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CONTINmTY OF THE PROPERTIES TrIndX<a AND TriDdX <0

Let X be a limit of an inverse system! = {Xa'~S,A}. _We say

that a topological property is continuous is X has' when the
spaces X ,a £ A, have

a
In the present paper we give some sufficient conditions for the
continuity of the properties TrIndX<a and TrindX<a.

o. INTRODUCTION

0.1. A space X has a strong (weak) [20:161] inducive dimen-
sion -1, TrIndX = -1 (TrindX = -1) iff X = 0; Let a be a trans-
finite ordinal number. If for every disjoint closed sets F and G
(for any neighborhood U of any pont x c X) of X there exists
an open set V such that Fc~Vc: X-G (x « V~=U), TrIndFr(V) < a
(TrindFr(V)<a), then X has a strong (weak) transfinite induc-
tive dimension TrIndX<a (TrindX<a ).

0.2. A space X is (strongly) countable-dimensional [20:161]
if X = 'v' {X. : icN }, where X., i £ N, are finite-dimensional

1 1

(closed) subspaces of X.

0.3. [8: Theorem 3. J. Let X = U{X. : ic N } be a hereditarily
1

normal compact space. If TrindX., i £ N, are definied, then
1

TrindX is definied.

0.4. [8: Theorem 6. J. If Tr IndX is definied for compact space
X, then X is weakly infinite-dimensional.
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0.5. [ 8: Theorem 1.J. Let X be a compact space. if TrindX is
definied, then TrlndX is definied. If X is a hereditarily nor-
mal. compact space, then Tr IndX < TrindX. w .

o

0.6. If for normal (regular) space X TrlndX (TrindX) is
definied and WX~ \ a (wX ~ \, a)' then TrlndX ~wa+1 (TrindX
wa+l)' where WXis a big weight of X [2:495J. If X is a

compact (metric) space such that wX< .\~ , then TrlndX<w +1- a - a(TrlndX ~ WI).

0.7. [2: 498J. A) Let X be complete metric space. If X is coun-
table-dimensional,· then 'I'r-i ndX is definied. The converse holds
if X is a complete separable metric space.

B) If X is a strongly metriz able. space and
TrindX is definied, then X is countable-dimensional.

C) If X is a compact metric space, then the fo~
Howing conditions are equivalent: (1) TrindX is definied, (2)
TrlndX is definied, (3) X is countable dimensional.

0.8. [23J. Let f: X-+Y be a closed surjection between metric
spaces and k £ N. Then: (1) If rl(y) < k for each y £ Y and

TrlndX is definied, then TrlndY is def~ied; (2) If Indf-1(y)<k
for each y £ Y and TrlndY is definied, then TrlndX is definied.

1. TRANSFINITE DIMENSIONS, MAPPINGS AND INVERSE
SYSTEMS

We say that a mapping f: X-+Y is dissipated [ 22 J of for each
x £ X and each open set V 3 x there exists an open set V _-I f(x)

such that f-1(V) = V"--"V", where V' and V" are disjoint open
set in f-1(V) (i ,e. in X) and x £V'cV.

1.1. LEMMA.[22J. If f:X -+Yis a dissipated mapping then so
is the mapping fA: Y -+Y for every A::;X.
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1. 2. LEMMA. [22J. Let X = {X , f S' A} be an inverse system
with dissipated mappings f S.a.rh~n a projections f : limX+X ,
aE A, are the dissipated mappings. a - a

1.3. LEMMA. Let f:X +Y be a dissipated mapping. If TrindY<a,
then TrindX <a,

Proof. If a is a natural nimber, then see [22J. Suppose that a
is a transfinite ordinal number and that Theorem is proved for
every S<a. Let U _,x be any open set about x EX. There is an
open set V . f'(x ) such that r1(V) = V'· V", where V' and

V" are disjoint open set in f-1(V) and XEV'- U. Since TrindY
< a, we can assume that TrindFrV <a. This means that Trindf-1

(FrV)<a since f':f-1(FrV)+ FrV is dissipated (1.1. Lemma).By

virtue of FrV' f-1(FrV) we have TrindFrV'<a and TrindX <a.
The proof is completed.

1. 4. LEMMA. If X is a perfectly normal Liridelof space (stron-
gly paracompact strongly hereditarily normal space, a -totally
paracompact, order totally paracompact metrizable space) and
f : X+ Y is dissipated, then from Ind Y< n holds IndX <n for
every natural number n.

Proof. From [2:411J and [7:199,205] it follows that indY=IndY.
Now we have indY <n. By virtue of Lemma 1. 3. it follows that
indX 2 n. This means that IndX 2n. Q. E. D.

1.5. LEMMA. Let X be a compact space and f: X + Y a dissipated
mapping. If TrindY is definied, then TrindX is definied. If X
is a hereditarily normal compact space, then Tr IndX < Tr Ind Y.w .- 0
Proof. If TrIndY is definied, then TrindY <TrIndY. From 1.3.
it follows that TrindX is definied and from 0.5. that TrIndX is
definied. Naow we have TrIndX <TrindX.w < TrindY.w < TrIndY.0- o-wo ' The proof is completed .
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1. 6. THEOREM. Let X = {X ,f ,A} be an inverse system with
dissipated mappings Ia8.1f C¥:rrfrlhxa':::'>'"ceA, then Trind(lim ~

<>...

Proof. Apply Lemmas 1.2. and 1.3.

1.7. COROLLARY. Let X be an inverse system as in Theorem
1.6. If X ,a£ A, are (strongly) ind-countable-dimensional, then
X = limXaso is.

Proof. If X ='I{X .:i£N}, then X =\.J{f-1(X .):ie:N}. Apply
Theorem 1.6. a,l a a ,1

1.8. THEOREM. Let X= {X ,f a,A} be a well-ordered inverse- a a I-)

such that cf(A) if. wI. If a space Xa are perfectly normal Lin-
delof spaces with TrlndX <>..and a mappings f a are dissipated,

a- alJ
then X = limX is a perfectly normal Liridelof space such that
TrlndX <A.

Proof. From [15 J or [26J it follows that X is hereditarily
Llndelof , This means that X is perfectly normal [6: 249J. In
order to complete the proof it suffices to apply Theorem 1.6.
and Theorem 8. from [2: 411J .

1.9. LEMMA. A) [22:143J. If r.x- Y is ind-zero-dimensional
(i. e. indf-1 (y) = 0, Y £ Y) closed mapping and if X is normal
then f is dissipated,

B) [22:143J. If X is compact (locally compact),
then each ind-zero-dimensional f: X + Y is dissipated,

C) Every open mapping f: X+ Y, such that f-1(y)
k e N for each y £Y, is dissipated,

D) [22: 145J. If f: X + Y is a dissipated mapping of
a compact (a Lindelof , strongly paracompact) space X onto a
metric space Y, then indX=lndX=dimX.
Proof. The statement C) follows from the fact that f is a closed
homeomorphism [ 4: 357J •
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1.10. THEOREM. Let X = {X .f 13' A} be an inverse system of- a a
locally compact spaces X with TrindX <A and perfect irid-a a-
zero-dimensional mappingsfaS' Then Trind(lim~ ~A.

Proof. The projections f :limX+X , as A, are perfect ind- zero-a - CI.

dimensional mappings. This means that limX is a locally compact
space. By virtue of B) (Lemma 1. 9.) it follows that fare dlssi-

apated. Lemma 1.3. completes the proof.

1.11. REMARK. If f are only ind-zero-dimensional, then limXas
is not locally compact but f remain a dissipated mappings. This

a
means that is Trind(limX)<A.

1.12. THEOREM. Let X = {X .f ,N} be an inverse sequence. - n nm
of a perfectly normal (Lindelof , normal count ably compact) spa-
ces X and closed ind-zero-dimensional mappings f . Ifn nm
TrindX <A, then Trind(limX) <A.n- - -

Proof. The projections f :limX+X .n c N, are closed [16J andn - n
ind-zero-dimensional. The space limX is perfectly normal (Lin-
delof [15J, normal countably compact [16 J). From A) Lemma
1.9. it follows that f are dissipated mappings. Applying Lemman1. 3. we complete the proof.

For a -directed inverse systems we have

1.13. THEOREM. Let a metric space X be a limit of a a-direc-
ted inverse system X = {X ,f ,A} of compact metrizable X ,

- a as a
as A. If TrindX or TrindX , asA, are definied, then TrindX

a a
and TrlndX are definied.

Proof. From 0.7. c) it follows that it suffices to prove that X
is countable-dimensional. This follows from the fact that X ,
asA, are countable-dimensional and the next theorem. a
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1.14. THEOREM. Let X= {X ,f a,A} be a a-directed inverse- a alJ
system of a compact metric countable-dimensional spaces Xp If
X = limX is a metrizable space, the X is countable-dimensional.

Proof. Let {U.:i£N} and {F.:i £ N} be a family of open and
1 1

closed subsets of X such that F. ~ U., i £ N. For every pair
1 1

(F., U.) there exists a. £A and an open set U <X such thatf 1 1 a. a.
f- (U ).=? f a(F.) for each 8>a .. From the a -direJtedness of

arB ai IJ 1 - 1

A it follows that there exists 8>a., i e N. Since Xa is countable-
. 1 IJ

dimensional metric space, there exist open sets W.C Xa' i £ N,
-1 1 IJ

such that f (F.)£W.Sf (U) and ord{Fr(W.):i £N}<~ [20:1678 \ 1 a.8 a. 1 0

Clearly, FiS;f~ (Wi)SUi fJr eaJh i £ N. By virtue of [20:167J it
follows that X is a countable-dimensional space since ord
{Fr(f-1(W.»:i £ N} is finite. The proof is completed.

1

1.15. THEOREM. Let X = {X ,f a' A} be a well-ordered inverse- a alJ
system with cf(A) >~. If Xa' a£A, are compact metric spaces
and TrindX or TrlndX are definied, then TrindX and TrindX,

a a
X = limX, are definied.

Proof. By [26 J it follows that w(X) < .N . Apply Theorem 1.14.- 0

1.16. THEOREM. Let X= {X ,f ,A}be an inverse system of- a a8
a compact spaces X and dissipated mappings fa' If TrlndX .a alJ a
are definied, then Trlnd(limX) is definied.

Proof. A projections f : limX + X ,a£ A, are dissipateda -- a
(Lemma 1.2.). By virtue of Lemma 1.3. it follows that Trin(lim~)
is definied. From O. 5. it follows that the proof is completed.
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In the remammg part of this Section we study the relations
between TrindX and TrindY if f: X-+Y is an open mapping.

1.17. LEMMA. If f: X-+Y is a local homeomorphism, then TrindX
(TrindX <.:0 is definied iff TrindY is definied (TrindY <>..).

For a mapping f: X -+Y we denote by HLf the set of all points
x £ X in which f is a local homeomorphism.

1.18. LEMMA. Let f: X -+Ybe a mapping such that HLf is dense
in X. If X is a hereditarily paracompact , then f is a local
homeomorphism.

Pn»of. For every h £ HLf we have an open set Uh h such that

f/Uh: Uh-+f(Uh) is a homeomorphism onto an open set f(Uh) --Y.

By regularity of X it follows that there is an open set Vh' h :.

HLf, such that h eVh-- Vh -- Uh· Since U{Vh: h£HLf }is para-
compact, there is an open locally finite cover {W : aE:A}which__ _~a~ _
refines {Vh:h £HLf}. Now we have X = HLf - {Vh:h£ HLf}

-: '-I{W
a

: a£A} ='){Wa :a£A}:-: {Uh:h£ HLf}. This means that

X = V{Uh:h£ HLf}.Q.E.D.

If f:X -+Y is an open mapping such that !f-1(y)1 = k for all
y £Y and X is T2 space, then f is a closed local homeomorphism
(Lemma 1.9. C). By 1.17. we have

1.19. LEMMA. Let f: X-+Y be an open surjection between regular
spaces such that If-\y) 1= k for each y,=Y. TrindX<>.. iff
TrindY <>...

1. 20. THEOREM. Let X = {X ,f Q ,A }be an inverse system of- a a..,
regular spaces X and open mappings such that I f-~(x )1<k £ N.a -1 a.., a -
If for each x e X there exists S>a such that f Q(x) = k,a a a.., a
then TrindX <>..iff Trind (Urn X) <t...a- -
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Proof. The projections f :limX ~X , aEA, are open such that
-1 a - a

f (x) = k. Lemma 1.19. completes the proof.
a a

1. 21. THEOREM. Let f: X~ Y be an opan.surjection such that

If-1(y)( < ft for all y EY. If X is locally compact (or Cech-- 0
complete) hereditarily paracompact space, then TrindX <Aiff
TrindY <A.

Proof. From [2: 457, Theorem 4.J it follows that HLf is dense

in X. Lemma 1.18. completes the proof.

1.22. THEOREM. Let X = {X ,f ,N} be- n nm
of a complete separable metric spaces Xn
f such that f-1 (x )<ak. Trind(limX)<anm nm n - --
every n EN.

an inverse sequence

and open mappings
if TrindX <a forn-

Proof. Apply 1.17. and 1. 21.

1.23. REMARK: By virtue of [2:500J it follows that X = limX in
Theorem 1.22. is countable-dimensional iff X ,n EN, are countabl-
dimensional. Furthemore, on can prove that n if f: X~ Y is an ope I

mapping between locally compact (or compelte) metric separable
spaces such that 1f-1(y)I<..N for all y EY, then X is (strongly

- 0
countable-dimensional iff Y is (strongly) countable-dimensional.

1.24. LEMMA. Let f: X ~ Y be an open surjection between complet-
separable metric spaces such that f-1 (y) ,y EY, has an isolated
point. If X has a dimension TrindX then Y has a dimension
TrindY.

Proof. Let A. be the sets from the proof of 1.12.6. Theorem
1

of [7]. Since TrindA. ,iE N, are definied and Y =V {f(A.):i EN},
1 1

it follows that Y is countable-dimensional. This means that
TrindY is definied [2:500J.
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Similarly, on can prove the following
1. 25. THEOREM. Let f: X "*Y be an open onto mapping between
complete separable metric spaces such that for each y EY a
set f-1(y) is a discrete subspace of X. Then TrindX is defi-
nied iff Trind Y is definied.

As the applications we prove the following theorems.

1.26. THEOREM. Let X = {X ,f ,N} be an inverse sequence of- n nm
a countable-dimensional metric spaces X . If f are open sur-n nm
jection such that f-1 (x ) is discrete, then X = limX is a coun-nm n
table-dimensional space.

Proof. Let X =IJ{X .:iE N}, where X . is finite-dimensional
n n,1 n,l -1

subspace for each i EN. By virtue of [7: 288Jwe have dimfnm
(X .) <dimX . for each i EN. We obtain an inverse sequence

n,1 - n ,a -1
Y. = {Y ., f /Y .}, Y . = f (X .), which satisfies Theorem-1 rm nm m,1 m,1 nm n,1
4.1.22. [7J. Thus, dim(limY.) <dimX . for each i EN. The-1 - n,1
proof is completed since X =' J{ limY.: if: N}.

-1

-1If f are open with f (x) <kEN, then f :X"*X , n £ H,nm -1 nm n - n n
have the property f (x) < k. Hence, by virtue of [ 3: 9.1.n n -
Theorem J we have

1. 27. THEOREM. Let X = {X ,f ,N } be a sequence of a metric
- n nm -1

spaces Xn and open onto mappings fnm such that fnm(xn) ~ k.

A limit X=limX is (strongly) countable-dimensional iff the spaces
X ,n £ N, are (strongly) countable-dimensional.n

From the preceding theorems it follows

1. 28. THEOREM. Let X = {X ,f ,N } be a sequence of a- n nm

249



Loncar I. Continuity of
the properties Zbornik radova (1987), 11

complete separable metric spaces X and open mappings f
-1 n nm

with discrete fibers fnm (xn). If TrindXn, n EN, are definied,

then Trind (limX) is definied.

PftJof. From 0.7. it follows that X are countable-dimensional.n
By theorem 1. 26. we infer that limX is countable-dimensional.
Applying 0.7. we complete the proof.

Similarly, from 0.7. and Theorem 1.27. it follows
1.29. THEOREM. Let X= {X ,f ,N}be an inverse sequence- n nm
of a complete separable metric spaces X and open mappingsn
with f-1 (x ) < k. Trind(limX) is definied iff TrindX ,n EN,nm n n
are definied.

1.30. REMARK. If in Theorem 1.29. X are compact metricn
spaces, then TrInd(limX) is definied iff TrIndX ,n EN, are- n
definied. The proof holds from 0.7. C).

We close this Section with the following theorems.

1. 31. THEOREM. Let X = {X ,f ,N} be a sequence of a me-- n nm
tric spaces X with open-and-closed mappings f such that

-1 n nmI f (x) I <.N . If the spaces X ,n EN, are countable-dimen-nm n - 0 n
sional, then X = lim~ is countable-dimensional.
Proof. In the proof 1.26. apply [7:288(c)] instead [7:288(a)].

1. 32. THEOREM. Let X = {X ,f ,N } be an inverse sequencen nm
of a complete separable metric spaces Xn with open-and-closed
mappings f such that I f-1 (x )1< .;~ . Limit X = limX has a .nm nm n - 0 -
dimension Trind(limX) if the spaces X ,n EN, have the dirnen-
. T' dX - nSlon rIn •n

Proof. apply O. 7.c) and Theorem 1. 31.
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Loncar 1. Neprekidnost svojstava TrlndX<ex i TrindX< ex

S A Z ETA K

U radu se i.zucaoa ponasaruje svoj stava TrindX - i TrIndX <". pi-i
prelasku na limes inverznog sistema. Osnovna paznja posve6ena
je disipativnim preslikavanjima medu prostorima inverznog si-
stema. Dokazano je da tada inverzni limes ima transfinitne in-
duktivne dimenzije~exako ih imaju prostori inverznog sistema.
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