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The new focus of wireless communication is shifting from voice to multimedia services. There is a growing inter-
est in providing and improving radio coverage for mobile phones, short range radios and WLANs inside buildings.
The need of such coverage appears mainly in office buildings, shopping malls, train stations where the subscriber
density is very high. The cost of cellular systems and also the one of indoor wireless systems depend highly on
the number of base stations required to achieve the desired coverage for a given level of field strength. There are
already numerous optimization methods published which can be applied to theoptimal design of such indoor net-
works [2,3,4,5]. The recently published methods use any heuristic technique for finding the optimal Access Point
(AP) positions. Common drawbacks of the methods are the slow convergence in a complex environment like the
indoor one.
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Globalne optimizacijske metode za odre�ivanje pokrivanja u zatvorenom prostoru. Zadnjih godina fokus
bežǐcnih komunikacija usmjerio se iz glasovnih na multimedijske usluge. Postoji povećani interes u pružanju i
poboljšanju pokrivenosti radio signala za mobilnu telefoniju, za radio sustave kratkog dometa i WLAN unutar
zatvorenog prostora. Potreba za takvom pokrivenošću pojavljuje se uglavnom u uredskim zgradama, trgovačkim
centrima, željezničkim stanicama, gdje je gustoća pretplatnika vrlo visoka. Cijena mobilnih sustava i bežičnih
sustava za zatvorene prostore bitno ovisi o broju baznih stanica potrebnih za postizanje željene pokrivenosti za
odre�enu razinu jakosti polja. Postoje brojne optimizacijske metode koje se mogu primijeniti za postizanje opti-
malnog dizajna takvih mreža za zatvorene prostore [2,3,4,5]. Nedavno razmatrane metode koriste neku od heuris-
tičkih tehnika za pronalaženje optimalnih pozicija za pristupne točke (AP). Naǰceš́ci nedostatak razmatranih metoda
je spora konvergencija rješenju u složenom okruženju kao što je zatvoreni unutrašnji prostor.

Klju čne riječi: pokrivenost radio signala u zatvorenom prostoru, optimizacija, propagacija

1 INTRODUCTION

The new focus of wireless communication is shifting
from voice to multimedia services. User requirements are
moving from underlying technology to the simply need re-
liable and cost effective communication systems that can
support anytime, anywhere, any device. While a signifi-
cant amount of traffic will migrate from mobile to fixed
networks, a much greater amount of traffic will migrate
from fixed to mobile networks. In many countries mo-
bile operators are offering mobile broadband services at
prices and speeds comparable to fixed broadband. Though
there are often data caps on mobile broadband services
that are lower than those of fixed broadband, some con-
sumers are opting to forgo their fixed lines in favor of mo-
bile [1]. There is a growing interest in providing and im-
proving radio coverage for mobile phones, short range ra-
dios and WLANs inside buildings. The need of such cov-
erage appears mainly in office buildings, shopping malls,

train stations where the subscriber density is very high. The
cost of cellular systems and also the one of indoor wireless
systems depend highly on the number of base stations re-
quired to achieve the desired coverage for a given level of
field strength [10].

The design objectives can list in the priority order as RF
performance, cost, specific customer requests, ease of in-
stallation and ease of maintenance. The first two of them
are close related to the optimization procedure introduced
and can take into account at the design phase of the radio
network. There are already numerous optimization meth-
ods published which can be applied to the optimal design
of such indoor networks [6,7,9,13]. The recently published
methods use any heuristic technique for finding the opti-
mal Access Point (AP) or Remote Unit (RU) positions.
Common drawback of the methods are the slow conver-
gence in a complex environment like the indoor one be-
cause all of the methods are using the global search space
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i.e. the places for APs are searched globally.

This article presents approaches in optimizing the in-
door radio coverage using multiple access points for indoor
environments. First the conventional Simple Genetic Algo-
rithm (SGA) and Simulated Annealing (SA) is shortly in-
troduced and applied to determine the optimal access point
positions to achieve optimum coverage. Next to overcome
the disadvantage of SGA two optimization methods are
applied Divided Rectangles (DIRECT) global optimization
technique and Kriging based interpolator is used as Surro-
gate function for optimization is introduced and compar-
isons are made for the methods deployed.

2 THE INDOOR PROPAGATION MODEL AND
THE BUILDING DATABASE

In our article the Motley-Keenan [4] model was used
to analyze indoor wave propagation. This empirical type
prediction model is based on considering the influence of
walls, ceilings and floors on the propagation through dis-
parate terms in the expression of the path loss.

The overall path loss according to this model can be
written as

L = LF + La, (1)

whereLF is the free space path loss andLa is an additional
loss expressed as

La = Lc +

I∑

i=1

kwiLwi +

J∑

j=1

kfjLfj , (2)

whereLc is an empirical constant term,kwi is the number
of penetratedi type walls,kfj is the number of penetrated
floors and ceilings of typej, I is the number of wall types
andJ is the number of floor and ceiling types.

For the analyzed receiver position, the numberski and
kj have to be determined through the number of floors and
walls along the path between the transmitter and the re-
ceiver antennas. In the original paper [4] only one type of
walls and floors were considered, in order for the model to
be more precise a classification of the walls and floors is
important. A concrete wall for example could present very
varying penetration losses depending on whether it has or
not metallic reinforcement.

It is also important to state that the loss expressed in
(2) is not a physical one, but rather model coefficients, that
were optimized from measurement data. ConstantLc is the
result of the linear regression algorithm applied on mea-
sured wall and floor losses. This constant is a good indi-
cator of the loss, because it includes other effects also, for
example the effect of furniture.

For the considered office type building, the values for
the regression parameters have been found (Table 1.).

The Motley-Keenan model regression parameters have
been determined using Ray Launching (RL) determinis-
tic radio wave propagation model. These calculations were
made for the office-type building floor of the Depart-
ment of Broadband Infocommunication and Electromag-
netic Theory at Budapest University of Technology and
Economics (Fig. 1). The frequency was chosen to 2450
MHz with a λ/2 transmitter dipole antenna mounted on
the 2m height ceiling at the center of the floor.

The receiver antenna has been applied to evaluate the
signal strength at(80 × 5) × (22 × 5) = 44000 different
locations in the plane of the receiver. At each location the
received signal strength was obtained by RL method using
ray emission in a resolution of10. A ray is followed until
a number of8 reflections are reached and the receiver res-
olution in pixels has an area of0.2 · 0.2 m2. The receiver
plane was chosen at the height of 1.2 m.

Table 1. The regression parameters
Wall type Nr. of 

Layers 

Layer widths Regression 

parameter 

[dB] 

Brick 1 Brick  6 cm 4.0 

Brick 1 Brick  10 cm 5.58 

Brick 1 Brick  12 cm 6.69 

Brick+ 
Concrete 

3 Brick  6 cm 
Concrete  20 cm 

Brick  6 cm 

11.8 

Brick+ 

Concrete 

3 Brick  10 cm 

Concrete  12 cm 
Brick  10 cm 

14.8 

Brick+ 

Concrete 

3 Brick  6 cm 

Concrete  10 cm 
Brick  6 cm 

9.3 

Brick 1 Brick  15 cm 8.47 

Concrete 1 Concrete  15 cm 6.56 

Concrete 1 Concrete  20 cm 8 

Concrete 3 Concrete  15 cm 

Air  2 cm 
Concrete  15 cm 

12.47 

Glass 3 Glass  3 mm 

Air  10 cm 

Glass  3 mm 

0 

Plasterboard 1 Plasterboard  5 cm 4.5 

Wood 1 Wood  6 cm 0.92 

Wood 1 Wood  10 cm 0.17 

_ 

_ 

_ 

_ 
_ 

_ 

_ 
_ 

_ 

_ 
_ 

_ 

_ 

_ 

_ 

_ 

_ 
_ 

_ 

_ 
_ 

_ 

_ 

_ 

The wall construction is shown on Fig. 1 made of pri-
marily brick and concrete with concrete ceiling and floor,
the doors are made of wood. The coefficients of the model
have been optimized on the data gathered by the RL simu-
lation session described above.

The geometrical description of the indoor scenario is
based on the concept that the walls has to be partitioned
to surrounding closed polygons and every such polygons
are characterized by its electric material parameters.
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Corridor

Windows

Fig. 1. The building database

The data base for the ray tracing method in our appli-
cations can not contain cut-out surfaces directly, such as
windows, doors. Therefore the cut-out surface description
is based on surface partitioning of the geometry as can be
seen in Fig. 2.

Fig. 2. A possible polygonal partitioning of windowed
walls for ray tracing method

3 OPTIMIZATION METHODS

There are already numerous optimization methods pub-
lished which can be applied to the optimal design of such
Hybrid Fiber Radio indoor networks [6,7,9,13]. The re-
cently published methods use any heuristic technique for
finding the optimal AP or RU positions. Common draw-
back of the methods are the slow convergence in a complex
environment like the indoor one because all of the methods
are using the global search space i.e. the places for APs are
searched globally.

Heuristic search and optimization is an approach for
solving complex and large problems that overcomes many
shortcomings of traditional (gradient type) optimization
techniques. Heuristic optimization techniques are general
purpose methods that are very flexible and can be app-
lied to many types of objective functions and constraints.
Another advantage of heuristic methods is their simplic-
ity because of its gradient-free nature. Gradient free op-
timization methods are primarily based on the objective
function values and are suitable for problems either with
many parameters or with computationally expensive ob-
jective functions.

In the paper two global optimization methods the Sim-
ple Genetic Algorithm (SGA) and a method using Divided
Rectangles (DIRECT) global search algorithm are used
with wave propagation solver as can be seen in Fig. 3.

 

Wave 
Propagation 

Analyzer 

Initial 
geometrical 
parameters 

SGA, SA 
or DIRECT 
Optimizer 

Tolerance met or 
Max. iteration 

y 

n 

Parameter set 
optimized 

Fig. 3. Diagram of Wave Propagation analyzer and opti-
mizer
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3.1 Optimization Method through Simple Genetic
Algorithms (SGA)

Genetic Algorithms (GA) are increasingly being app-
lied to complex problems. Genetic Algorithm optimizers
are robust, stochastic search methods modeled on the prin-
ciples and concepts of natural selection [3,5,8,12] (Fig. 4).

If a receiver position that is fully described byNpar pa-
rameters arranged in a vectorx = {xi|i = 1, . . . , Npar} is
considered, then the knowledge ofx permits the evaluation
of the objective functionf(x), which indicates the worth
of a design (the area coverage percentage). It is assumed
thatxi take on either real or discrete values, and thatf(x)
needs to be maximized.

The GA does not operate onx but on a discrete rep-
resentation or chromosomep = {gi|i = 1, . . . , N} of x,
each parameterxi being described by a genegi. Each gene
gi in turn consists of a set ofN i

all all that are selected from
a finite alphabet and that together decode a uniquexi.

The GA does not limit themselves to the iterative refine-
ment of a single coded design candidate; instead the simple
GA (SGA) simultaneously acts upon a set of candidates or
population

p̄ = {p(i)| i = 1, ..., Npop} , (3)

whereNpop is the population size.

Starting from an initial population̄p0, the SGA itera-
tively constructs populations̄pk, k = 1..Ngen, with Ngen

denoting the total number of SGA generations. Subsequent
generations are constructed by iteratively acting uponp̄0

with a set of genetic operators. The operators that induce
the transitionp̄k → p̄k+1 are guided solely by knowledge
of the vector of objective function values

fk =
{
f
(
x
(
pk (i)

))∣∣ i = 1..Npop

}
, (4)

and induce changes in the genetic makeup of the popula-
tion leading to āpk+1 comprising individuals that are, on
average better adapted to their environment than those in
p̄k , i.e., they are characterized by higher objective func-
tion values.

This change is effected by three operators mentioned in
the introduction: selection (S), crossover (C), and mutation
(M).

The selection operator implements the principle of sur-
vival of the fittest. Acting on̄pk , S produces a new pop-
ulation p̄kS = S

(
p̄k
)

again of sizeNpop that is, on aver-
age, populated by the better-fit individuals present inp̄k.
Among the many existing schemes tournament selection
has been chosen. The crossover operator mimics natural
procreation. Specifically, C acts upon the populationp̄kS by
mating its members, thereby creating a new population

 

Start 
Initialize 

Population 0p  
k=0 

Evaluate fk 

Conver                   
ge? End 

Selection: 

( )kk

S pSp =  

Crossover: 

( )k

C

k

C pCp =  

Mutation: 

( )k

M

k

M pMp =  

k

M

1k
pp =

+
 

k=k+1 

Fig. 4. The flowchart of a simple GA

pkC =

Npop/2⋃

i=1

C
(
ch

(
pkS

)
, ch

(
pkS

))
, (5)

where the chromosome crossover operatorC selects a ran-
dom crossover alleleaNcross between the two chromo-
somes to be crossed upon which it acts with probability
Pcross.

The mutation operator generates a new population of
size by introducing small random changes intop̄kC . The
action ofM can be represented in operator form as

pkM =

Npop⋃

i=1

M
(
pkC(i)

)
. (6)

The cost function of the optimization procedure has
been the coverage percentage of the points for which the
received power is greater than a given level

f = c (Prec) =

= Number of points (Pthresh.<Prec)
Total number of test points .

(7)

72 AUTOMATIKA 53(2012) 1, 69–79



Global Optimization of Indoor Radio Coverage L. Nagy

3.2 Simulated Annealing

Simulated annealing is a probabilistic method for find-
ing the global minimum of a cost function that may pos-
sess several local minima. It works by emulating the phys-
ical process whereby a solid is slowly cooled so that when
eventually its structure is “frozen”, this happens at a mini-
mum energy (minimum cost function) configuration [14].

The Algorithm Simulated Annealing is stated as follows
with the basic elements:

1. Finite setS of points on the user defined examination
area (0 ≤ x ≤ 80 ; 0 ≤ y ≤ 22).

2. A cost functionf defined on examination area.

3. For eachi ∈ S, a setS (i) ⊂ S− (i), called the set of
neighbors ofi.

4. For every i, a collection of positive coefficients
qij , j ∈ S (i), such that

∑
j∈S(i) qij = 1. It is

assumed thatj ∈ S (i) if and only if i ∈ S (j).

5. A nonincreasing functionT : N → (0,∞), called
the cooling schedule. Here N is the set of positive in-
tegers, andT (t) is called the temperature at timet.

The flowchart and algorithm of Simulated Annealing
are the follows.

 

 

Initialize 

Configuration x0 

T0, k=0 

Perturb Configuration 

S i Si+1 

f(Si+1)<f(Si) 

End 

Accept Si+1 as new 

configuration 

n 

y 

T(k+1)=T(k)*α  

T(k+1)<Tmin 

y 
n 

n 

y 

exp(f(Si)-f(Si+1))/T(k)> 

random(0,1) 

Fig. 5. The flowchart of a SA

Algorithm 1 Simulated Annealing

x (0) ∈ S initial set
while fobjective > flimit and iteration steps< iteration
stepslimit do

if f (j) ≤ f (i) then
x (t+ 1) = j

else iff (j) > f (i) then
x (t+ 1) = j
with probabilityexp [− (f (j)− f (i)) /T (t)]

else
x (t+ 1) = i

end if
end while

3.3 DIRECT algorithm

The DIRECT optimization algorithm is a derivative-free
global algorithm that yields a deterministic and unique so-
lution [2]. Its attribute of possessing both local and global
properties make it ideal for fast convergence. An essential
aspect of the DIRECT algorithm is the subdivision of the
entire design space into hyper-rectangles or hyper-cubes
for multidimensional problems.

The iteration starts by choosing the center of the de-
sign space as the starting point. Subsequently, at each iter-
ation step, DIRECT selects and subdivides the set of hyper-
cubes that are most likely to produce the lowest objective
function. This estimation is based on Lipschitzian opti-
mization method. Basically for one dimension a function
is called Lipschitz continuous on domainR with Lipschitz
constantα if

|f (x1)− f (x2)| ≤ α |x1 − x2| , x1, x2 ∈ R, (8)

wheref(x) is the objective function for the optimization
problem.

The complementary of the coverage percentage which
has to be minimized was chosen as objective function for
the DIRECT algorithm

f (x) = 1− c (Prec) . (9)

The Lipschitzian function finds the global minimum
point provided the constantα is specified to be greater than
the largest rate of change of the objective function within
the design space and that the objective function value is
continuous.

As mentioned above, DIRECT divides the domain into
multiple rectangles in each iteration. Thus, the conver-
gence process is greatly sped up and the optimization algo-
rithm achieves both local and global searching properties.
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Fig. 6. DIRECT global optimizer search steps

As illustration of subdividing the search region into
hyper-rectangles and sampling, two dimensional problem
optimization steps are shown in Fig. 6.

The Algorithm DIRECT is stated as follows.

Algorithm 2 DIRECT
Start point at the center of the user defined area (0 ≤
x ≤ 80 ; 0 ≤ y ≤ 22)
while fobjective > flimit and iteration steps< iteration
stepslimit do

Divide the area of investigation space into three rect-
angles
Set centers of three rectangles
Use the Lipschitz constantα to select the rectangle
that has to be divided

end while

4 RESULTS

Figure 7 shows the objective function which is the cov-
ered area percentage for the (X,Y) points as AP. If for in-
stance the AP position is at (18,11) than the coverage is
more than 30%, but if at (45,19) than the coverage is less
than 15%.

Figure 7 clearly shows the multiple local maximums of
the objective function and therefore the motivation to apply
heuristic optimization methods.

The brute force search which would be a possible op-
timization search doesn’t give the expected result because
of the huge computational demand (Table 2.).

The testing of the SGA optimization has been done with
two testing cases at the office building in which first opti-
mizing the coverage for part of the floor area and secondly
for the whole level.

The results are shown for population size of 14,
crossover probability –0.12, mutation probability –0.01,
simple roulette wheel selection and simple elitist strategy.

Fig. 7. Objective function for 1 AP

Table 2. Exhaustive (Brute Force) Search
Number 

of APs  

Resolution of 

search space 

Comp. time Result of 

optimization 

1AP 1m x 1m grid 

(1738 points) 

5.5 min 33.67% 

(19;12) 

2AP 1m x 1m grid 159 hours 
(estimated) 

 

1AP 0.5m x 0.5m grid 22 min 34.57% 

(18.5;12.5) 

2AP 0.5m x 0.5m grid 637 hours 
(estimated) 

 

The first scenario is an optimization on AP positions
(circles in Fig. 8) of the half part of the floor. Figure 8
shows the original 4 AP positions which were chosen to
best coverage in laboratories and the corridor coverage was
not an aim. The 9 shows the optimal AP positions using the
cost function of (7). The simulated distribution of received
power for the two geometries is shown in Fig. 10,11 with
the measured results.

To make the measurements we have chosen WLAN APs
and the power levels were measured using laptops with ex-
ternal wireless adapter moved on the area of investigation.
90 sampling points in distances of 1 m were chosen on the
level and the comparison of Fig. 10 and 11 show a good
agreement for the received power distribution.

The most important change in the distribution of op-
timized and not optimized cases is increased number of
points with proper coverage (Table 3.).

Table 3. Area Coverage for Optimized and not Optimized
Case

Configuration Not optimized Optimized 

Coverage for Prec>-60dBm 

(simulation) 

40% 75% 

Coverage for Prec>-60dBm 
(measurement) 

50% 80% 

The convergence of the Genetic Algorithm can be im-
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Area of investigation 

Fig. 8. Original (not optimized) AP positions

 

Area of investigation 

Fig. 9. Optimized AP positions

 

Fig. 10. Cumulative Density Function of received power
level (not optimized)

proved by adjusting the crossover and mutation probabil-
ity. Figure 12 shows the convergence dependence on these
parameters for the same generation size.

Figure 12 shows a significant dependence of conver-
gence on GA parameters and this result in a 1 to 10 running
time ratio. The iteration step means that the number of nec-

 

Fig. 11. Cumulative Density Function of received power
level (optimized)

Pc=0.22 ; Pm=0.01 
Pc=0.12 ; Pm=0.01 
Pc=0.12 ; Pm=0.02 

  46 

  45 

  44 

  43 

  42 

  41 

  40 

  39 

  38 

  37 

Fig. 12. Genetic Algorithm convergence

essary objective function evaluation can be calculated by
multiplying with the population size.

The second simulation is on the entire floor level and the
aim of the simulation is to compare the necessary number
of APs for the same area coverage.

Figure 13 shows plausible positions of APs and the Fig.
14 the optimized ones.

Figure 14 and Table 4 summarizes the importance of AP
or RU position of radio network. With the proper choice of
the placement the optimized 3 AP network configuration
results nearly the same coverage as the configuration 6 AP
with APs installed in plausible positions.

Table 4. Area coverage for optimized and not optimized
cases

Configuration 3AP 4AP 6AP 

Coverage (not optimized) 55% 60% 66% 

Coverage (optimized) 65% 75% 87% 
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Fig. 13. Plausible AP positions

 

Fig. 14. Optimized AP positions

Fig. 15. Optimized and not optimized CDF using 3 and 4
APs

Next we compare the SGA and SA heuristic optimiza-
tion methods for a 1 AP optimization case. First has to be
established that SA (cooling rate -α, population size) has
very similar sensitivity to the proper parameter choice like
SGA (mutation, crossover probability, population size).
Our experience shows a slight advantage for SGA for our
optimization task and problem size (Fig. 16).
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Fig. 16. Convergence rate of SGA and SA for a parameter
set

As we have shown the SGA is a powerful global op-
timization tool to improve the indoor coverage for indoor
data mobile radio network and other mobile radio systems
[5,8]. The main drawback of the method is the ambiguous
convergence and therefore its application needs experience
of the user. The DIRECT global optimization algorithm is
a derivative-free global algorithm that yields a determinis-
tic and unique solution. In the next simulation results will
be shown using DIRECT for the same indoor AP position
optimization problem. We are comparing DIRECT to SGA
and the main point of comparison is the number of evalua-
tion of objective function.

It is worth to investigate the candidate points for the AP
position by the DIRECT algorithm. The simplest case is
analyzed for one AP network and the investigated and best
candidate points are shown in accordance with the objec-
tive function the area of coverage percentage in Fig. 19.
The objective function was only evaluated 1 by 1 m reso-
lution. It is well appreciable the testing of the attractiveAP
positions with high area coverage property.

Next the convergence of SGA and DIRECT will be
compared in Fig. 20, 21 and 22. It can be point out that the
DIRECT algorithm behaves well for 1 or 2 AP optimiza-
tion problems (i.e. for 2 and 4 dimensional optimizations)
but the convergence rate achieve is far below the SGA for
3 AP problem. Similar behavior can be experienced for
higher dimensional optimization problems.

Based on this investigations DIRECT algorithm can be
proposed for low dimensional cases till 4 dimensions but
the theoretically guaranteed fast and unique solution of
global problem has to analyzed further.

The last part shows the comparisons of SGA and the
proposed hierarchic two steps optimization method, first
the convergence of the simple Genetic Algorithm for dif-
ferent population sizes (Fig. 23). Now we investigate 6 AP
optimization cases in order to validate the two step method.
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Fig. 17. Candidate points for AP position (after 12, 24,
36. . . iterations, DIRECT)

 

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

Fig. 18. Best candidate point for AP position (after 12, 24,
36. . . iterations, DIRECT)

Fig. 19. Best candidate points for AP position (Area of cov-
erage % is also shown for this zoomed area)

As we have seen problems of dimensions above 4 can not
be analyzed with DIRECT and therefore for comparison

Fig. 20. Convergence of SGA and DIRECT for 1 Access
Point

Fig. 21. Convergence of SGA and DIRECT for 2 Access
Points

Fig. 22. Convergence of SGA and DIRECT for 3 Access
Points

this 12-dimensional problem will be investigated. First the
GA optimization is shown after performing the AP search
by using power law path loss model i.e. the hierarchic ap-
proach. Finally the optimization results are analyzed.

Figure 23 presents effect of values population size,
crossover (C) and mutation (M) probability on conver-
gence for 6 APs placement and single GA optimization in
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our simulations.

The population size extension effect a better conver-
gence (Fig. 23) but the calculation time increase polyno-
mial.

The most important observations are that the crossover
and mutation probabilities have optimal values in this case
for the geometry investigated these values arePC = 0.22
andPM = 0.01 (Fig. 23,24).

Fig. 23. Genetic Algorithm convergence (6 AP whole floor)

Fig. 24. Genetic Algorithm convergence (6 AP whole floor)

5 CONCLUSION

The optimal Access Point or Remote Unit position of
WLAN network or Hybrid Fiber Radio is investigated for
indoor environment. The article illustrates the possibility
of optimization of radio network using Genetic Algorithm
in order to determine positions of APs. Two new app-
roaches are introduced to solve the global optimization
problem the SA and DIRECT. The methods are introduced
and investigated for 1, 2, 3 and 6 AP cases. The influence
of Genetic Algorithm parameters on the convergence has
been tested and the optimal radio network is investigated.
It has been shown that for finding proper placement the

necessary number of APs can be dramatically reduced and
therefore saving installation cost of WLAN or HFR.

The results clearly justify the advantage of the method
we used but further investigations are necessary to combine
and to model other wireless network elements like leaky
cables, fiber losses. Other promising direction is the ex-
tension of the optimization cost function with interference
parameters of the wireless network part and with outer in-
terference.
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