Dr Ivan Lončar Fakultet organizacije i informatike V.a r ə ž d i n

UDK. 513 Znanstveni rad

APPLICATIONS OF O-CLOSED AND U-CLOSED SETS

For every Hausdorff space X the spaces X and X are introduced. If X is H-closed (Urysohn-closed) then $X_{\Theta}^{\Theta}(X_{u})$ is compact T_{1} -space.

If $f: X \rightarrow Y$ is a mapping, then there exist the mappings $f: X \rightarrow Y_{\Theta}$ and $f: X \rightarrow Y$. We say that $f: X \rightarrow Y$ is a Θ -closed (u-closed) mapping $if_{\Theta}^{u}(f_{u})$ is a closed mapping. If X and Y are H-closed (Urysohn-closed) and $f: X \rightarrow Y$ is the HJ-mapping, then $f_{\Theta}(f_{u})$ is Θ -closed (u-closed).

Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of the H-closed (Urysohn-closed) spaces X and the O-closed (u-closed) mappings $f_{\alpha\beta}$. If X_{α} are non-empty spaces, then $X = \lim X \neq \emptyset$.

0. INTRODUCTION

Throughout this paper a space X always denotes a topological space. No separation axioms are assumed unless otherwise specified. A mapping f : X-Y means a continuous mapping.

The conventions and elementary results on inverse limits of topological spaces are those given in Engelking [3].

A number of other tehnical or specialized definitions are given in the text.

1. SPACES X AND X

A O-closed sets were introduced by Veličko 16.

1.1. Definition. A point xeX is in the Θ -closure of a set $A \subseteq X$, $x \in |A|_{\Theta}$, if $V \cap A \neq \emptyset$ for any V open about x.

A subset $A \subseteq X$ is 0-closed if $A = |A|_{\Theta}$. A subset $B \subseteq X$ is 0-open if $X \setminus B$ is 0-closed.

Veličko 16 proved the following properties of O-closed sets.

Lončar I. Applications of 0-closed Zbornik radova (1984), 8 and u-closed sets

1.2. THEOREM (See Herri'ngton | 9; Theorem 2 |). In any topological space

- (a) the empty set and the whole space are O-closed,
- (b) arbitrary intersections and finite unions of Θ-closed sets are Θ-closed,
- (c) $K \subseteq |K|_{o}$ for each subset K,
- (d) a 0-closed subset is closed.

From this Theorem it follows that the family of all Θ -open subsets of X is a topology to on X.

1.3. Definition Let (X,t) be a topological spaces.

The Θ -space of X is the space (X, t_{Θ}) .

In the sequel we use the denotations X and X_{o} .

It is easily to prove that in any Hausdorff space X every point xeX is O-closed. This fact implies the following lemma.

1.4 LEMMA. If X is a Hausdorff space, then X_{o} is a T₁-space.

1.6. LEMMA. Let X be a Hausdorff space. If for every open set $U \subseteq X$ is $\overline{U} = |U|_{\Omega}$, then X_{Ω} is a Hausdorff space.

We say that a space X is an Urysohn space (|6|, |10|) if for x,y_EX with x \neq y, there exist open sets V and W about x and y, respectively, satisfying $V^{\bigcap}X = \emptyset$.

A topological space X is an extremally disconnected space or e.d. space |3| if for every pair U, V of disjoint open subsets of X we have $U \cap V = \emptyset$.

Every Hausdorff e.d space in an Urysohn space.

1 7. LEMMA, Let X be an e.d. spaces. For every open subset $U \subseteq X$ we have $U = |\overline{U}|_{\Theta}$.

P r o o f. For $x \notin U$ we have an open set $V \ni x$ with $U \cap V = 0$. It follows that $U \cap V = \emptyset$ i.e. $x \notin |U|_{\Theta}$. This implies that $|U| \subseteq U$. Since $U \subseteq |U|_{\Theta}$, the proof is complete.

Lončar I. Applications of O-closed Zbornik radova (1984), 8. and u-closed sets 1.8. COROLLARY. It X is an e.d. space, then X_{A} is an Hausdorff space. Proof. Apply Lemmas 1.6 and 1.7. A space X is H-closed if X is a Hausdorff space and every centred family {U : U open in X} = \mathcal{U} has a property $\bigcap \{\overline{U} : U_{\mathcal{E}}\} \neq \emptyset^{\alpha}$. A Hausdorff space X is H-closed [8] iff for every centred family {A : A \subset X} there exists the point xeX with property that $\bigvee \bigcap_{A_{\alpha}}^{\alpha} \neq 0^{\alpha}$ for every open V \ni x and every A every A. The point x is called Θ -accumulation point of $\{A_{\alpha}\}$ 1.9. LEMMA. If X is H-closed, then every centred family $\{A : a \in A\}$ of O-closed sets $A \in X$ has none-empty intersection \bigcap_{A}^{α} : $\alpha \in A$ }. A Hausdorf space X is nearly-compact [5] if every open cover $\{U_{\mu} : \mu \in M\}$ of X has a finite subcollection $\{U_{\mu 1}, \dots, U_{\mu n}\}$ such that Int $\overline{U}_{\mu 1} \cup \dots \cup$ Int $\overline{U}_{\mu n} = X$. Every nearly-compact spaces is H-closed. A space X is nearlycompact iff X is H-closed and Urysohn [5]. 1.10. LEMMA Let X be an Urysohn space. Every H-closed subspace AcX is 0-closed. 1.11. LEMMA. If X is H-closed and Urysohn, then X_o a Hausdorff space. 1.12. THEOREM. If X is H-closed, then X_{A} is a compact T_1 -space. Proof. Let {F : $\mu \in M$ } be a centred family of closed sets in X_{Θ} . By virtue of the Definition 1.3. it follows that $F = \bigcap \{F : \alpha \epsilon A, F \text{ is } \Theta \text{-cloesd in } X\}$. Lemma 1.9. implies that there exists $x \epsilon X^{\mu} w$ th property $x \epsilon \cap \{F : \mu \epsilon M, \alpha \epsilon A\}$. CLearly, $x \in \bigcap \{F_{\mu} : \mu \in M\}$. The proof is complete. 1.13. PROBLEM. Is it true that X is H-closed if X_{Θ} is the compact T₁-space? Let us prove the following theorem. 1.14. THEOREM. If the space X_{ρ} is Hausdorff, then X is Urysohn.

1.15. THEOREM. If X is nearly-compact, then ${\rm X}_{\Theta}$ is the compact Hausdorff space.

Proof. Apply Lemmas 1.1. and 1,12.

1.16. THEOREM. If X is an H-closed e.d. space, then $\rm X_{\Theta}$ is the Hausdorff compact space.

Proof. Apply Lemmas 1.7. and 1.12.

1.17, PROBLEM. Is it true that X is nearly-compact if X is a compact Hausdorff space?

In [16], Veličko also introduced the notion of δ -closed sets.

1.18. Definition. A point x ϵ X is in the δ -closure of a set A ϵ X, x ϵ |A|_s, if Int $\bar{V}^{\Omega}A \neq \emptyset$ for every open V about x.

A subset A C X is δ -closed if A = $|A|_{\delta}$. A subset B C X is δ -open if X \ B is δ -closed.

1.19. LEMMA. The set A \sub{X} is δ -open iff A is the union of the sets Int $\bar{V}.$

The following Lemma is an immediate consequence of the definition of δ -closedness. (See Veličko |16|, Lemma 3.).

1.20. LEMMA. In any topological space

- (a) the empty set and the whole space are δ -closed,
- (b) arbitrary intersections and finite unions of δ-closed sets are δ-closed,
- (c) KeKe $|K|_{s} \in |K|_{\Theta}$ for each subset K,
- (d) a δ -closed set is closed.

1.21. Definition. Let (X,t) be a topological space. The space (X, t) - or X - is the set X with topology generated by family t of all δ -open set in (X,t).

From Lemma 1.19. it follows that the family of all regularly open sets (i.e. the sets of the form $V = Int \overline{V}$) is a base for topology t. This means that X is well known semiregularization X of X.

1.22. LEMMA. The identity mapping $id_{S\Theta} : X_S \rightarrow X_{\Theta}$ is continuous. 1.23. LEMMA. A space X is nearly-compact iff X is a compact Hausdorf space. 1.24. LEMMA. A space X is nearly-compact iff the spaces X and X are compact homeomorphic spaces. Proof. Apply Lemmas 1.15, 1.22. and 1.23. We conclude this Section with an discussion of u-closed sets. We say that (G,H) is an ordered pair of open sets about xeX if G and H are open subsets of X and xcGcGcH [6]. 1.25. Definition. (|10|, Definition 2.1). A point xeX is in the u-closure of a subset $K \subset X$ (xe|K|) if each ordered pair (G,H) of open sets about xeX satisfies $K \cap H \neq 0$. A subset K of a space is u-closed if $K = |K|_{L}$. A subset K is u-open if X\K is u-closed. The next Lemma is proved in 10. 1.26. LEMMA. In any topological space (a) the empty set and whole space are u-closed, (b) arbitrary intersections and finite unions of u-closed sets are u-closed, (c) $K \subset \overline{K} \subset |K|_{\Theta} \subset |K|$ for each subset K, (d) u-closed set is u-closed (closed). From (a) and (b) of Lemma 1.26. it follows that a family t of all u-open sets of the space (X,t) is a topology on X. 1.27. Definition. Let (X,t) be a topological space. The space X is the space (X,t_{1}) . 1.28. LEMMA. The identity mapping id : $X \rightarrow X$ is continuous. P r o o f. Let F be an closed subset in X. This means that (id) $^{-1}$ (F) = F is an u-closed subset of X. By virtue of Lemma 1.26. (c) it follows that (id) $^{-1}$ (F) is closed in X.

Lončar I. Applications of O-closed	
and u-closed sets Zbornik	c radova (1984), 8
1.29. LEMMA. The identity mapping id $_{\Theta u}$: $X_{\Theta} \rightarrow X_{u}$ mapping.	is the continuous
Proof. Apply 1.26. (d).	
Every u-closed set is δ -closed since KCKC K (see Lemmas 1.20, and 1.26). An immediate conservation following	c K c K ,K cX quence is the
1.30. LEMMA. The identity mapping id : $X_s \rightarrow X_u$ mapping.	is the continuous
1.30. LEMMA. (10) The following statements ar a space X.	e equivalent for
(a) X is Urysohn, (b) $\{X\} = \bigcap \{ V : V \text{ open set containing } x \}$ fo (c) Each point in X is u-closed.	er each xɛX,
1.31. LEMMA. If X is an Urysohn space, then X	is T ₁ -space.
P r o o f. Lema 1.30. (c) implies that {x} is u This means that {x} is closed in X . u	-closed in X.
A Urysohn space X is Urysohn-closed 6 if X is in every Urysohn space in which it can be embed	
We say that a point xeX is in the u-adherence o \mathscr{F} (xeu-ad \mathscr{F}) if each Fe \mathscr{F} and ordered pair (G H) about x satisfy $F \cap H \neq \emptyset$,	
We use the following characterization of the Ur spaces ($ 6 $, Theorem 3.2.).	ysohn-closed
1.32. LEMMA. A Urysohn space is Urysohn-closed base on the space has non-empty u-adherence.	if each filter-
1.33. LEMMA. If X is a Urysohn-closed space, th family $\mathcal{F} = \{F_{\mu} : F \text{ is u-closed in } X, \mu \in M\}$ has intersection $\bigcap_{\mu} \{F_{\mu} \in M\}$.	en every centred non-empty
Proof. By virtue of Lemma 1.3. it follows t a point $x_{\epsilon}U$ -ad \mathcal{F} . Since each $F_{\mu\epsilon}$ \mathcal{F} is u-closed i.e. $x_{\epsilon} \cap \{F : \mu \in M\}$. The proof is complete.	hat there exists , we have $x_{\epsilon}F_{\mu}$

Lončar I. Applications of O-closed and u-closed sets

1.34. LEMMA. If X is Urysohn-closed, then X is compact T_1 -space.

Proof. Apply Lemmas 1.31. and 1.33.

We say that X is a strongly Urysohn space if every distinct points x, yeX have disjoint u-open neighbourhoods.

1.35. LEMMA. A space X is a strongly Urysohn space iff X is a Hausdorff space.

1.36. LEMMA. If X is a strongly Urysohn and Urysohn-closed space, then X is a compact Hausdorff space.

2. MAPPINGS FA NAD F.

Let f : X o Y be a mapping. We define a mapping f : X o Y such that $f_{\Theta}(x) = f(x)$ for every $x_{\varepsilon}X_{\Theta}$ i.e. such that the commutativity holds in the diagram



2 1. LEMMA. If f : X+Y is a continuous mapping, then f_{Θ} : $X_{\Theta}+Y_{\Theta}$ is a continuous mapping.

Proof, It suffices to prove that $f^{-1}(A)$ is 0-closed in X If A is 0-closed in Y. Let us assume that $x_{\varepsilon}|_{f^{-1}(A)}|_{\Theta}f^{-1}(A)$. This means that $f(x) \notin A$ and that $\tilde{V}_{x} \cap f^{-1}(A) \neq 0$ for each open set $V_{x} \ni x$. Since A is 0-closed, there exists open set $U \ni f(x)$ such that $\overline{U} \cap A = \emptyset$. The set $f^{-1}(U)$ is a neighbourhood of x. It follows that $f^{-1}(U) \cap f^{-1}(A) \neq \emptyset$. The contradiction $(\overline{U} \cap A = \emptyset \text{ and } f^{-1}(U) \cap f^{-1}(A) \neq \emptyset)$ complete the proof.

Lončar I. Apolications of 0-closed Zbornik radova (1984), 8 and u-closed sets	
2.2. Definition. A mapping $f : X \rightarrow Y$ is called Θ -closed if $f(A)$ is Θ -closed for each Θ -closed subset $A \subseteq X$.	
2.3. LEMMA. Let $f : X \rightarrow Y$ be a continuous mapping. The following conditions are equivalent:	
 (a) f is Θ-closed, (b) for every B⊂Y and each Θ-open set U⊇f⁻¹(B) there exists Θ-open set V⊇B such that f⁻¹(V)⊆U, (c) f_θ is a closed mapping. 	
Remark. The proof is similar to the proof of the corresponding theorem for closed mappings ($ 3 $, pp.52.).	
From 1.15, and 2,3, we obtain	
2.4. THEOREM. If X and Y are nearly-compact spaces, then every continuous mapping $f : X \rightarrow Y$ is Θ -closed.	
Lemmas 1,16, and 2.3. imply the following theorem.	
2.5. THEOREM. If $f : X \rightarrow Y$ is a continuous mapping between H-closed e.d. spaces X and Y, then f is Θ -closed.	
An open (closed) subset A of X is called regularly open (regularly closed) if $A = Int \hat{A} (A = Int A)$.	
2.6. Definition $ 12 $. A mapping f : X \rightarrow Y is said to be skeletal (HJ) if for each open (regularly open) U < X we have Int f ⁻¹ (\overline{U}) \subseteq f ⁻¹ (U).	
Now we prove the following important theorem.	
2.7. THEOREM. If X and Y are H-closed, then every HJ-mapping f ; $X \rightarrow Y$ is Θ -closed.	
Proof. Let A be a Θ -closed subset of X. This means that	
$A = \bigcap \{ \overline{V}_{\lambda} : V_{\lambda} \text{ open in } X, V_{\lambda} \supseteq A \} $ (1) where $\mathcal{V} = \{ V_{\lambda} : \lambda \in \Delta \}$ is the maximal family of open subsets containing A^{λ} Let $\mathcal{U} = \{ U_{\lambda} : \mu \in M \}$ be a family of all open subsets $U \in Y$ such that there exists $V_{\lambda} \in \mathcal{V}$ with property $f(V_{\lambda}) \subseteq U_{\mu}$.	

Lončar I. Applications of O-closed and u-closed sets

Clearly f (A)
$$\subset U_{\mu}$$
 for each $U_{\mu} \in \mathcal{U}$. Let us prove that
f (A) = $\bigcap \{ \overline{U}_{\mu} : U_{\mu} \in \mathcal{U} \}$ (2)

We prove only that $f(A) \supset \bigcap \{\overline{U}_{\mu} : U_{\mu} \in \mathcal{U}\}$ since $f(A) \subset \bigcap \{\overline{U}_{\mu} : U_{\mu} \in \mathcal{U}\}$. Suppose that $y \in \bigcap \{\overline{U}_{\mu} : \mu \in M\}$. For every open $W \ni y$ we have $\overline{W} \cap f(V_{\lambda}) \neq \emptyset$ since $\overline{W} \cap f(V_{\lambda}) = \emptyset$ implies that $Y \setminus \overline{W} \supset f(V_{\lambda})$, $Y \setminus \overline{W} \in \mathcal{U}$ and $y \in Y \setminus \overline{W}$. Now, the set $W^{-1} = Int \overline{W}$ is regularly open and, by virtue of 2.6., we have

Int
$$f^{-1}(\overline{W}) \leq f^{-1}(W')$$
 (3)

From (3) and $f^{-1}(W^{-}) \cap V_{\lambda} \neq \emptyset$ it follows that $f^{-1}(W^{-}) \cap V_{\lambda} \neq \emptyset$ for each $V_{\lambda} \in \mathcal{V}$. The family $\mathcal{V}^{-} = \{V_{\lambda}^{-} : V_{\lambda}^{-} = f^{-1}(W^{-}) \cap V_{\lambda}\}$ is centred family in H-closed space X. Hence, there exist $x \in X$ with property $x \in \bigcap \{\overline{V_{\lambda}} \in : V_{\lambda}^{-} \in \mathcal{V}^{-}\}$ It is easily to prove that $x \in A$ and $f(x) \in \bigcap \{\overline{W} : W \text{ is open set about } y\}$. This means that y = f(x) since Y is a Hausdorff space. The proof is complete.

2.8. EXAMPLE. We shall now show that there exists a O-closed mapping which is not a HJ-mapping. Let X = |0;1| with the following topology: the neighbourhoods of every point $x \neq 0$ are the same as those in the usual topology of |0,1|, but the neigbourhoods of $x_1 = 0$ are the sets of the form $|0,\varepsilon\rangle \setminus D$, where $D = \{1, \frac{1}{2}, \dots, \frac{1}{2}, \dots, \frac{1}{2}; 0 < \varepsilon < 1$. The space X is H-closed and Uryshon i.e. X is hearly-compact. Let us define f:X $\rightarrow X = Y$ so that f(x) = x for x < 0,6; f(x) = 0,6 if 0,6 < x < 0,8 and f (x) = 2x - 1. The mapping f : X $\rightarrow X$ is continuous. By virtue of Theorem 2.4. f is O-closed. Let us prove that f is not an HJ-mapping. Let V = (0,6; 1| be regularly open subset of Y. Now, $f^{-1}(V) = (0,8; 1| \subset X \text{ and } f^{-1}(V) = |0,8; 1|$. In the other hand we have $\overline{V} = |0,6; 1|$, $f^{-1}(\overline{V}) = |0,6; 1|$ and $\operatorname{Int} f^{-1}(\overline{V}) = (0,6; 1)$. It follows that $\operatorname{Int} f^{-1}(\overline{V}) \supset f^{-1}(V)$ an, therefore, f is not HJ,

A mapping f : $X \rightarrow Y$ is semi-open if Int f (U) $\neq \emptyset$ for any open subset U $\subset X$.

Every semi-open mapping is HJ. An open mapping $f : X \rightarrow Y$ is semi-open.

We say that the mapping $f : X \rightarrow Y$ is irreducible if the set $f \not = \{y : f^{-1}(y) \cup y\}$ is non-empty for any non-empty open set U X.

Every closed irreducible mapping is a semi-open mapping.

A mapping f : X-Y has the inverse property if, for each open $V \subseteq Y$, we have $f^{-1}(\overline{V}) = f^{-1}(V)$.

Every open mapping has the inverse property, and every mapping with inverse property is an HJ-mapping.

2.9. LEMMA. Let X be an H-closed space. If the mapping $f:X \rightarrow Y$ has the inverse property or is semi-open (open, closed irreducible), then $f: X \rightarrow Y$ is O-closed.

Proof. Lemma follows from Theorem 2.7.

2.10. REMARK. The notion of the $\delta\text{-closed}$ mapping were introduced by Noiri [13].

Let us go to the discusion on the u-closed mappings.

For each mapping $f : X \rightarrow Y$ we define the mapping $f : X \rightarrow Y$ such that the commutativity holds in the diagram

2.11. LEMMA. If f : X+Y is continuous, then $f: X \to Y$ is continuous.

Proof is parabell to the proof of Lemma 2.1.

2.12. Definition. A continuous mapping $f : X \rightarrow Y$ is called u-closed if f (A) is u-closed for each u-closed subset $A \subseteq X$.

2.13. LEMMA. For each continuous mapping $f : X \rightarrow Y$ the following conditions are equivalent:

Lončar I, Applications of 0-closed Zbornik radova (1984), 8 and u-closed sets

(a) f is u-closed, (b) for each B GY and each u-open set Upf⁻¹ (B) there exists an u-open set V2B with property f⁻¹ (V) $\leq U$, (c) f_u : X $\rightarrow Y$ is closed. Proof. See the remark on the proof of Lemma 2.3. 2.14. LEMMA. Every continuous mapping f : X+Y betwen the strongly Urysohn and Urysohn-closed spaces X and Y is u-closed. Proof. Apply Lemmas 1.36. and 2.13. We close this Section with Lemma which characterize the u-closed subsets and with Theorem on the u-closedness of the HJ-mappings. 2.15. LEMMA. A subset A of X is u-closed if and only if $A = \bigcap [\overline{U}_{\mu} : U_{\mu} \text{ is open in } X \text{ such that } A \subseteq V \subseteq \overline{V} \subseteq U_{\mu} \text{ for some open } U_{\mu}$ V}. P r o o f. Necessity. Let A be u-closed if $x \in \bigcap \{\overline{U}_{t}\}$ is not in A, then there exists an ordered pair (G,H) about x such that $H \cap A = \emptyset$. The sets $V = X \setminus H$ and $U = X \setminus G$ have the property $A \subset V \subset V \subset U$. It follows that $x \notin \cap \{\overline{U}\}$ which contradicts with $x \in \cap \{ \overline{U} \},$ Sufficiency. If $A = \bigcap \{ \overline{V} : \mu \in M \}$, then for $x \notin A$ there exist open sets U and V such that $A \in V \in V \in U$ and $x \notin U$. The sets $G = X \setminus \overline{U}$ and $H = X \setminus \overline{V}$ have the property xeG = \overline{G} = H. It follows that (G,H) is an ordered pair of open sets about x and that $H^{\cap}A = \emptyset$. This means that $x \notin |A|_{A}$. Therefore, A is u-closed. The proof is complete. 2.16. THEOREM. Every HJ-mapping f : X-Y between Urischn-closed spaces X and Y is an u-closed mapping. Proof, Let A be an u-closed subsets of X. By wirtue of Lemma 2.15. We have $A = \bigcap \{\overline{U} : U \text{ is open } X \text{ such that } A \in V \in \overline{V} \in U \text{ for } V$ some open V < X}. It follows that $A = \bigcap \{ \overline{U}_{u} : U_{u} \supset A, U_{u} \text{ is open, } \mu \in M \}$ (4)

We dennote the family $\{U : U_{\mu} \land A, U_{\mu} \text{ is open, } \mu \in M\}$ by \mathcal{U} . Let $\mathcal{V} = \{V_{\alpha} : V_{\alpha} \text{ is open in}^{\mu}Y \text{ such that } f(A) \in \mathcal{V} \in \mathcal{V}_{\alpha} \text{ for some open W and } f(U_{\mu}) \in \mathcal{V}_{\alpha} \text{ for some } U_{\mu} \in \mathcal{U}\}$. We shall show that

$$f(A) = \bigcap \{ \overline{V}_{\alpha} : V_{\alpha} \in \mathcal{V} \}$$
(5)

Let y be a point of $\{\overline{V} : V \in V\}$. It follows that $W \cap V \neq 0$ for each $V \in \mathcal{V}$ and each open $\overline{W} \ni x$. Relation $\overline{W} \cap f(U) \cong \emptyset$ implies that there exists a pair (W_{α}, V_{α}) such that $f(U_{\alpha}) \in V_{\alpha}$. This means that $W_{\alpha} = W_{\alpha} \setminus W = V_{\alpha} \setminus W$ are open sets with property $f(A) \in W_{\alpha} \subset W_{\alpha} \subset V_{\alpha}$. Since $x \notin V_{\alpha}$, we have $x \notin \cap \{\overline{V} : V_{\alpha} \in V\}$; a contradiction. Thus $\overline{W} \cap f(U_{\alpha}) \neq \emptyset$ for each $U \in \mathcal{U}$ and each open $W \ni x$. Clearly, $f^{-1}(\overline{W}) \cap U_{\alpha} \neq \emptyset$. It we assume that $f^{-1}(W) \cap U_{\alpha} = \emptyset$, then $U_{\alpha} = U_{\alpha} \setminus f(\overline{W}) \cap U_{\alpha} \neq \emptyset$. It we assume that $f^{-1}(W) \cap U_{\alpha} = \emptyset$,

(A) If $U \ni A$ then $f(U_{\mu}) \cap W = \emptyset$; a contradiction. This means that $f^{-1\mu}(W) \cap U \neq \emptyset$ for each $W \ni x$ and each $U \in U$. Moreover, we have that $Z = f^{-1}(W) \cap U \neq 0$. The family $\{Z : \mu \in M\}$ is centred. Thus, μ since X is UrySohn-closed, we have μ -ad $\{Z_{\mu}\}\neq\emptyset$. Let x be a point of μ -ad $\{Z_{\mu}\}$. The assumption that $x \notin A$ implies that there exist open sets U and V such that $x \in V \in V \in U$ and $\overline{U} \cap A = \emptyset$. Thus $U^{-} = X \setminus \overline{U}$ is in $\{Z_{\mu}\}$ since $U^{-} \supseteq A$. It follows that $w \notin \mu$ -ad $\{Z_{\mu}\}$; a contradiction. From $x \in \mu$ -ad $\{Z_{\mu}\}$ we have that $x \in [f^{-1}(W)]$ for every open $W \ni y$. Since f is continuous we conclude that $\mu \in (x) \in |W|$ for every open $W \ni x$. From Lemma 1.30 (b) it follows that f(x) = y.

(B) If A V U; $\neq \emptyset$ then $\tilde{W}^{\cap}f(A) \neq \emptyset$ for each open W about y. Since $\tilde{W} \in |W|_{U}$ we have $|W|_{U}^{\cap}f(a) \neq \emptyset$. This means that A = $f^{-1}(|W|)^{\cap}A \neq \emptyset$. The family $\{A_{\mu}\}$ is centred family in X^µ. Since X is Urysohn-closed, there exist x X such that x u-ad $\{A_{\mu}\}$. It is clear that x A since A is u-closed. Moreover, f(x) $\in \{\cap |W|$: W open set about y}. Lemma 1.30. (b) implies that f(x) = y.

Finally, we conclude that for every point of $\bigcap \{ \vec{V} : V \in \mathcal{V} \}$ there exist xcA such that f(x) = y i.e. (5) is proved. From Lemma 2.15. and (5) it follows that f(A) is u-closed. The proof is complete. 2.16. EXAMPLE. If X is the space as in Example 2.8, then $|A|_{\Theta} = |A|_{U}$ for each A \subset X. Moreower, X is Urysohn-closed. It follows that f : X-Y definied in 2.8, is u-closed but not an HJ-ma-ping.

3. INVERSE SYSTEM X AND X

For every inverse system $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ we introduce two inverse system denoted by X_{θ} and X. Indeed, for every space X_{α} there exist the spaces $(X_{\alpha})_{\theta}$ and $(X_{\alpha})_{u}$ which are definied in Section 1. From the second Section it follows that for each mapping $f_{\alpha\beta} : X_{\beta} \rightarrow X_{\alpha}$ there exist the mappings $(f_{\alpha\beta})_{\theta}$ nad $(f_{\alpha\beta})_{u}$. From the diagrams of the second Section it follows the transitivity conditions $(f_{\alpha\beta})_{\theta} (f_{\beta\gamma})_{\theta} = (f_{\alpha\gamma})_{\theta}$ and $(f_{\alpha\beta})_{u} (f_{\alpha\beta})_{u} = (f_{\alpha\gamma})_{u}$.

3.1. LEMMA. If $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is an inverse system, then there exist the identity mappings $Id_{\Theta} : X \to X_{\Theta}$ and $Id_{U}: X \to X_{U}$.

The following Lemma is an immediate consequence of Lemma 3.1.

3.2. LEMMA. If $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is an inverse system, then lim $X \neq \emptyset$ iff lim $X_{\Theta} \neq \emptyset$ (lim $X_{\Pi} \neq \emptyset$).

In the sequel we use the following Stone's theorems.

3.3. THEOREM. (A.H. Stone |14|). Let $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of compact non-empty T spaces and closed maps. Then $\lim_{\alpha \to a} X \neq \emptyset$; in fact, there exists xelim X such that $x_{\alpha} = f_{\alpha}(x)$ is a closed point of X_{α} for all $\alpha \in A$.

3.4. THEOREM. (A.H.Stone |14|). Let $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of non-empty compact T spaces and continuous maps, and suppose that each $f_{\alpha\beta}$ is a surjection (for all $\alpha,\beta\epsilon A$ with $\beta>\alpha$) and that A is linearly ordered. Then $\lim X \neq \emptyset$; in fact, there exist Xelim X such that (for all $\alpha\epsilon A$) $x_{\alpha} = \overline{f}_{\alpha}(x)$ is a closed point of X_{α} .

Now we shall show the following theorem. .

3.5. THEOREM. Let $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of nonempty H-closed spaces X_{α} and Θ -closed mappings $f_{\alpha\beta}$. Then $X = \lim_{\alpha \to \infty} X \neq 0$. Moreover, if $f_{\alpha\beta}$ are onto mappings, then the projections $f_{\alpha} : X \to X_{\alpha}$ are onto.

Lončar I. Applications of 0-closed Zbornik radova (1984), 8 and u-closed sets

Proof. The inverse system $X_{\Theta} = \{(X_{\alpha})_{\Theta}, (f_{\alpha\beta})_{\Theta}, A\}$ satisfies the conditions of Theorem 3.3. since $(X_{\alpha})_{\Theta}, \alpha \in A$, are compact T_1 space (Lemma 1.12) and the mappings $(f_{\alpha\beta})_{\Theta}$ are closed(Lemma 2.3). It follows that $\lim_{X \to A} X_{\Theta} \neq \emptyset$. By virtue of Lemma 3.2. we have $\lim_{X \to A} X \neq \emptyset$. Further, if $f_{\alpha\beta}$, $\beta > \alpha$, are onto mappings, then for $x_{\alpha} \in X$ the sets $Y_{\beta} = f_{\alpha\beta}^{-1}(x_{\alpha})$ are non-empty Θ -closed sets (lemma 2.1.). This means that the system $Y=\{(Y_{\beta})_{\Theta}, (f_{\beta\gamma})_{\Theta}/Y_{\gamma}, \alpha < \beta < \gamma\}$ satisfies. Theorem 3.3. and has non-empty limit Y. From Lemma 3.2. It follows that there exist $y \in Y \subset \lim_{X \to A} X$ such that $f_{\alpha}(y) = x_{\alpha}$. The proof is complete.

3.6. THEOREM. Let $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system definied over a linearly ordered set A. If $X_{\alpha} \neq \emptyset$, $\alpha \in A$, is H-closed and each $f_{\alpha\beta}$, $\alpha < \beta$, is a surjecton, then $X = \lim X \neq \emptyset$ and each projection $f_{\alpha}: X \rightarrow X_{\alpha}$ is a surjection.

Proof. Apply Lemma 1.12. and Theorem 3.4. (See also Friedler and Pettey [4], Theorem 3.5.).

3.7. REMARK. If in the definition of the H-closed space we omit T_2 -separation axiom, then we obtain the definition of the quasi-H-closed space.

3.8. THEOREM. Let $X = \{X, f, N\}$ be an inverse sequence of non-empty quasi-H-closed spaces X_{α} and Θ -closed mappings f_{nm} . Then $X = \lim_{\alpha \to \infty} X \neq 0$.

P r o o f. The inverse sequence $\underline{X}_{\Theta} = \{(\underline{X})_{\Theta}, (\underline{f})_{\Theta}, N\}$ is an inverse sequence of non-empty compact (without separation axiom!) spaces $(\underline{X})_{\Theta}$ and closed mappings $(\underline{f}_{N})_{\Theta}$. By virtue of [14; Theorem 2.] It follows that $\lim_{n \to \infty} \underline{X} \neq \emptyset$. Lemma 3.2. complete the proof.

3.9. PROBLEM. Is it true that X in Theorem 3.5. is H-closed?

3.10. PROBLEM. Is it true that the projections f : $X \rightarrow X$ in Theorem 3.5. are 0-closed?

Theorem 3.5., along with 2.7., gives

3.11. THEOREM. If $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is an inverse system of non-empty H-closed spaces and HJ-mappings $f_{\alpha\beta}$, then X=lim X=Ø. Moreover, if f are onto, then the projections f :X × X are onto mappings.^α

3.12. COROLLARY. Let $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of non-empty H-closed spaces X_{α} and mappings $f_{\alpha\beta}$ with the inverse property or with semi-open (open, closed and irreducible) mappings. Then $X = \lim X \neq \beta$.

Let us prove that $X = \lim_{x \to \infty} X$ in Theorem 3.11. and Corollary 3.12. is H-closed,

3.13. THEOREM. Let $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system with HJ-mappings $f_{\alpha\beta}$. If the projections $f_{\alpha} : X \to X_{\alpha}$ are onto, then f_{α} are HJ-mapping.

Proof, Suppose that some projection f_{α} is not HJ-mapping. This means that there exists regularly open set $V_{\alpha} \in X_{\alpha}$ such that $Y = \inf f_{\alpha}^{-1}(\bar{V}_{\alpha}) \setminus f_{\alpha}^{-1}(\bar{V}_{\alpha}) \neq \emptyset$. Let $y \in Y$. It follows that there exists open set $f_{\beta}^{-1}(U_{\beta})$, $\beta > \alpha$, with property $f_{\beta}^{-1}(U_{\beta}) \in Y$. It is easily to prove that $f_{\beta}(x) \in \operatorname{Int} f_{\alpha\beta}^{-1}(\bar{V}_{\alpha}) \setminus f_{\alpha\beta}^{-1}(V_{\alpha})$. This is a contradiction since $f_{\alpha\beta}$ is HJ-mapping. 3.14. THEOREM. If $X = \{X_{\alpha}, f_{\beta\beta}, A\}$ is an inverse system of the H-closed spaces X_{α} and HJ-mappings $f_{\alpha\beta}$, then $X = \lim X$ is H-closed.

P roof. If $X = \emptyset$, then Theorem holds. Let $X \neq \emptyset$. Then $X_{\alpha} \neq \emptyset$, $\alpha \in A$, and the projections $f_{\alpha} : X \Rightarrow X_{\alpha}$, $\alpha \in A$, are onto HJ-mappings (Theorems 3.11, and 3.13). Let us prove that X is H-closed. It suffices to prove that each maximal centred family $\mathcal{U} = \{U : \mu \in M, U_{\mathcal{U}}\}$ is open subset of X } has the property $\bigcap \{U : \mu \in M\} \neq \emptyset$. For each $\alpha \in A$ we define the centred family $\mathcal{U} = {}^{\mu} \{U_{\mu\alpha} : U_{\mu\alpha} : is open in X_{\alpha} such that there exists U \in \mathcal{U}$. with $f_{\alpha}(U_{\mu}) \subseteq U_{\mu\alpha}, \mu \in M$ }. Now we shall show that \mathcal{U}_{α} is maximal. Let $U_{\alpha} \subset X_{\alpha}$ he an open set with the property $\bigcup \bigcap U \neq \emptyset$, $U_{\mu} \in \mathcal{U}$. It is readily seen that $\overline{U} \cap f(U) \neq \emptyset$ for each $U_{\mu} \in \mathcal{U}$. Hence, if we denote int \overline{U} by V_{α}^{α} , we have $\overline{V} \cap f(U) \neq \emptyset$ for each $U \in \mathcal{U}$. From the fact that f is HJ we conclude that $f^{-1}(V_{\alpha}) \cap U \neq \emptyset$ since $f^{-1}(V_{\alpha}) \cap U \neq \emptyset$ implies that $U^{*} = X \setminus f^{-1}(\overline{V}) \in \mathcal{U}$; a contradiction. From $f^{-1}(V) \cap U \neq \emptyset$ we infer that $f^{-1}(V) \cap U \neq \emptyset$ for each $U^{\alpha} \in \mathcal{U}$. Thus $U_{\alpha} \in \mathcal{U}$ since $f^{*}(V) \in \mathcal{U}$ and, consequently, $V \in \mathcal{U}$. Thus $U_{\alpha} \in \mathcal{U}$ since $V_{\alpha}^{\alpha} = \operatorname{Tht} \overline{U}$. This means that \mathcal{U}^{α} is maximal. In a similar

way on can prove that if $U_{\mu_{\alpha}} \approx \alpha$, then $f_{\alpha\beta}^{-1} (U_{\mu_{\alpha}}) \approx \mathcal{U}_{\beta}$, where $\beta > \alpha$. Since X_{α} is H-closed and \mathcal{U}_{α} maximal, there exists $x_{\alpha} \in X_{\alpha}$ such that $\{x_{\alpha}\} = \bigcap \{\overline{U}\mu_{\alpha} : U\mu_{\alpha} \in \mathcal{U}_{\alpha}\}$. Moreover, $f_{\alpha\beta}(x_{\beta}) = x_{\alpha}$ since $f_{\alpha\beta}^{-1}$ $(U\mu_{\alpha}) \in \mathcal{U}_{\beta}$ for each $U\mu_{\alpha} \in \mathcal{U}_{\alpha}$. It is easely to prove that $x = (x_n) \varepsilon^{\bigcap} \{ \tilde{U}_n : U_n \in \mathcal{U} \}$. This completes the proof. 3.15. PROBLEM. Let $X = \{X, f_{\alpha\beta}, A\}$ be an inverse system of H-closed spaces X_{α} and of α -closed mappings $f_{\alpha\beta}$. Is it true that (lim X) is homeomorphic to lim $X_{\alpha\beta}$? We now pass to a discussion of inverse systems of Urysohnclosed spaces. 3.16. THEOREM. Let $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system non-empty Urysohn-closed spaces. If the mappings f are u-closed, then $X = \lim X \neq \emptyset.$ Proof. Inverse system $X = \{(X_{\alpha})_{\mu}, (f_{\alpha\beta})_{\mu}, A\}$ is an inverse system of non-empty compact spaces wit closed mappings $(f_{\alpha\beta})_{\mu}$ (Lemmas 1.31, 1.34. and 2.13). Theorem 3.3. complete the proof. 3.17. PROBLEM: Is X = Iim X (in Theorem 3.16) an Urysohnclosed space? 3.18, PROBLEM. Is it true that in the case of Theorem 3.16. the projections f_{x} : $X \rightarrow X_{x}$ are u-closed? From Lemma 2.11, and Theorem 3.4. it follows 3.19. THEOREM. Let $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of non-empty Urysohn-closed spaces definied over a linearly ordered set A. If each mapping $f_{\alpha\beta}$ is onto, then $X = \lim_{\alpha X} X \neq \emptyset$ and each projection $f_{\alpha} : X \neq X$ is onto. Similarly, from Lemma 1.36. and Theorem 3.3. we obtain the following theorem, 3.20. THEOREM. If $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is an inverse system of non-empty strongly Urysohn and Urysohn-closed spaces X, then

 $X = \lim X \neq \emptyset.$

Lončar I. Applications of O-closed Zbornik radova (1984), 8 and u-closed sets

3.21. THEOREM. Let $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of non-emtpy Urysohn-closed spaces X_{α} and the HJ-mappings $f_{\alpha\beta}$. Then $X = \lim_{\alpha} X \neq \emptyset$. Moreover, the projections $f_{\alpha} : X \rightarrow X_{\alpha}$ are onto mappings.

Proof. Inverse system $X = \{(X_{\alpha}), (f_{\alpha}), A\}$ is an inverse system of non-empty compact I_1 spaces $(X_{\alpha})_{\mu}$ (Lemma 1.34) with closed mapping $(f_{\alpha\beta})_{\mu}$ (Theorem 2.16). From Theorem 3.3. it follows that $\lim_{\lambda \to 0} X_{\mu} \neq \emptyset$. Hence, $X = \lim_{\lambda \to 0} X \neq \emptyset$. Q.E.D.

We close this Section with the following problem.

3.22. PROBLEM. Let $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of the Urysohn-closed spaces X_{α} and the HJ-mappings (semi-open mappings, open mappings or closed, irreducible mappings) $f_{\alpha\beta}$. Is $X = \lim_{\alpha \to \infty} X$ Urysohn-closed?

REFERENCES

- /1/ Aleksandrov P.S. ard Urysohn P.S. Memuar o kompaktnyh topologičeskih prostranstvah (Nauka, Moskva, 1971).
- /2/ Cameron D.E., Properties of S-closed spaces, Proc.Amer.Math. Soc. 72 (1978) 581-586.
- /3/ Engelking R., General Topology (PWN, Warszawa, 1977.
- /4/ Friedler L.M. and Pettey D.H., Mappings and inverse limits of minimal topological spaces, Pacific J. Math. 71 (1977) 423-448.
- /5/ Herrington L.L., Properties of nearly-compact spaces, Proc. Amer. Math. Soc. 45 (1974) 431-436.
- /6/ Herrington L.L., Characterizations of Urysohn-closed spaces, Proc. Amer. Math. Soc. 55 (1976) 435-439.
- /7/ Herrington L.L. and Long P.E., Characterizations of C-compact spaces, Proc. Amer. Math. Soc. 52 (1975) 417-426.
- /8/ Herrington L.L. and Long P.E., Characterizations of H-closed spaces, Proc. Amer. Math. Soc. 48 (1975) 469-475.
- /9/ Joseph J.E., On H-closed spaces, Proc. Amer. Math. Soc. 55 (1976) 223-226.

- /10/ Joseph J.E., On Urysohn-closed and minimal Urysohn spaces, Proc. Amer. Math. Soc. 68 (1978) 235-242.
- /11/ Lončar I., A note on inverse systems of H-closes spaced (to appear)
- /12/ Mioduszewski J. and Rudolf L., H-closed and extremally disconnected Hausdorff spaces (Diss. Math. 51 Warszawa 1969).
- /14/ Stone A.H., Inverse limits of compact spaces, General topology and its Applications 10 (1979) 203-211.
- /25/ Thompson T., S-closed spaces, Proc. Amer. Math. Soc. 60 (1976) 335-338.
- /17/ Viglino G., C-compact spaces, Duke Math. J. 38 (1971) 57-61.
- /18/ Vinson T.O. and Dickman R.F. Jr., Inverse limits and absolutes of H-closed spaces, Proc. Amer. Math. Soc. 66 (1977) 351-358.

Primljeno: 1984-04-06

Lončar I. Primjene O-zatvorenih i u-zatvorenih skupova

SAŽETAK

U radu se izučavaju topologije koje su slabije od zadane topologije t prostora (X,t). Te se topologije definiraju pomoću Θ -zatvorenih i u-zatvorenih skupova prostora (X,t). Dobiveni prostori X₀ i X su najčešće T -kompakti. Na temelju toga moguće je svakom inverznom sistemu X pridružiti inverzne sisteme X₀ i X na koje se mogu primijeniti Stoneovi rezultati za T kompakte. Na taj se način dobivaju neki novi teoremi o nepraznosti limesa inverznih sistema.