Prof. dr. Ivan Lončar Fakultet organizacije i informatike V a r a ž d i n

UDK: 51 Znanstveni rad

INVERSE LIMITS OF THE COUNTABLE-DIMENSIONAL SPACES

In this paper we investigate the countable-dimensionality of the inverse limit spaces. Section One contains theorems concerning the countable-dimensionality of a limit space of an inverse system with closed bonding mappings. In Section Two we give some theorems on countable-dimensionality of a limit of an inverse system with open mapping. Section Three is devoted to the inverse system with d-mappings or with α -reducible mappings.

Countable-dimensional; strongly countable-dimensional; inverse system; inverse limit space

0. INTRODUCTION

0.1. A mapping f : X+Y is open (closed) if f(A) is open (closed) for each open (closed) $A \subseteq X$.

0.2. If f : X+Y is a mapping, then we define $f^{\dagger}(A)$ as the set { $y:f^{-1}(y) \leq A$ }.

0.3. The cardinality of a set A is denoted by A.

0.4. cf(A) means a smalest ordinal number which is cofinal in a well-ordered set A.

0.5. The closure of a set A we denote by CI(A).

0.6. We use the notions of inverse system and of inverse limit space as in [6].

0.7. The inverse system $X = \{X, f_{\alpha\beta}, A\}$ is σ -directed if for each sequence $\alpha_i \in A$, $i \in \mathbb{N}$, there is a $\alpha \in A$ such that $\alpha > \alpha_i^{\beta}$ for each $i \in \mathbb{N}$.

0.8. Let $f : X \rightarrow Y$ be a mapping of locally connected spaces and let $CI(V) \subseteq U \subseteq Y$, where U and V are open. The splitting number s(f, CI(V), U) is the nubmer of components of $f^{-1}(U)$ which meet $CI(f^{-1}(V))$.

The inverse system $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is locally connected (briefly, lc-system) if the spaces X_{α} are locally connected and for each $\alpha \in A$ and each pair $Cl(V_{\alpha}) \subseteq U \alpha$ there is $\alpha' \geq \alpha$ such that $s(f_{\alpha\beta}, Cl(V_{\alpha}), U_{\alpha}), \beta \geq \alpha'$, are finite and $s(f_{\alpha\alpha'}, Cl(V_{\alpha}), U_{\alpha}), \beta \geq \alpha'$.

Mathematics subject classifications (1980): Primary 54B45; Secondary 54F45.

The notion of Ic-system was introduced in [10]. See also [17].

0.9. By FrA a boundary of a set A is denoted.

1. COUNTABLE-DIMENSIONAL SPACES AND CLOSED MAPPINGS

A space X is called (ind-, Ind-) **countable-dimensional** [22:162] if $X=U\{X_i:i\in N\}$ for some subspaces X; of dimension (ind, Ind) dim $X_i \le n$.

A space X is called (ind-, Ind-, dim-) countable-dimensional in the strong sense [24:162] (or strongly countable-dimensional) if X is the countable sum of (ind, Ind, dim(finite-dimensional closed sets. Clearly, every finite-dimensional spaces is countable-dimensional.

In the class of (separable) metric spaces the notions of (ind-) Ind- and dim--countable-dimensionality is equivalent.

We say that a metric space X is countable-dimensional if X is Ind- ord dim-countable-dimensional.

In the sequel we use the following theorem (see [2:5-3-517] and [20:163-177]).

1.1. **Theorem.** If X is a metric space, then the following conditions are equivalent:

(i) X is countable-dimensional,

(ii) there exists a closed onto mapping $f:X^{0}\rightarrow X$ of a metric space X^{0} with dim $X^{0}\leq 0$ such that $f^{-1}(x) \leq for each x \in X$,

(iii) there exists a closed onto mapping $f : X^0 + X$ of a metric space X^0 with dim $X^0 < 0$ such that $f^{-1}(x) < X$, (iv) for all sequences $\{U_j : i \in N\}$ of open sets and $\{F_j : i \in N\}$ of closed sets such

(iv) for all sequences {U_i^{*}: i \in N} of open sets and {F_i:i \in N} of closed sets satisfying F_i CU_i, i=1,2,..., there exists a sequence {V_i:i N} of open sets such that F_i CV_i CU_i and ord_x {Fr V_i:i \in N} < N_{\bullet} for each x \in X.

We say that f:Y+X has a **weak local order** iff for each $x \in X$ there exists a point $a_x \in f^{-1}(x)$, a neighborhood U_x of a_x , and positive integer n_x such that ord $f/U_x \leq n_x$.

In the paper [31: Theorem 2.] it is proved

1.1'. Theorem. A metric space X is strongly countable-dimensional iff there is a 0-dimensional metric spaces B and closed, finite-to-one mapping from B onto X with weak local order.

By a straightforward proof we have

1.1". Lemma. If a mappings f:X+Y and g:Y+Z have a weak local order, then gf:X+Z has a weak local order.

Every local homeomorphism has a weak local order. If $f^{-1}(y) \le k_{\varepsilon}N$ for each $y \in Y$, then f:X+Y has a weak local order.

1.1". **Problem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system such that the mappings $f_{\alpha\beta}$ have a finite local order. Is it true that the projections $f_{\alpha}: \lim_{\alpha \to X_{\alpha}} \underline{X} \to X_{\alpha}, \alpha \in A$, have a weak local order?

From (iii) of Theorem 1.1. it follows

1.2. **Theorem.** Let f : X + Y be a closed mapping of a metric countable-dimensional space X onto a metric space Y. If $f^{-1}(y) \leq \aleph_0$ for each $y \in Y$, then Y is countable-dimensional.

1.3. **Theorem.** Let f:X+Y be a closed mapping of a metric space X onto a metric space Y. If $f^{-1}(y) = k < N_o$ for every $y \in Y$, then X is countable-dimensional iff Y is countable-dimensional.

Proof. If X is countable-dimensional then so is Y (1.2. Theorem). If Y is countable-dimensional, then $Y = U \{Y_i : i \in \mathbb{N}, dim y_i \le 0\}$. The mapping $f_{y_i} : f^{-1}(Y_i) + Y_i$ is closed and $f_{y_i}(y) = k$ for each $y \in Y_i$. By Suzuki theorem [7:286] it follows that dim $Y_i = \dim f^{-1}(Y_i)$, $i \in \mathbb{N}$. The proof is completed since $X = \{f^{-1}(y_i) : i \in \mathbb{N}\}$.

Now we apply Theorem on dimension-lowering mappings [7].

1.4. **Theorem.** Let f : X Y be a closed mapping onto metric countable-dimensional space Y. If dim $f^{-1}(y) \le k$ for each $y \in Y$, then X is countable-dimensional.

Proof. Let $Y = \bigcup \{Y_i : i \in \mathbb{N}\}$ with dim $Y_i < \mathcal{N}_o$. The mappings $f_{y_i} : f^{-1}(Y_i) \rightarrow Y_i$, $i \in \mathbb{N}$, satisfy Theorem on dimension-lowering mappings. Hence, dim $f^{-1}(y_i) \leq \dim y_i + k < \mathcal{N}_o$. The proof is completed, since $X = \bigcup \{f^{-1}(Y_i) : i \in \mathbb{N}\}$.

From Theorem 1.2. and 1.4. it follows

1.5. **Theorem.** Let f:X + Y be a closed mapping of a metric space X onto a metric space Y such that $|f^{-1}(y)| < X$ for every y $\in Y$. The space X is countable-dimensional iff the space Y is countable-dimensional.

1.6. **Remark.** A) Theorem 1.3. is a corollary of Theorem 1.5. B) By the well known method of proof it follows that in Theorem 1.2. one can assume that Fr $f^{-1}(y) \leq \mathcal{N}_{o}$. C) The alternative proof of Theorem 1.5. in the case when X has a countable network is the following. From [4:354, Ex.97.] it follows that if f:X+Y is a closed onto mapping with $f^{-1}(y) \leq \mathcal{N}_{o}$ for each $y \in Y$, there exist the subsets X, i $\in \mathbb{N}$, of X such that: a) X = U {X_1:i \in \mathbb{N}} b) Y=U{f(X_1):i $\in \mathbb{N}$ } and $f_1 = f/X_1:X+f(X_1)$ is a homeomorphism. This means that X is countable-dimensional iff Y = f(X_1) is countable-dimensional. From the relations a) and b) it follows that X is countable dimensional iff Y is countable-dimensional.

Now we study the countable-dimensionality of the inverse limit space

1.7. Theorem. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of a metric spaces X_{α} and closed mappings with $|\int_{\alpha\beta} f_{\alpha\beta}(x_{\alpha})| \leq k \epsilon N$. If the space $X = \lim X$ is a metric space, then X is countable dimensional iff the spaces X_{α} are countable-dimensional.

Proof. It is readily seen that $|f_{\alpha}^{-1}(x_{\alpha})| \leq k$. On the other hand, the projections f_{α} are perfec [2:148]. Now apply Theorem 1.5. Q.E.D.

Similarly, one can prove

1.8. **Theorem.** Let a metric space X be a limit of a σ -directed inverse system $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$, where X_{α} are metric spaces and $f_{\alpha\beta}$ a closed mappings with

 $|f_{\alpha\beta}^{-1}(x_{\alpha})| < N_{\phi}$. The space X is countable-dimensional iff the spaces X_{α} are countable-dimensional.

For compact metric spaces we have

1.9. **Theorem.** Let a metric space X be a limit of a σ -directed inverse system $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$, where X_{α} are compact metric spaces. If X_{α} are countable-dimensional, then X is countable-dimensional.

Proof. Suppose $\mathcal{U} = \{U_i:i\in\mathbb{N}\}\$ and $\mathcal{S} = \{F_i:i\in\mathbb{N}\}\$ are sequences as in Theorem 1.1. For every U_i and $F_i \subseteq U_i$ there exist $\alpha_i \in A$ and open set W_{α_i} such that $f_{\alpha_i}(F_i \subseteq W_{\alpha_i})$ and $F_i \subseteq f_{\alpha_i}^{-1i}(W_{\alpha_i}) \subseteq U_i$. Since A is σ -directed, there exist $\alpha > \alpha_1, \alpha_2, \ldots$. Let $W_i = f_{\alpha_i}^{-1i}(W_{\alpha_i})$, $i\in\mathbb{N}$. From the assumption that X_{α} is countable-dimensional it follows that there exists a family $\mathcal{V}_{\alpha} = \{V_i:i\in\mathbb{N}\}\$ such that $f_{\alpha}(F_i) \subseteq V_i \subseteq W_i$, $i\in\mathbb{N}$, and $\operatorname{ord}_{X} \{F_r(V_i):i\in\mathbb{N}\} < \infty$ at every point $x\in X$. Let $\mathcal{V} = \{f_{\alpha}^{-1}(V_i):V_i\in\alpha\}\$ Clearly, $F_i \subseteq f^{-1}(V_i) \subseteq U_i$, $i\in\mathbb{N}$, and $\operatorname{ord}_{X} \{F_r(V):V \in \mathcal{V}\} < +\infty$ at every point $x\in X$. Q.E.D.

1.10. **Theorem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\Omega\}$ be an well ordered inverse system of metric spaces X with the property $h|(X_{\alpha}) < N_{m}, \alpha \in \Omega$, and $cf(\Omega) > \omega_{m}$. If the spaces X_{α} are countable-dimensional and $X = \lim_{n \to \infty} X$ is a metric space, then X is countable-dimensional.

Proof. From [16] and [28] it follows that every open (closed) $U_i \subset X$ is the form $U_i = f_{\alpha_i}^{-1}(U_{\alpha_i})$ for some open (closed) $U_{\alpha_i} \subset X_{\alpha_i}$. Thus, for every $F_i \subset U_i$ there exists a_i such that $F_i \subseteq f_{\alpha_i}^{-1} \subseteq (W_{\alpha_i}) \subset U_i$ for some open set $W_{\alpha_i} \subseteq X_{\alpha_i}$. The remaining part of the proof coincides with the corresponding part of the proof of Theorem 1.9.

If X_{α} are separable metric spaces and a) $f_{\alpha\beta}$ are perfect or b) $f_{\alpha\beta}$ is open or c) X is cointinuous then w (lim X) [26] i.e. X = lim X is a metric space. Hence, we have

1.11. **Theorem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a well ordered inverse system of separable metric spaces X_{α} such that $cf(A) > \omega_1$. If \underline{X} is continuous (or $f_{\alpha\beta}$ are perfect, or $f_{\alpha\beta}$ are open) and X_{α} are countable-dimensional, then $X = \lim_{\leftarrow} \underline{X}$ is countable-dimensional.

1.12. **Theorem.** Let $\underline{X} = \{X_n, f_{nm}, N\}$ be an inverse sequence of metric (strongly) countable-dimensional spaces X_n . If f_{nm} are closed mappings such that dim $f_{nm}^{-1}(\kappa_n) \leq k$ for some $k \in \mathbb{N}$, then $X = \lim_{n \to \infty} X$ is (strongly) countable-dimensional.

Proof. From [7:261] it follows that dim $f_n^{-1}(x_n) \le k$ i.e. dim $f_n \le k$, neN. Let $X_n = \bigcup \{X_{ni} : i \in N\}$, where X_{ni} , i \in N, is finite-dimensional. Let $Y_i = f_n^{-1}(X_{ni})$, i \in N. Clearly, $X = \{Y_i : i \in N\}$. The restriction f_n/y_i , i \in N, are closed since f_n is a closed mapping. From the inequality dim $Y_i \le \dim f_n^{-1} \dim X_{ni}^{-1}[2, pp. 452]$ it follow that Y_i is finite-dimensional. The proof is completed.

1.13. **Theorem.** Let X be a limit space of an inverse system $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ of compact metric (strongly) countable-dimensional spaces X_{α} . If dim $f_{\alpha\beta} \leq k$ for some $k_{\varepsilon}N$, then X is (strongly) countable-dimensional.

Proof. X is a compact space and the projections f_{α} , $\alpha \in A$, are perfect mappings with dim $f_{\alpha} \leq k$. Let $X_{\alpha} = \{X_{\alpha j} : i \in N\}$ where $X_{\alpha j}$, $i \in N$, are finite-dimensional subspaces of X_{α} . The restrictions $f_{\alpha j} = f_{\alpha}/Y_{j}$, $i \in N$, are closed [6:pp.50.] and perfect. It follows that $Y_{j} = f_{\alpha}^{-1}(X_{\alpha j})$, $i \in N$, are paracompact subspaces of X. From the inequality dim $Y_{j} \leq \dim f_{\alpha j} + \dim X_{\alpha j}$ [2:pp.452.] it follows that Y_{j} , $i \in N$, are finite-dimensional. The proof is completed since $X = \{Y_{j}: i \in N\}$.

The proof of the next theorem is similar to the proof of Theorem 1.12.and 1.13.

1.14. **Theorem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of hereditary paracompact spaces X_{α} and the perfect mappings $f_{\alpha\beta}$. If the spaces X_{α} are (strongly) countable-dimensional and if dim $f_{\alpha\beta} \in k$, $k_{\epsilon}N$, then $X = \lim \underline{X}$ is a hereditary paracompact (strongly) countable-dimensional space.

1.15. **Problem.** It is true that X in Theorems 1.12.-1.14. (strongly) countable--dimensional if $f_{\sigma\beta}^{-1}(x_{\alpha})$ is (strongly) countable-dimensional for every α , x and β ?

1.16. **Theorem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of the completely regular (strongly) countable-dimensional spaces X_{α} . If $f_{\alpha\beta}$ are open-closed $\leq k$ -to--one mappings, then $X = \lim_{n \to \infty} X$ is (strongly) countable-dimensional.

Proof. The projections $f_{\alpha} : X + X_{\alpha}$, $\alpha \in A$, are open-and-closed. It is readily seen that f_{α} , $\alpha \in A$, are k-to-one mappings. Let $X = \{X_{\alpha j}, i \in N, where X_{\alpha j}, i \in N, are finite-dimensional subspaces of <math>X_{\alpha}$. From [13] it follows that dim $X_{\alpha j} = \dim f_{\alpha}^{-1}(X_{\alpha j})$, i $\in N$. This finishes the proof since $X = V\{f_{\alpha}^{-1}(X_{\alpha j}): i \in N\}$.

A mapping f:X*Y is fully closed [9] it for each $y_{\varepsilon}Y$ and each open cover $\{U_1, \ldots, U_k\}$ of the set $f^{-1}(y)$ the set $\{y\} \cup (f^{\#}U_k)$ is open in Y.

A mapping f:X+Y is fully closed iff f is closed and if $f(F_1) \cap f(F_2)$ is a discrete subspace of Y for each pair F_1, F_2 of a closed disjoint subsets of X.

1.17. Lemma. [9: Lemma 3.]. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system with perfect mappings $f_{\alpha\beta}$. The projections f_{α} : $\lim_{\alpha} X_{\epsilon}X$, $\alpha\epsilon A$, are fully closed iff $f_{\alpha\beta}$ are fully closed.

On can prove 1.18. Lemma. Let $X = \{X_n, f_{nm}, N\}$ be an inverse sequence with pseudoperfect mappings f_{nm} . The projections $f_n:\lim_{\leftarrow} X \to X_n$, $n \in N$, are fully closed iff f_{nm} are fully closed.

1.19. **Theorem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of normal spaces X_{α} and fully closed perfect mappings $f_{\alpha\beta}$ such that dim $f_{\alpha\beta}^{-1}(x_{\alpha}) \leq k$. If a space $X = \lim_{\alpha \to \infty} X$ is normal, then X is strongly countable-dimensional iff spaces X_{α} , $\alpha \in A$, are strongly countable-dimensional.

Proof. The projections $f_{\alpha}: X \to X_{\alpha}$, $\alpha \in A$, are perfect fully closed such that dim $f_{\alpha}^{-1}(x_{\alpha}) \leq k$. Let $X_{\alpha} = \bigcup \{X_{\alpha, i} : i \in N\}$ for some $\alpha \in X_{\alpha}$. A mapping $f_{i} = f_{\alpha} f_{\alpha}^{-1}(X_{\alpha, i}) + X_{\alpha, i}$

is perfect fully closed. From [9:Theorem 3.] it follows dim $f_{\alpha}^{-1}(X_{\alpha,j}) \leq \max \{ \dim f_i, \dim f_{\alpha,j} \} < N_0$. The proof is completed since $X = \bigcup \{ f_{\alpha}^{-1}(X_{\alpha,j}) : i \in N \}$. Conversely, if $X = \bigcup \{ X_i : i \in N \}$, where X_i are closed finite-dimensional subsets of X, then for every $\alpha \in A$ we have $X_{\alpha} = \bigcup \{ f_{\alpha}(X_j) : i \in N \}$ and dim $f_{\alpha}(X_j) \leq \dim X_j + 1$ [9: Theorem 4.]. The proof is completed.

1.20. **Remark.** Is it true that Theorem 1.19. holds for countable-dimensionality if we assume that X_{α} , $\alpha \epsilon A$, and X are hereditarily normal? Clearly, the "if" part holds.

1.21. Corollary. Let $\underline{X} = \{X, f_{\alpha}, A\}$ be an inverse system of a normal countably compact spaces X_{α} and fully closed perfect mappings $f_{\alpha\beta}$ such that dim $f_{\alpha\beta}^{-1}(X_{\alpha}) \leq k$. A space $X = \lim \underline{X}$ is strongly countable-dimensional iff all X_{α} are strongly countable-dimensional.

Proof. From Lemma 1.17. and Theorem 1.19. it follows that it suffices to prove that $X = \lim_{\alpha} X$ is normal. If F_1 , F_2 are disjoint closed subsets of X, then $Y_{\alpha} = f_{\alpha}(F_1) \cap f_{\alpha}(F_2)$, $\alpha \in A$, are finite since Y_{α} is discrete (see definition of the fully closed mappings). This means that $Y = \{Y_{\alpha}, f_{\alpha\beta}/Y_{\beta}, A\}$ is the inverse system of compact spaces Y_{α} . If we assume that $Y = \lim_{\alpha} Y \neq 0$ then we obtain the contradiction $\emptyset \neq Y \subseteq F_1 \cap F_2 = \emptyset$. It follows that there exist $\alpha \in A$ such that $Y_{\alpha} = \emptyset$. Since X_{α} is normal, there exist disjoint open sets $\bigcup_{\alpha} \bigcap_{\alpha} f_{\alpha}(F_1)$, $V_{\alpha} \supset f_{\alpha}(F_1)$. The space X is normal since $f_{\alpha}^{-1}(\bigcup_{\alpha}) \supset F_1$ and $f_{\alpha}^{-1}(\bigvee_{\alpha}) \supset F_2$. The proof is completed.

1.22. Remarks. A) From [9:115] it follows that if dim $X_{\alpha \leq} n,$ then dim $X_{<} n$ and dim $X_{>} n-1.$

B) From the proof of the normality of X in Theorem 1.21. it follows that if X_{α} are connected then X is connected.

C) If X is locally connected [10] then a local connectedness of X_α implies local connectedness of X.

D) Similarly it follows that $\beta(\lim_{m \to \infty} X)$ is homeomorphic with $\lim_{m \to X} \beta X_{\alpha}$, $f_{\alpha\beta}$, A}. From Lemma 1.18. one can deduce

1.23. **Theorem.** Let $\underline{X} = \{X_n, f_{nm'}, N\}$ be an inverse sequence of a normal countably compact spaces X_n and fully closed mappings f_{nm} such that dim $f_{nm}^{-1}(x_n) \le k$. A space $X = \lim_{n \to \infty} \underline{X}$ is strongly countable-dimensional iff spaces X_n are strongly countable-dimensional.

Proof. The projections $f_n: X \to X_n$, $n \in \mathbb{N}$, are fully closed by Lemma 1.18. Furthemore, dim $f_n^{-1}(X_n) \le k$ [15:2.1. Theorem]. The remaining part of the proof is as in the proof of Theorem 1.19.

We close this Section with the inverse systems of finite-dimensional spaces which have infinite-dimensional (= not finite-dimensional) limit.

1.24. **Theorem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta'}A\}$ be an inverse system of finite-dimensional spaces X_{α} and closed mappings $f_{\alpha\beta}$ such that $1 \le f_{\alpha\beta}^{-1}(x_{\alpha}) \le k+1$ for some fixed $k \in \mathbb{N}$. If $\lim_{x \to \infty} \underline{X} = X$ is normal and for every $n \in \mathbb{N}$ there is a $m \in \mathbb{N}$ sch that dim $X_{m-1} = X$, then X is infinite-dimensional.

Proof. The mappings f_{α} : $\lim X + X_{\alpha}$, $\alpha \in A$, are closed and $|f_{\alpha}^{-1}(x_{\alpha})| \le k+1$ [2]. From [2:Zamečanie] it follows that dim $X_{n} \le \dim X+k$ for each X_{n} . This is impossible since dim $X_{n}+\infty$ if $n+\infty$. The proof is completed.

1.25. **Remark.** On can prove that Theorem 1.24. is valid if we asume that $|Fr f_{\alpha\beta}^{-1}(X_{\alpha})| \le k+1$.

1.26. Question. Is it true that X in 1.24. is countable-dimensional? The answer is positive if X is an inverse sequence of metric spaces (or $\lim X$ is metric). (See 1.7. Theorem, 1.8. Theorem and 1.10. Theorem).

1.27. **Remark.** From [2:449. Theorem 1] it follows that $X = \lim X$ in Theorem 1.24. is not Ind-finite-dimensional.

2. OPEN MAPPINGS AND COUNTABLE-DIMENSIONALITY

We start with the following theorem.

2.1. **Theorem.** Let $f:X \rightarrow Y$ be an open onto mapping between a separable metric space such that each $f^{-1}(y)$ has an isolated point. If X is countable-dimensional, then so is Y.

Proof. Let A_i be a set defined in the proof of Lemma 1.12.5. of [7]. It follows that A_i is countable-dimensional. Since f/A_i is a homeomorphism, the set $f(A_i)$ is countable-dimensional. From the relation $Y = U\{f(A_i):i \in N\}$ it follows that Y is countable-dimensional.

If X and Y are locally compact separable metric spaces, then from $|f^{-1}(y)| \le \aleph_o$ it follows that $f^{-1}(y)$ has an isolated point [7:139]. Thus, we have

2.2. **Theorem.** Let f:X+Y be an open surjection between separable locally compact metric spaces. If $|f^{-1}(y)| \leq \sqrt[N]{6}$ for every $y \in Y$, then Y is countable-dimensional if so is X.

If each $f^{-1}(y)$ is a discrete subspace of X, then one can assume that A_i , $i_{\epsilon}N$, are closed [3:194] and X = U { A_i : $i_{\epsilon}N$ }. Thus we have

2.4. **Theorem.** Let f:X + Y be an open onto mapping between separable metric spaces. The space X is countable-dimensional iff Y is countable-dimensional. In [3:3.2. Theorem] it is proved

2.5. **Theorem.** If f:X+Y is an open surjection between metric spaces such that for each $y \in Y$ $|f^{-1}(y)| < N_{e'}$ then X is countable-dimensional iff Y is countable-dimensional.

We say that a mapping f : X + Y is inductively open [3:209] if there exists a subspace $X_1 \subseteq X$ such that $f/X_1 : X_1 \rightarrow Y$ is an open mapping and $f(X_1) = Y$.

2.6. **Theorem.** Let f : X + Y be an inductively-open closed surjection between metric spaces such that for each $y \in Y$ $|f^{-1}(y)| \in \mathcal{N}_{o}$. If X is countable-dimensional (countable-dimensional in the strong sense), then Y is countable-dimensional (countable-dimensional in the strong sense).

2.7. Remark. If X is a complete metric space (of $f^{-1}(y)$ are complete), then the assumption of the closedness of f can be amitted [3:219.]

If the fibers $f^{-1}(y)$ are finite, then we have

2.8. Theorem. [3:9.5. Theorem]. Let $f:X \rightarrow Y$ be an inductively-open onto mapping with finite fibers. If X is countable- dimensional (in the strong sense), then Y is countable-dimensional (in the strong sense).

Now, we prove the following theorems.

2.9. **Theorem.** Let $f:X \rightarrow Y$ be open onto mapping betwen metric spaces such that $f^{-1}(y)$ is discrete. If Y is (strongly) countable-dimensional, then X is countable-dimensional.

Proof. Let $Y = U\{Y_i:i\in\mathbb{N}\}$, where Y_i is finite-dimensional (closed) subspace. The mappings $f_i:f^{-1}(Y_i)+Y$, $i\in\mathbb{N}$, are open with discrete fibers. By Hodel's theorem [7:288] it follows that dim $f^{-1}(Y_1) \leq \dim Y_i$. The proof is completed since X = U { $f^{-1}(Y_1):i\in\mathbb{N}$ }.

2.10. **Theorem.** If f:X+Y is an open onto mapping between locally compact metric spaces such that $|f^{-1}(y)| < N_0$ for each $y \in Y$ and Y is (strongly) countable-dimensional, then X is (strongly) countable-dimensional.

Proof. In the proof of Theorem 2.9. apply [7:288, 4.3.E(d)] instead of [7:288, 4.3E(a)]. For inverse system of a metric spaces we have as a set of the s

2.11. **Theorem.** Let $X = \{X_n, f_{nm}, N\}$ be an inverse system of metric spaces X_n and open mappings f_{nm} such that $f_{nm}^{-1}(x_n)$ are discrete. If X_n are (strongly) countable-dimensional, then $X = \lim_{t \to \infty} X$ is (strongly) countable-dimensional.

Proof. Let $X_n = \bigcup \{X_{n,i}: i \in N\}$. For every m>n a mapping $f_{nm,i} = f_{nm,i} f_{nm}^{-1}(X_i) : f_{nm}^{-1}(X_i) + X_i$ is open with discrete fibers. This means that dim $f_{nm,i}^{-1}(X_i) \le \dim X_i$ [7:288.]From Nagami's theorem [7:261] it follows that inverse system $X_i = \{f_{nm,i}^{-1}(X_i), m>n\}$ has a finite-dimensional limit X_i.

Since $X = U \{X_i : i \in N\}$, we conclude that X is countable-dimensional. Similarly, by [7:288, 4.3.E8D] and [7:261.4.1.22.Theorem] we have 2.12. **Theorem**. Let $\underline{X} = \{X_n, f_{nm'}, N\}$ be an inverse system of a locally compact metric spaces X_n and open mappings f_{nm} such that $|f_{nm}^{-1}(X_n) \ge N_o$. If X_n are (strongly) countable-dimensional, then $X = \lim \underline{X}$ is (strongly) countable-dimensional. sional).

Generaly we have the following

2.13. Theorem. Let $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of the spaces X_{α} and mappings $f_{\alpha\beta}$ such that:

- i) $X_{\alpha} = \bigcup \{ X_{\alpha}, i: i \in \mathbb{N} \}$, where $X_{\alpha, i} \in \mathcal{K}$ ii) dim $f_{\alpha\beta}^{-1}(X_{\alpha}, i) \leq \dim X_{\alpha, i}$ iii) Every system $\underline{X}_{i} = \{ X_{\alpha, i}, f_{\alpha\beta}, \mathbb{N} \}$

has the limit X, with dim $X_{i-1} \leq \dim X_{n,i}$ then, if X_{α} are countable-dimensional so is the lim \underline{X}_{i-1}^{i} .

From this Theorem we have

2.14. Theorem. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta'}, A\}$ be a σ -directed inverse system of compact spaces X_{α} and open mappings $f_{\alpha\beta}$ such that $\|f_{\alpha\beta}^{-1}(X)\|_{\mathbf{X}} \|_{\mathbf{X}}$. If the spaces X_{α} are strongly countable-dimensional, then $X = \lim \underline{X}$ is countable-dimensional.

Proof. Let $X = \bigcup \{X_{\alpha,i} : i \in \mathbb{N}\}$, where $X_{\alpha,i}$ is a closed finite-dimensional subspace of X_{α} . For every $\beta \geq \alpha$ we consider $X_{\beta,i} = \int_{\alpha\beta}^{-1} (X_{\alpha,i})$. The restriction $f_{\beta\alpha}^{i} : X_{\beta,i} \times_{\alpha,i}$ is open with $|f_{\beta\alpha}^{-1}(X_{\alpha})| \leq N_{o}$.

From [2:459] it follows dim $X_{\beta,i} = \dim X_{\alpha,i} < N_{\alpha}$. The condition ii) of Theorem 2.13. is satisfied. Inverse system $\underline{X}_i = \{X_{\beta,i}, f_{\beta\gamma}, \alpha \leq \beta \leq \gamma\}$ is an inverse system of compact spaces such that iii) is satisfied. The proof is completed.

We close this Section with theorems of infinite-dimensionality of a limit of an inverse system of finite-dimensional spaces.

2.15. **Theorem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a σ -directed inverse system of compact spaces X_{α} , and open mappings $f_{\alpha\beta}$ such that $1 \notin f_{\alpha\beta}^{-1}(X_{\alpha}) < \aleph_{\sigma}$. If dim $X_{n} \leftrightarrow when n \leftrightarrow \infty$, then $X = \lim \underline{X}$ is not finite-dimensional (= infinite-dimensional).

Proof. Before the proof, let us observe that X is countable-dimensinal (see Theorem 2.14.). Now, suppose that dim X is finite. From [2:459] it follows that dim X = dim X for each X. This is a contradiction since dim $X_{n+\infty}$.Q.E.D.

2.16. **Theorem.** Let $\underline{X} = \{X_n, f_{nm}, N\}$ be an inverse sequence of separable metric spaces with open mappings f_{nm} such that $1 \le |f_{nm}^{-1}(X_n)| \le k$ for some natural number $k \in \mathbb{N}$. If dim $X_n \neq \infty$ when $n \neq \infty$, then $X = \lim \underline{X}$ is not a finite-dimensional countabledimensional space.

Proof. The countable-dimensionality of X it follows from 2.11. Theorem. If we suppose that dim X is finite, we obtain a contradiction dim $X = \dim X_n$ (see [7:1.12.7. Theorem.]) since dim $X_n \neq \infty$. The proof is completed.

3. REMAINING CLASSES OF MAPPINGS

We say that a mapping f : X + Y is dissipative (briefly, d-mapping) [25] if for each point $x \in X$ and each open set $U_x \ni x$ there is an open set $U_y \ni y = f(x)$ such that $f^{-1}(U_y)$ is the union of two disjoint open sets V_1 , V_2 , and $x \in V_1 \subseteq U_x$.

3.1. **Remarks.** A) Each closed mapping $f : X \rightarrow Y$ defined on a normal space X with ind f = 0 (i.e. ind $f^{-1}(y) = 0$ for each $y \in Y$) is a d-mapping [25:143].

B) If f : X + Y is d-mapping, then ind X < ind Y [25].

C) Let X be a T_1 -space, Y a metric space. If f:X+Y is a d-mapping, then, if X is compact (Lindelöf, strongly or totally paracompact), we have dim X = ind X = Ind X [25:145]

D) [25:149, Theorem 1.2]. Let $X = \{X, f_{\alpha}, A\}$ be an inverse system. If $f_{\alpha\beta}$ are d-mappings, then the projections f_{α} : $\lim_{\alpha} X + X_{\alpha}$, $a \in A$, are d-mappings.

E) Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta'}, A\}$ be an inverse system such that X_{α} , $a_{\epsilon}A$, are perfectly normal compact spaces and $f_{\alpha\beta}$ are ind-zero-dimensional mappings. If ind $X_{\alpha} \leq k$, then Ind (lim $\underline{X} \geq r$.

Now we prove

3.2. **Theorem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta'}, A\}$ be an inverse system with d-mappings $f_{\alpha\beta}$. If the spaces X_{α} are (strongly) ind-countable-dimensional, then $X = \lim_{\alpha \to \infty} \underline{X}$ is an(strongly) ind-countable-dimensional space.

Proof. Let $X_{\alpha} = \bigcup\{X_{\alpha,i} : i \in N\}$, where $X_{\alpha,i}$ is a subset of X_{α} for each $i \in N$ (closed subset in the case of a strongly ind-countable-dimensionality). For each $\beta \geq \alpha$ let $X_{\beta,i} = f_{\alpha,\beta}^{-1}(X_{\alpha,i})$. A mappings $f_{\alpha\beta}/X_{\beta,i}(x \in N)$ are d-mappings [25:144(5)]. From 3.1.D) it follows that $f_{\alpha}/f_{\alpha}^{-1}(X_{\alpha,i})$ is d-mapping since $f_{\alpha}^{-1}(X_{\alpha,i})$ is a limit of a system $\{X_{\beta,i}, f_{\beta\gamma}/X_{\gamma,i}, \alpha \leq \beta \leq \gamma\}$. Now we have ind $f_{\alpha}^{-1}(X_{\alpha,i}) \notin i \alpha \in \beta$. B)). Since lim $X = \bigcup\{f_{\alpha}^{-1}(X_{\alpha,i}) : i \in N\}$, we infer that $X = \lim X$ is (strongly) ind-countable-dimensional Q.E.D.

From this Theorem and 3.1.C) it follows

3.3. **Theorem.** Let X be a limit of an inverse system $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ such that $X_{\alpha}, \alpha \in A$, are metric and $f_{\alpha\beta}$ d-mappings. If X_{α} are (strongly) countable-dimensional and X is compact (Lindelöf, strongly or totally paracompact), then X is (strongly) countable-dimensional.

3.4. **Theorem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of compact metric spaces X_{α} and d-mappings $f_{\alpha\beta}$. If X_{α} are strongly countable-dimensional, then X is also strongly countable-dimensional.

Proof. The spaces X are separable. This means that ind $X_{\alpha} = Ind X_{\alpha} = \dim X_{\alpha}$ [7]. Apply Theorem 2.13., 3.1.C. and the well known theorem on the dimension dim for a limit of an inverse system of compact spaces.

and the state of the second of the second state of the second of the

3.5. **Theorem.** Let $X = \{X_n, f_{nm}, N\}$ be an inverse sequence of separable metric (strongly) dim-countable-dimensional space X_n . If f_{nm} are d-mappings, then $X = \lim X$ is (strongly) dim-countable-dimensional space.

Proof. Apply Theorem 2.13. and Nagata's theorem [7:261, 4.1.22. Theorem]

3.6. **Remark.** The hypothesis that f_{nm} are d-mappings is essential. Namely, the space I^{ω} is a limit of an inverse sequence of the finite-dimensional cubes I^{n} , but I^{ω} is not countable-dimensional [7:81,1.8.20.Theorem.].

Let f:X+Y be a mapping. We say that a point $x \in X$ is a point f-perfectness if there is a neighborhood U $\ni x$ such that the restriction f/CIU is a perfect mapping onto a closed subset of Y [21].

If $A \subseteq X$, then for a mapping $F_A = f/A$ we define the residue $A_{f_A}^{\alpha}$ in the following way. Let $A_{f_A}^{\alpha} = A$. Suppose that $A_{f_A}^{\beta}$ is defined for each $\beta < \alpha$. If there exists $\alpha - 1$, we define $A_{f_A}^{\alpha}$ as the set of all points $x \in A_{f_A}^{\alpha - 1}$ which are not the points $f_{A_f}^{\alpha - 1} = -perfectness$. If α is a limit ordinal, let $A_{f_A}^{\alpha} = \bigcap \{A_{f_A} : \beta < \alpha\}$.

A mapping f_A is α -reducible if there exists an ordinal α sucht that $A^{\alpha}_{f_A} = \emptyset$. A mapping f is 1-reducible iff it is locally perfect.

We say that $I(f) < \infty$ if for f:X+Y there is a natural number $n_{\epsilon}N$ such that $A_f^n = \emptyset$ [21:119].

In the paper [21:Sledstvie 7.] the following theorem is proved.

3.7. Theorem. Let f:X+Y be a mapping such that $I(f)<_{\infty}$. If W(X), W(Y) \leq , then $\dim X \leq \dim f + \dim Y$.

Now, we prove

3.8. **Theorem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of separable metric spaces X_{α} and perfect mapping $f_{\alpha\beta}$ such that dim $f_{\alpha\beta} \leq \emptyset$. If dim $X_{\alpha} \leq n$ and W (lim $\underline{X} > M_{\alpha}$, then dim (lim $\underline{X} > n$.

Proof. The projections f_{α} : $\lim X + X_{\alpha}$, $\alpha \in A$, are pefect [2:148]. This means that dim $f_{\alpha} \in 0$ [7:247.]. From Theorem 3.7. it follows that dim $(\lim X) \leq \dim X_{\alpha} \leq n.Q.E.D.$

3.9. **Corollary.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of separable metric spaces X_{α} and perfect mappings $f_{\alpha\beta}$ such that dim $f_{\alpha\beta} \leq 0$. If X_{α} , $\alpha \in A$, are (strongly) dim-countable-dimensional and W (lim $\underline{X} \geq N_{\alpha}$ then a limit lim \underline{X} a (strongly) dim-countable-dimensional space.

3.10. **Remark.** By the total induction one can prove that in Theorem 3.8. Ind ($\lim X$) < n and ind ($\lim X$) < n. thus, a limit $\lim X$ in Corollary 3.9. is a ind-(Ind-) countable-dimensional space.

From [28] it follows that $W(\lim \underline{X}) \leq N_o$ if \underline{X} is a well-ordered inverse system such that $cf(A) > \omega_1$ and:

a) f are perfect or b) f are open of c) X is continuous.

Usin this assertion we obtain the following theorems.

3.11. **Theorem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a well-ordered inverse system of separable metric spaces X_{α} with $cf(A) > \omega_1$. If X_{α} , $\alpha \in A$, are (strongly) countable-dimensional and $f_{\alpha\beta}$ are perfect such that dim $_{\alpha\beta} \leq n$, the $X = \lim \underline{X}$ is (strongly) countable-dimensional.

Proof. Let $X = \bigcup \{X_{\alpha}, i : i \in \mathbb{N}\}$, dim $X_{\beta, i} \le n$. From 3.7. it follows that dim $X_{\beta, i} = \dim f_{\alpha\beta}^{-1}(X_{\alpha, i}) \le n$.

Let $\underline{X}_i = \{X_{\beta,i}, f_{\beta\gamma}/X_{\beta,i}, \alpha \le \beta \le \gamma\}$. The system \underline{X}_i has the dimension dim $\le n$ [15]. The proof is completed since $X = U \{\lim \underline{X}_i : i \in N\}$.

3.12. **Theorem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a continuous inverse system of separable metric spaces X_{α} and perfect mapping $f_{\alpha\beta}$ such that dim $f_{\alpha\beta} \leq k$. If dim $X_{\alpha} \leq n$, then dim (lim X) < n+k.

3.13. Corollary. If X_{α} , $_{\alpha\epsilon}A$, in Theorem 3.12. are (strongly) dim-countable--dimensional, then lim <u>X</u> is (stronlgy) dim-countable-dimensional.

3.14. **Remark.** By the total induction one can prove that in Theorem 3.12. Ind $(\lim X) \le n+k$ and ind $(\lim X) \le n+k$. Hence, a limit $\lim X$ in Corollary 3.13. is ind- and Ind-countable-dimensional.

We close the application of Theorem 3.7. with the following theorem.

3.15. **Theorem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a locally connected inverse system of locally compact separable metric spaces X_{α} and perfect dim-zero-dimensional mappings $f_{\alpha\beta}$. If dim $X_{\alpha\leq}$ n then dim (lim $\underline{X} \geq n$.

Proof. The projections f_{α} : $\lim_{\alpha} X \to X_{\alpha}$ are perfect dim-zero-dimensional. The space $\lim_{\alpha} X$ is locally connected [17]. From [4] or [18] it follows that $W(\lim_{\alpha} X) \le N_{o}$. Applying Theorem 3.7. we complete the proof.

3.16. **Remark.** If <u>X</u> is σ -directed and X_a locally connected, then <u>X</u> is locally connected. Hence, in this case we have also dim (lim X) < n.

3.17. Corollary. If in Theorem 3.15. the spaces X_{α} are (strongly) countabledimensional, then lim X is (strongly) countable-dimensional.

REFERENCES

- /1/ P.S.Aleksandrov, O nekatoryh osnovnyh napravljenijah v obščej topologiji, UMN 19 (1964), 3-46.
- /2/ P.S.Aleksandrov i P.A. Pasynkov, Vvedenie v teoriju razmernosti, Nauka, Moskva, 1973.
- /3/ A.V.Arhangel'skij, Otobraženija otkritye i bliskie k otkritym. Svjazi meždu prostranstvim. Trudy Mosk. mat. obšč. 15 (1966), 183-223.
- /4/ A.V.Arhangel'skij i V.I.Ponomarev, Osnovy obščej topologii v zadačah i upraženijah, Nauka, Moskva, 1971.
- /5/ V.H.Baladze, O funkcijah razmernostnogo tipa, Trudy Tbilis. mat. inst. 68 (1982), 5-41.
- /6/ R.Engelking, General Topology, PWN, Warszawa, 1977.
- [7], Dimension Theory, PWN, Warszawa, 1978.
- /8/ V.V.Fedorčuk, Beskonečnomerny bikompakti, Izv. AN SSSR. Ser. mat. 42 (1978), 1162–1178.
- /9), Vpol'ne zamknutye otobraženija i sovmestimost' nekotoryh teorem obščej topologii s aksiomami teorii množestv. Mat.Sb. 99 (141) (1976), 3-33.
- /10/ Gordh G.R. and S.Mardešić, Characterising local connectedness, Pacific J.Math. 58 (1975), 411-417.
- /11/ Katuta Yukiti, On the covering dimension of inverse limit, Proc. Amer. Math. Soc. 84 (1982), 588-592.
- /12/ J.E.Jayne, C.A.Rogers, Function fermees en partie, C.r.Acad. Sci. 13 (1980), 667-670.
- /13/ J.E.Keesling, Open and closed mappings and compactioficotions, Fund. Math. 65 (1969), 73-81.
- /14/ I.Lončar, Inverse limits for spaces which generalize compact spaces, Glasnik matematički 17 (37) (1982), 155-173.
- /15/, Some results on the dimension of the inverse limit spaces. Glasnik Mat. 21(41)(1986), 212-223.
- /16), Lindelöfov broj i inverzni limesi, Zbornik radova Fakulteta organizacije i informatike Varaždin, 7 (1983), 115-123.
- /17/, A note on local conectedness of inverse limit spaces. Glasnik Mat. 21(41), (1986), 423-429.
- /18/ S.Mardešić, Lokalno povezani, uredeni i lančasti kontinuumi, Radovi JAZU, Zagreb (1960), 147-166.
- /19/ K.Nagami, Countable paracompactness of inverse limits and products, Fund. Math. 73 (1972), 261-270.

- /20/ J.Nagata, Modern dimension theory, North-Holland Publ. Co., Amsterdam, 1965.
- /21/ Ormocadze R.N., O nekotory novyh klassah otobraženij, AN Gruzinskoj SSR 68 (1982), 101-122.
- /22/ B.A.Pasynkov, O razmernosti topologičeskih proizvedenij i predelov obratnyh posledoval'nostej, DAN SSSR 254 (1980), 1332-1336.
- /23/, Faktorizacionye teoremy v teorii razmernosti, UMN 36 (1981),147-175.
- /24/, O razmernosti proizvedenij normal'nyh prostranstv, DAN SSSR 209, (1973), 792-794.
- /25/, Častičnye topologičeskie proizvedenija, Trudy Mosk. mat. občestva, 13 /1965), 136-245.
- /26/ L.T.Polkovski, Open and closed mappings and infinite dimension, Gen. Topol. and Relat. Mod. Anal. and Algebra. 5.Berlin (1983), 561-564.
- /27/ E.V.Ščepin, Funktory i nesčetnye stepeni kompaktov, UMN 36 (1981), 3-62.
- /28/ M.G.Tkačenko, Cepi i kardinaly, DAN SSSR 239 (1978), 546-549.
- /29/ Tsuda Koichi, Some examples concerning the dimension of product spaces, Math. Jap. 27 (1982), 177-195.
- /30/ Yukinobu Yajima, On the dimension of limits of inverse systems, Proc. Amer. Math. Soc. 91 (1984), 461-466.
- /31/ Walker J.W. and Wenner B.R., Characterizations of certain classes of infinite-dimensional metric spaces, Topology and Appl. 12 (1981), 101-104.

Primljeno: 1988-01-29

Lončar I. Inverzni limesi prebrojivo dimenzionalnih prostora

SAŽETAK

U radu je istraživana prebrojiva dimenzionalnost inverznog limesa sistema prebrojivo dimenzionalnih prostora.

Prvi odjeljak posvećen je prebrojivoj dimenzionalnosti limesa inverznog sistema prebrojivo dimenzionalnih prostora i zatvorenih veznih preslikavanja.

U drugom odjeljku izučavani su analogni inverzni sistemi uz otvorena vezna preslikavanja.

Treći odjeljak sadrži teoreme o prebrojivoj dimenzionalnosti limesa inverznih sistema uz još neke vrste preslikavanja, kao što su d-preslikavanja i α -reducibilna preslikavanja.