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CONTINUITY OF THE PROPERTIES TrindX<c AND TrimdX <a

Let X be a limit of an inverse system X ={Xa,f(‘18,A}. We say

that a topological property  is continuous is X has - when the
spaces Xa,ozeA, have -

In the present paper we give some sufficient conditions for the
continuity of the properties TrindX<a and TrindX<a.

0. INTRODUCTION

0.1. A space X has a strong (weak) [ 20:161] inducive dimen-
sion -1,TrIndX = -1 (TrindX = -1) iff X = @§; Let o be a trans-
finite ordinal number. If for every disjoint closed sets F and G
(for any neighborhood U of any pont x € X) of X there exists
an open set V such that FCVa X-G (x+¢ V< U), TrindFr(V) < a
(TrindFr(V}<o), then X has a strong (weak) transfinite induc-
tive dimension TrIndX<a (TrindX<a ).

0.2. A space X is (strongly) countable-dimensional [20:161]
if X =V {Xi : ieN }, where Xi’ ie N, are finite-dimensional

(closed) subspaces of X.
0.3. [ 8: Theorem 3.]. Let X =U({ Xi : ie N} be a hereditarily

normal compact space. If TrindXi, i eN, are definied, then

TrindX is definied.

0.4. [8: Theorem 6.]. If TrIndX is definied for compact space
X, then X is weakly infinite-dimensional.
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0.5. [ 8: Theorem 1.]. Let X be a compact space. if TrindX is
definied, then TrIndX is definied. If X is a hereditarily nor-
mal compact space, then TrIndX < TrindX. .

0.6. If for normal (regular) space X TrIndX (TrindX) is
definied and WX <\, (wX < ), then TrIndX <w, ,,(TrindX
wa+1)’ where WX is a big weight of X [2:495]. If "X is a

-

compact (metric) space such that wX< ,:\a , then TrIndX_<_wa

(TrIndXi ""1)‘ L

0.7. [2:498]. A) Let X be complete metric space. If X is coun-
table-dimensional, then TrindX is definied. The converse holds
if X is a complete separable metric space.

B) If X is a strongly metrizable space and
TrindX is definied, then X is countable-dimensional.

C) If X is a compact metric space, then the fo-
llowing conditions are equivalent: (1) TrindX is definied, (2)
TrIndX is definied, (3) X is countable dimensional.

0.8. [23]. Let f:X+ Y be a closed surjection between metric
spaces and ke N. Then: (1) If f1l(y) < k for each yeY and

TrindX is definied, then TrIndY is definied; (2) If Indf—l(y)_<_k
for each y ¢Y and TrIndY is definied, then TrIndX is definied.

1. TRANSFINITE DIMENSIONS, MAPPINGS AND INVERSE
SYSTEMS

We say that a mapping f:X -+ Y is dissipated [ 22 ] of for each
x ¢X and each open set U3 x there exists an open set V. f(x)
such that f 1(V) = U“_U", where U' and U" are disjoint open
set in £ 1(V) (i.e. in X) and x ¢U'=U.

1.1. LEMMA. [ 22]. If f:X »Y is a dissipated mapping then so
is the mapping fA:Y +Y for every AZX.
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1.2. LEMMA. [22]. Let X = {X £ ,A} be an inverse system
with dissipated mappings fu . Then a projections fa: limz(+Xa,
oe A, are the dissipated mappings.

1.3. LEMMA. Let f:X +Y be a dissipated mapping. If TrindY <a,
then TrindX <o

Proof. If o is a natural nimber, then see [22]. Suppose that a
is a transfinite ordinal number and that Theorem is proved for
everyB<a. Let U »x be any open set about xe X. There is an
open set V - f(x) such that f~1(V) = V' V", where V' and

V' are disjoint open set in f_l(V) and x ¢ V'™ U. Since TrindY
<a, we can assume that TrindFrV<a. This means that Trindf~1

(FrV)<a since f':f “(FrV)- FrV is dissipated (1.1. Lemma).By

virtue of FrV" fﬁl(FrV) we have TrindFrV'<a and TrindX <a.
The proof is completed.

1.4. LEMMA. If X is a perfectly normal Lindelof space (stron-
gly paracompact strongly hereditarily normal space, ¢ -totally
paracompact, order totally paracompact metrizable space) and
f : X+ Y is dissipated, then from IndY < n holds IndX <n for
every natural number n. - B

Proof. From [2:411] and [ 7:199,205] it follows that indY=IndY.
Now we have indY <n. By virtue of Lemma 1.3. it follows that
indX <n. This means that IndX <n.Q.E.D.

1.5. LEMMA. Let X be a compact space and f:X -+ Y a dissipated
mapping. If TrindY is definied, then TrindX is definied. If X
is a hereditarily normal compact space, then TrIndXiTrIndY.wo.

Proof. If TrIndY is definied, then TrindY <TrIndY. From 1.3.

it follows that TrindX is definied and from 0.5. that TrIndX is

definied. Naow we have TrIndX < TrindX.w < TrindY.w < TrIndY.
. — o— o—

w - The proof is completed.
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1.6. THEOREM. Let Z( = {X ,£ _,A} be an inverse system with
dissipated mappings f - rdeX i)\, acA, then Trind(lim X)
S Nite

Proof. Apply Lemmas 1.2. and 1.3.

1.7. COROLLARY. Let X be an inverse system as in Theorem
1 6. If X , ae A, are (strongly) ind-countable-dimensional,then
11mX so is.

Proof. If X ="{X_:eN}, then X =\/{ l(x D:ieN}. Apply
Theorem 1.6. e = s

1.8. THEOREM. Let X = {Xa ’faB’A} be a well-ordered inverse

such that cf(A) #uw 1° If a space Xa are perfectly normal Lin-

delof spaces with TrInqu_<_)\ and a mappings f are dissipated,

aB
then X = limX is a perfectly normal Lindelof space such that
TrindX <)

Proof. From [15] or [26] it follows that X is hereditarily
Lindelof. This means that X is perfectly normal [6:249]. In
order to complete the proof it suffices to apply Theorem 1.6.
and Theorem 8. from [2:411].

1.9. LEMMA. A) [22:143]. If f:X> Y is ind-zero-dimensional
(i.e. indf_l(y) = 0,y € Y) closed mapping and if X is normal
then f is dissipated,

B) [22:143]. If X is compact (locally compact),
then each ind-zero-dimensional f:X > Y is dissipated,

C) Every open mapping f:X»> Y, such that f_l(y)
ke N for each y ¢Y, is dissipated,

D) [22:145]. If f:X »Y is a dissipated mapping of
a compact (a Lindelof,strongly paracompact) space X onto a
metric space Y, then indX=IndX=dimX.

Proof. The statement C) follows from the fact that f is a closed
homeomorphism [ 4:357].
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1.10. THEOREM. Let X = {Xa’faB’A} be an inverse system of
locally compact spaces on with Trinani)\ and perfect ind-

zero-dimensional mappings Afde. Then Trind(limX) <A

Proof. The projections fa :lim_)_(+X0, acA, are perfect ind-zero-

dimensional mappings. This means that limX is a locally compact
space. By virtue of B) (Lemma 1.9.) it follows that f are dissi-
pated. Lemma 1.3. completes the proof.

1.11. REMARK. If faB are only ind-zero-dimensional, then limX
is not locally compact but fOt remain a dissipated mappings. This

means that is Trind(limX)<i.

1.12. THEOREM. Let X = {Xn,fnm,N} be an inverse sequence

of a perfectly normal (Lindelof, normal countably compact) spa-
ces Xn and closed ind-zero-dimensional mappings fnm' If

TrindX <), then Trind(limX) <j.

Proof. The projections f :limX »X o e N, are closed [16] and

ind-zero-dimensional. The space 11mX is perfectly normal (Lin-
delof [15], normal countably compact [16]). From A) Lemma
1.9. it follows that f_are dissipated mappings. Applying Lemma
1.3. we complete the proof.

For g-directed inverse systems we have

1.13. THEOREM. Let a metric space X be a limit of a o-direc-

ted inverse system X = {Xa’faB’A} of compact metrizable ch’

ac A, If Trinan or Trinqu, acA, are definied, then TrindX
and TrIndX are definied.
Proof. From 0.7.c) it follows that it suffices to prove that X

is countable-dimensional. This follows from the fact that X ,
acA, are countable-dimensional and the next theorem. ¢
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1.14. THEOREM. Let X = {X F 8,A} be a o-directed inverse
system of a compact metric countable—dimensional spaces X.. If
= limX is a metrizable space, the X is countable-dimensional.

Proof. Let {Ui:ieN} and {Fi:i e N} be a family of open and
closed subsets of X such that F.QU., ie N. For every pair

(F., U) there exists oy eA and an open set U CX such that

1‘.

B(U i )"‘fB(Fi) for each B>ai. From the o —(111rectedne:;s of
il i -
A it follows that there exists B>0.., i eN. Since XB is countable-

dimensional metric space, there exist open sets W, CXB, ieN,
such that f (F) W, et 't o 5 (Uy) and ord(Fr(W,):i e N}<N [20:167
Clearly, FlgfB (W) U for each ie N. By v1rtue of [20:167] it
follows that X is a countable dimensional space since ord

{Fr(f—l(Wi)):i e N} is finite. The proof is completed.

1.15. THEOREM. Let X = {Xa’fuB’A} be a well-ordered inverse
system with cf(A) >wy - If Xa’ acA, are compact metric spaces
and Trinan or TrInan are definied, then TrindX and TrindX,

X = limX, are definied.
Proof. By [ 26 ]it follows that w(X)< No' Apply Theorem 1.14.

1.16. THEOREM. Let X = {Xa,faB,A} be an inverse system of

a compact spaces ch and dissipated mappings %8 . If TrInqu.

are definied, then TrInd(limX) is definied.

Proof. A projections fa : limX » Xa, ae A, are dissipated

(Lemma 1.2.). By virtue of Lemma 1.3. it follows that Trin(limX)
is definied. From 0.5. it follows that the proof is completed.

246



Loncar I. Continuity of

the properties Zbornik radova (1987), ii

In the remaining part of this Section we study the relations
between TrindX and TrindY if f:X-+ Y is an open mapping.

1.17. LEMMA. If f:X-» Y is a local homeomorphism, then TrindX
(TrindX_<_A) is definied iff TrindY is definied (TrindY<)).

For a mapping f:X »Y we denote by HLf the set of all points
X ¢ X in which f is a local homeomorphism.

1.18. LEMMA. Let f:X Y be a mapping such that HL, is dense
in X. If X is a hereditarily paracompact, then f is a {ocal
homeomorphism.

Proof. For every he HLf we have an open set Uh h such that
f/Uh n
By regularity of X it follows that there is an open set Vh,h o
HLf, such that h th" Vh" Uh. Since U{Vh:heHLf}ls para-
compact, there is an open locally finite cover {M& :aeA} which
refines {Vh:h eHLf}. Now we have X = Iﬁ.f“ {Vh:he HLf}
TN W i aeAl =‘-J{Wa tagA} = {U, the HL;}. This means that
X = \J{Uh:hs HLf}.Q.E.D.

- f(U ) is a homeomorphism onto an open set f(U ) B

If f:X »Y is an open mapping such that "fdl(y)l = k for all
v €Y and X is T2 space, then f is a closed local homeomorphism

(Lemma 1.9.C). By 1.17. we have

1.19. LEMMA. Let f: X+ Y be an open surjection between regular
spaces such that ]f_l(y)l = k for each y =Y. TrindX<) iff
TrindY <i.
1.20. THEOREM. Let X = {X o g’ ,A } be an inverse system of
regular spaces X and open mappings such that }f (x )I<ke N.
If for each x gX there exists g>a such that f 1(x ) =k,

o o of o

then Trinan<_)\ iff Trind(limX) <)\.
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Proof The projections f :HmX »X , 0e A, are open such that
(x ) = k. Lemma 1.19. completes the proof.

1.21. THEOREM. Let f:X~+ Y be an open surjection such that
lf_l(y)li No for all y eY. If X is locally compact (or Cech-
complete) hereditarily paracompact space, then TrindX<\ iff
TrindY<).

Proof. From [2: 457, Theorem 4.] it follows that HLf is dense
in X. Lemma 1.18. completes the proof.

1.22. THEOREM. Let X= {X f ,N } be an inverse sequence
of a complete separable metrlc spaces X and open mappings
fnm such that f (x )<ak. Tmnd(th)<a if Trde <a for

every n ¢N.
Proof. Apply 1.17. and 1.21.

1.23. REMARK: By virtue of [2:500] it follows that X = limX in
Theorem 1.22. is countable-dimensional iff X_,ne N, are countabl
dimensional. Furthemore, on can prove that if f: X+ Y is an ope:
mapping between locally compact (or compelte) metric separable

spaces such that lf_l(y)‘i No for all y €Y, then X is (strongly

countable-dimensional iff Y is (strongly) countable-dimensional.

1.24. LEMMA. Let f:X > Y be an open surjection between complets

separable metric spaces such that f_l(y),y eY, has an isolated
point. If X has a dimension TrindX then Y has a dimension
TrindY.

Proof. Let Ai be the sets from the proof of 1.12.6. Theorem

of [7]. Since TrindA,,ic N, are definied and Y =U{f(Ap:ieN},

it follows that Y is countable-dimensional. This means that
TrindY is definied [2:500].
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Similarly, on can prove the following

1.25. THEOREM. Let f:X »Y be an open onto mapping between
complete separable metric spaces such that for each yeY a

set f_l(y) is a discrete subspace of X. Then TrindX is defi-
nied iff TrindY is definied.

As the applications we prove the following theorems.

1.26. THEOREM. Let X = {X f N} be an inverse sequence of
a countable- dlmensmnal metrlc spaces X . If f are open sur-
jection such that f (x ) is discrete, then X = 11m_)_( is a coun-

table-dimensional space.

Proof. Let Xn =U{Xn i:ie; N}, where Xn i is finite-dimensional

subspace for each i ¢ N. By virtue of [7:288]we have dimf—}n

(X i 1) <d1mX for each i eN We obtain an inverse sequence
={Y mi’ nm/ m, 1}, Ym,i = (X ), which satisfies Theorem

4.1.22 [7]. Thus, d1m(1im_Y_i) _<_d1an i for each i ¢ N. The

2 4

proof is completed since X ='/{ limy_i:ie N}.

If fn are open with f (x ) <ke N, then fn:X+ Xn’ neH,
have the property fn1 (xn) < k. Hence, by virtue of [ 3:9.1.

Theorem ] we have

1.27. THEOREM. Let X = {Xn,fnm,N} be a sequence of a metric
. ~1
spaces Xn and open onto mappings fnm such that fnm(xn) < k.

A limit X=limX is (strongly) countable-dimensional iff the spaces

Xn,na N, are (strongly) countable-dimensional.
From the preceding theorems it follows

1.28. THEOREM. Let X = {Xn,fnm,N} be a sequence of a
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complete separable metmc spaces X and open mappings fnm
with discrete fibers f (x ). If Tmnan,ns N, are definied,
then Trind(limX) is deflmed.

Proof. From 0.7. it follows that X, are countable-dimensional.
By theorem 1.26. we infer that limX is countable-dimensional.
Applying 0.7. we complete the proof.

Similarly, from 0.7. and Theorem 1.27. it follows

1.29. THEOREM. Let X = {X f N} be an inverse sequence
of a complete separable metrlc spaces X and open mappings
with f (x ) <k. Trind(limX) is defmled iff TnndX ,neN,
are def1n1ed.

1.30. REMARK. If in Theorem 1.29. Xn are compact metric
spaces, then Trind(limX) is definied iff TrIndX ,n eN, are
definied. The proof holds from 0.7.C).

We close this Section with the following theorems.

1.31. THEOREM. Let X = {X f N} be a sequence of a me-
tr1c spaces X with open- and closed mappings f such that
,f (x ), N . If the spaces Xn,n e N, are countable—dimen—
s1ona1, then X limX is countable-dimensional.

Proof. In the proof 1.26. apply [7:288(c)] instead [7:288(a)].
1.32. THEOREM. Let X = {X f N}be an inverse sequence
of a complete separable metrlc spaces X with open-and-closed
mappings f such that ]f (x )]< N o Limit X = limX has a

dimension Trlnd(th) if the spaces X ,n ¢eN, have the dimen-
sion Trde

Proof. apply 0.7.c) and Theorem 1.31.
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Loncar I. Neprekidnost svojstava TrindX<a i TrindX<ao

SAZETAK

U radu se tzuéava ponasanje svojstava TrindX - 1 TrIndX<- pri
prelasku na limes inverznog sistema. Osnovna paiZnja posveiena
Je disipativnim preslikavanjima medu prostorima inversnog si-
stema. Dokazano je da tada inverzni limes ima transfinitne in-
duktivne dimenzije <aako ih imaju prostori inverznog sistema.
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