impo-
ssible since dim Xn+m if n+=, The proof is completed.

1.25. Remark. On can prove that Theorem 1.24. is valid if we asume that
|Fr r;(xu)x < k+1.
a =

1.26. Question. Is it true that X in 1.24. is countable-dimensional? The answer
is positive if X is an inverse sequence of metric spaces (or lim X is metric).
(See 1.7. Theorem, 1.8. Theorem and 1.10. Theorem).

1.27. Remark. From [2:449. Theorem 1] it follows that X = lim X in Theorem
1.24. is not Ind-finite-dimensional.

2. OPEN MAPPINGS AND COUNTABLE-DIMENSIONALITY
We start with the following theorem.

2.1. Theorem. Let f:X+Y be an open onto mapping between a separable metric

space such that each f“(y) has an isolated point. If X is countable-dimensional,
then so is Y.

Proof. Let A be a set defined in the proof of Lemma 1.12.5. of [7]. It follows
that A, is countable-dimensional. Since f/Ai is a homeomorphism, the set f(Ai)
is countable-dimensional. From the relation Y = U { f(Ai):ieN }it follows that Y
is countable-dimensional.

If X and Y are locally compact separable metric spaces, then from lf_I(y)li Nc
it follows that f—l(y) has an isolated point [ 7:139]. Thus, we have

2.2. Theorem. Let f:X-+Y be an open surjection between separable locally compact
metric spaces. If lf“(y)[:t\’.for every yeY, then Y is countable-dimensional if so
is X.

If each f-'(y) is a discrete subspace of X, then one can assume that Ai' ieN,
are closed [3:194]Jand X = U {Ai:icN }. Thus we have

2.4, Theorem. Let f:X+Y be an open onto mapping between separable metric
spaces. The space X is countable-dimensional iff Y is countable-dimensional.

In [3:3.2. Theorem] it is proved

2.5. Theorem. If f:X-+Y is an open surjection between metric spaces such that

for each y eY |f 1(y)[< N‘( then X is countable-dimensional iff Y is countable-
dimensional.
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We say that a mapping f : X-Y is inductively open [ 3:209] if there exists a

subspace X &€ X such that f/)’ 1-'Y is an open mapping and f(X ) =

2.6. Theorem. Let f : X +Y be an inductively-open closed surjection between

metric spaces such that for each y eY |F‘(y)[§ N'o . If X is countable-dimensional

(countable-dimensional in the strong sense), then Y is countable-dimensional
(countable-dimensional in the strong sense).

2.7. Remark. If X is a complete metric space (of f_l(y) are complete), then the
assumption of the closedness of f can be amitted [3:219.]

If the fibers f_1 (y) are finite, then we have

2.8. Theorem. [3:9.5. Theorem]. Let f:X-=¥ be an inductively-open onto mapping
with finite fibers. If X is countable- dimensional (in the strong sense), then Y is
countable-dimensional (in the strong sense).

Now, we prove the following theorems.

2.9. Theorem. Let f:X>Y be open onto mapping betwen metric spaces such that
f"(y) is discrete. If Y is (strongly) countable-dimensional, then X is countable-
dimensional.

Proof. Let Y = U{Yl ieN}, where YI is finite-dimensional (closed) subspace. The
mappings f £ (Y )+Y, ieN, are open with discrete fibers. By Hodel's theorem

[7:288] it follows that dim f (y1) <dim Y The proof is completed since X = U

() sieN ).

2.10. Theorem. If f: X->Y is an open onto mapping between locally compact metric
spaces such that lf (y)|<}{ for each yeY and Y is (strongly) countable-dimen-
- sional, then X is (strongly) countable-dimensional.

Proof. In the proof of Theorem 2.9. apply [7:288, 4.3.E(d)] instead of [7:288,
4.3E(a)].
For inverse system of a metric spaces we have

2.11. Theorem. Let X = {Xn fnm N } be an inverse system of metric spaces Xn and

open mappings fnm such that fn1 (xn) are discrete. If Xn are (strongly) counta-
ble-dimensional, then X = “T X is (strongly) countable-dimensional.

Proof. Let X =VU(X_ ,:icN}. For every m>n a mapping fnm e 513 r"“(X) f m X)X
is open with dlscrete f‘bers This means that dim f l (X ) <d|m X [7:288. ]From
Nagami's theorem [7:261] it follows that inverse system _)_(1 = {fnm ‘(X) m>n} has a
finite-dimensional limit Xi.

Since X = U {Xi:icN}, we conclude that X is countable-dimensional.
Similarly, by [7:288, 4.3.E8D) Jand [7:261.4.1.22.Theorem ] we have
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2.12. Theorem. Let X ={ Xn nm’ N} be an inverse system of a Iocally compact
metric spaces Xn and open mappings fnm such that lf ‘5 ){ - are
(strongly) countable dimensional, then X = lim Xis (strongly) countable-domen—
sional).

Generaly we have the following

2.13. Theorem. Let X = {X f A} be an inverse system of the spaces X, and
mappings 'a such that:

i) 3 = U{X ,i:ieN}, where X .e¢ ¥
a a a,l

I T S .
ii) dim fuB X 'i):dlm xu'i

iii) E t X. ={X ., f N
iii) Every system X, =1 wldr La, }
has the limit X. with dim x < dim X then, if Xa are countable-dimensional

so is the lim X'
From this Theorem we have

2.14, Theorem. Let X = {X f .,Al}lbe ao- directed inverse system of compact
spaces X, and open mappmgs P g such that lf (X %k ){ . If the spaces X L 2re
strongly oountable—dlmensional then X = lim X is countable-dimensional.

Proof. Let X = U {X IeN}, where X ls a closed finite-dimensional subspace

Gli
of X For every B>u we consider X = f (X ). The restriction f'ea X X
is open with If'Bl(de<

B'i Bl‘ u'i
From [2:859] it follows dim X he dim X <)( The condition ii) of Theorem
2.13. is satisfied. Inverse system X, = {)(B i T gyra<sey} is an inverse system of
compact spaces such that iii) is satisf‘ ed. The proof is completed.

We close this Section with theorems of infinite-dimensionality of a limit of an
inverse system of finite-dimensional spaces.

2.15. Theorem. Let X = {X; B'A } be a g-directed inverse system of compact
spaces X,, and open mapplngs fug such that l‘lf (X Jd< No . If dim xn«- when
N+, then X = lim X is not fmlte—dimensional (=Tn mte—d'mensuonal)

Proof. Before the proof, let us observe that X is countable-dimensinal (see
Theorem 2.14.). Now, suppose that dim X is finite. From [2:459] it follows that
dim X = dim X for each X a This is a contradiction since dim Xn-m.Q.E.D.

2.16. Theorem. Let X {X , nm’ N} be an inverse sequence of separable metric
spaces with open mappmgs f nm Such that 1f'fnm(xn)l§ k for some natural number
keN. If dim X -+~ when n+, then X = lim X is not a finite-dimensional countable-

dimensional space.

Proof. The countable-dimensionality of X it follows from 2.11. Theorem. If we
suppose that dim X is finite, we obtain a contradiction dim X = dim X (see
[7:1.12.7. Theorem. ]) since dim X o= The proof is completed.
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3. REMAINING CLASSES OF MAPPINGS

We say that a mapping f : X+Y is dissipative (briefly, d-mapping) [ 251 if for
each point xeX and each open set U 3 x there is an open set U_3y = f(x) such

that f | (U ) is the union of two disyoint open sets V, V,, ang xeV,gU .

3.1. Rutrks. A) Each closed mapping f : X +Y defined on a normal space X
with ind f = 0 (i.e. ind f (y) = 0 for each y €Y) is a d-mapping [25:143].

B) If f : X+ Y is d-mapping, then ind X <ind Y [25].

C) Let X be a Tl-space, Y a metric space. If f:X+Y is a d-mapping,
then, if X is compact (Lindelof, strongly or totally paracompact), we have dim
X=ind X = Ind X [25:145 ]

D) [25:149, Theorem 1.2]. Let X = {xa'f,aB’A} be an inverse
system. If f_,are d-mappings, then the projections f,: lim XX, acA, are
d-mappings.

E) Let X = {X ,f gA} be an inverse system such that Xu, acA,

are perfectly normal compact spaces and f ap are ind-zero-dimensional mappings.
If ind X o= k., then Ind (lip X)< r.

Now we prove
3.2. Theorem. Let X = {xu'faa'A }be an inverse system with d-mappings fuB‘

If the spaces X, are (strongly) ind-countable-dimensional, then X = lim X is
an(strongly) ind-countable-dimensional space.

‘Proof. Let X U{X i :ieN}, where X . is a subset of X for each ieN (closed
subset in the case of a strongly ind- countable—dlmensnonallty) For each g>a let
—f f‘(X i)’ A mappings f /X (xeN) are d-mappm%s [25:144(5) ). From

3 f D) it follows that f /f (Xa ') ls d-mapping since f_'(X ) is a limit of a
system {X i i q<e<y} Now we have ind f’n()\ i) smd X iy (see 3.1.
B)). Smce hm )?- {f 1”(X ) ieN}, we infer that X = Tim X is (strongly) ind-
countable-dimensional Q.E. D.

From this Theorem and 3.1.C) it follows

3.3. Theorem. Let X be a limit of an inverse system X = {X ,f g,A} such that
Xy, acA, are metric and f _ d-mappings. If XGl are (strongly) countable-dimen-

sional and X is compact (L?ndeliif, strongly or totally paracompact), then X is
(strongly) countable-dimensional.

3.4, Theorem. Let X ={ X ,f ,A} be an inverse system of compact metric spaces
X4 and d-mappings f,g. If X, are strongly countable-dimensional, then X is also
strongly countable-dimensional.

Proof. The spaces X are separable. This means that ind X, = Ind X, = dim X

[7] Apply Theorem 2.13., 3.1.C. and the well known theorem on the dimension
dim for a limit of an inverse system of compact spaces.
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3.5. Theorem. Let X = {Xn, fnm' N} be an inverse sequence of separable metric
(strongly) dim-countable-dimensional space X_. If fnm are d-mappings, then X=

= Ii_m X is (strongly) dim-countable-dimensional space.
Proof. Apply Theorem 2.13. and Nagata's theorem [7:261, 4.1.22. Theorem]

3.6. Remark. The hypothesis that f are d-mappings is essential. Namely, the
space 1 is a limit of an inverse sequence of the finite-dimensional cubes 1", but
I @is not countable-dimensional [7:81,1.8.20. Theorem.].

8

Let f:X-+Y be a mapping. We say that a point xeX is a point f-perfectness if

there is a neighborhood U 3x such that the restriction f/CIU is a perfect
mapping onto a closed subset of Y [ 21].

If AEX, then for a mapping F, = f/A we define the residue A?A in the following
way. Let Af = A. Suppose that Afa is defined for each B<a. If there exists a-1,
we define Af, as the set of all points x cAu;}‘ which are not the points f, a-1
- perfectness. If 4 is a limit ordinal, let A‘;A = n{A' g : B<al fA
A mapping fA is o-reducible if there exists an ordin:l a sucht that Aaf = 4.
A mapping f is 1-reducible iff it is locally perfect. A

We say that I(f) <= if for f:X+Y there is a natural number neN such that A? =49
[21:119].

in the paper [21:Sledstvie 7. ]the following theorem is proved.

3.7. Theorem. Let f:X>Y be a mapping such that I(f)<=. If W(X), W(Y) < , then
dim X <dim f + dim Y. - -

Now, we prove

3.8. Theorem. Let X = {Xu,f ,A} be an inverse system of separable metric
spaces X, and perfect mapping f;g such that dim f  <¢. If dim X, n and W

(lim X)< N, - then dim (lim X) < n.

Proof. The projections fa: lim X+X , ae A, are pefect [2:148 ). This means that
dim f <0 [7:247.]. From Theorem 3.7. it follows that dim (ljm X) <dim Xu:n.Q.E.D.

3.9. Corollary. Let X = { Xu,f B'A } be an inverse system of separable metric
spaces X, and perfect mappings f ,gsuch that dim f g<0. If X,. acA, are (strongly)

dim-countable-dimensional and W (lim X) q\fothen a limit lim X a (strongly) dim-
-countable-dimensional space. « -

3.10. Remark. By the total induction one can prove that in Theorem 3.8. Ind
(lim X) <n and ind (lim X) <n. thus, a limit lim X in Corollary 3.9. is a ind-
(Ind-) countable-dimensional space.

From [28] it follows that W(lim 5):){0 if X is a well-ordered inverse system

such that cf(A) > 0y and:
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a) f g are perfect or b) f, are open of c) X is continuous.
a
Usin this assertion we obtain the following theorems.

3.11. Theorem. Let X = {X ,f A} be a well-ordered inverse system of separa-
ble metric spaces X with cf(A‘s > - If Xa, acA, are (strongly) countable-dimen-

sional and f,g are perfect such that dim ,g<n, the X = lim X is (strongly) coun-
table—dumenstonal

Proof. Let X = U {)%,I :ieN}, dim XB,

From 3.7. it follows that dim XB i = dim f (X l) <n.

Let X, ={X, i fay/Xg 8. i a<B<y} . The system X, has the dimension dim< n [1s5].
The proof IS completed since X = U { lim X : ieN}.

3.12. Theorem. Let X = {Xu,f .A} be a continuous inverse system of separable
metric spaces X, and perfect mapping f,g such that dim f,g<k. If dim X <n, then
dim (lim X) < n+k.

3.13. Covollary. If X,, acA, in Theorem 3.12. are (strongly) dim-countable-
-dimensional, then lim X is (stronigy) dim-countable-dimensional.

3.14, Remark. By the total induction one can prove that in Theorem 3.12. Ind
(lim X) <n+k and ind (lim X) <n+k. Hence, a limit lim X in Corollary 3.13. is
ind- ‘and Ind-countable-dimensional.

We close the application of Theorem 3.7. with the following theorem.

3.15. Theorem. Let X = {X ,f ,A} be a locally connected inverse system of
locally compact separable metr?c spaces X, and perfect dim-zero-dimensional
mappings fae. If dim Xu: n then dim (Iim X)< n.

Proof. The projections fa : lim X +X are perfect dim-zero-dimensional. The
space lim X is locally connected [17]. From [4 Jor [18] it follows that W(lim KX)
< N,- Applying Theorem 3.7. we complete the proof.

3.16. Remark. If X is o-directed and X, locally connected, then X is locally
connected. Hence, in this case we have also dim (lim X) <n.

3.17. Corollary. If in Theorem 3.15. the spaces X, are (strongly) countable-
dimensional, then lim X is (stronlgy) countable-dimensional,
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Lon&ar I. Inverzni limesi prebrojivo dimenzionalnih prostora

SAZETAK

U radu je istraZivana prebrojiva dimenzionalnost inverznog limesa sistema prebro-
jivo dimenzionalnih prostora.

Prvi odjeljak posveéen je prebrojivoj dimenzionalnosti limesa inverznog sistema
prebrojivo dimenzionalnih prostora i zatvorenih veznih preslikavanja.

U drugom odjeljku izuZavani su analogni inverzni sistemi uz otvorena vezna pre-
slikavanja.

Trec¢i odjeljak sadrZi teoreme o prebrojivoj dimenzionalnosti limesa inverznih siste-
ma uz jo$ neke vrste preslikavanja, kao 3to su d-preslikavanja i a-reducibilna
preslikavanja.
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