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A NOTE ON BOUNDARY CONDITIONS
FOR THE LWR MODEL

ABSTRACT

The paper studies the boundary conditions for the standard
LWR model describing the traffic flow. The notion of the BLN
(Bardos, Leroux and Nédélec) condition is described. In the
context of traffic flow the BLN conditions have some natural
interpretation. The conditions on the density and on the flow
and their meaning in real-life situations are discussed.
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1. INTRODUCTION

In 1955 in their celebrated paper [9] Lighthill and
Witham derived a simple hyperbolic conservation law
for the traffic flow based on vehicle conservation prin-
ciple. The same model was found independently by
Richards [11]. In recognition of their pioneering work
such model is called the LWR model.

The fundamental assumption of all continuum
models, including the LWR model, is that the density
function r can be properly defined. Indeed, the con-
tinuum models for traffic flows do not allow individual
tracking of cars, but they describe the dynamics of the
macroscopic density of cars. Therefore, the unknown
quantity in this problem is the car density r roughly
defined as the number of vehicles per unit of length
[3]. Another assumption characteristic for the LWR
model is that the speed v is a function depending only
on the density, i. e. that
v V= ( )r (1)

Such function V is empirical and it depends on the
characteristics of the road. Several different models
have been proposed by taking different functions
V(r). The review of such models and their properties
can be found, for instance, in [10] and [6]. It is com-
monly assumed in the traffic flow analysis that the car
flow q(r) = rV(r) satisfies q(0) = q(rmax) = 0 and that
q attains its maximum qmax = q(rc) (= road capacity),
for some optimal density rcÎ(0, rmax). The usual em-
pirical curve for flow versus density is similar to the

one in Figure 1 (so-called fundamental diagram of
road traffic). Such curve is obviously strictly concave.

The exception is the so called California model,
where the function r q(r) is linear

q v( )
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Using the simple car conservation principle, analo-
gous to the mass conservation in continuum mechan-
ics, leads to the local conservation law
¶

¶
+
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¶
=

r

t
q
x

0 (3)

Since q” < 0 (preserves the sign) that places the
law (3) in the class of hyperbolic conservation laws. If
some initial density r0 at time t = 0 is prescribed the
Cauchy’s problem for hyperbolic partial differential
equation (PDE) of the first order is obtained:
¶

¶
+

¶

¶
=

r r

t
q

x
( )

0, x Î R, t > 0 (4)

r r( , ) ( )x x0 0= , x Î R. (5)
To be able to pick the unique physically relevant

solution an entropy condition is added (see e. g. [7]
and [1]). Most of the theoretical papers on LWR
model are limited to the study of such Cauchy’s prob-
lems, i. e. they assume that the road has no ends. How-
ever, in real-life situations, the road is always
bounded, i. e. it has an entry and an exit. Furthermore,
for the purpose of numerical simulations it is neces-
sary to restrict on a bounded part of the road limited
by two-point boundary. For such a problem the initial
condition is, in general, not sufficient to assure the
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well-posedness and some boundary conditions are
needed. For the purpose of numerical simulations, of-
ten, the non physical (artificial) conditions, like peri-
odicity of the density, are imposed. The first physically
reasonable boundary conditions that we can think of
are the Dirichlet’s conditions. It seems natural to pre-
scribe the car density at the entry and at the exit of the
space interval (since there is one-to-one relationship
between the density and the speed we could equiva-
lently prescribe the speed).

Remark 1: Actually, as we know, the hyperbolic conser-
vation laws, in general, do not admit smooth or even
continuous solutions so the question whether the value of
such function on the boundary has a sense is nontrivial.
Even though for smooth data such solution is peacewise
smooth, the trace on the boundary cannot simply be
taken as the value of the solution on a boundary. If, for
example, there are two constants a and r0 such that
a c< r and r r rc < <0 max , then the problem

¶

¶
+

¶

¶
=

r r

t
q

x
( )

0, x Î R, t > 0

r r( , )x 0 0= , x Î R, r( , )0 t a= , t > 0
has a unique entropy solution depicted here:

Thus
a= + ¹ + =r r r( , ) ( , )0 0 0 0 0 (6)
where

f f s f s
s s s

( ) lim ( ) lim ( )
,

0
0 0 0

+ = =
® > ® +

denotes the right-hand side limit of function f in point 0.
Although hyperbolic conservation laws do not have con-
tinuous solutions, their solutions have bounded the total
variation. This property allows to consider the limit of
r( , )x t as x ® +0 in some technical sense (more pre-
cisely, in L1 sense). This limit is called the trace of r( , )x t
on boundary x = 0. Furthermore, such trace is a measur-
able function bounded almost everywhere on ] , [0 T and
its value on the boundary x = 0 can be imposed:

r( , ) ( )0 t a t= for almost every t TÎ] , [0
Thus, the value of trace r( , )0 t , defined in such a way, in
one point t = 0 has no meaning. For technical details the
reader should consult [2]. The same discussion holds for
the right-hand boundary x = l.
In the above example, the data do not verify the compati-
bility condition r0 0 0( ) ( )= a (usually imposed for the

parabolic problems) and the trace discontinuity (6) is
hardly surprising.

In the traffic flow theory such problems are also
called the three detector problems (see [3]). The space
interval is denoted by I l= [ , ]0 , the value of is r that is
to be imposed at point x = 0 by a(t), and the value of r

for x = 0 by b(t). The Dirichiet conditions are to be im-
posed
r( , ) ( )0 t a t= (7)
r( , ) ( )l t b t= (8)
and due to Remark 1, that traces r(0, t) and r(0, l) are
meaningful, even for weak solutions. Nevertheless,
things are not so simple. Obviously, the value of r at
the entry of interval x = 0 cannot be prescribed if the
characteristics have a negative slope (i. e. when q’ <
0), otherwise they contradict the initial condition.

For the same reason we cannot prescribe the den-
sity at the exit x = l when the characteristics have a
positive slope (i. e. when q’ > 0). It is less obvious that,
even if the slope of characteristics at the entry is posi-
tive, we are not sure that the condition (7) could be im-
posed without violating the entropy condition.

The condition that guarantees the well-posedness
(i. e. the existence of a unique entropy solution) for
the boundary value problem (4), (5), (7) and (8) is a
kind of entropy condition on the boundary that can be
formulated as follows:
q t q k

t k
( ( , )) ( )

( , )
r

r

0
0

0
-

-
£

for every k between r( , )0 t and a t( ) (9)
q l t q k

l t k
( ( , )) ( )

( , )
r

r

-

-
³ 0

for every k between r( , )l t and b t( ) (10)
The geometric interpretation of the above condi-

tions is that the slope of the cord joining
( ( , )))r( , ), (r t0 0t q and (k, q(k)), for any k between
r(0, t) and a(t), is negative, while the slope of the cord
between ( ( , )))r( , ), (r tl t q l and (k, q(k)), for any k be-
tween r(l, t) and b(t), is positive.

In the mathematical literature such conditions are
known as the BLN conditions, named after Bardos,
Leroux and Nédélec.

If (9) and (10) hold, we say that r satisfies the
Dirichiet’s boundary conditions (7), (8) in the BLN
sense.

For the rigorous mathematical derivation of BLN
boundary conditions in general context one can con-
sult [2] or [12]. It should be mentioned that the BLN
condition does not work for hyperbolic systems, i. e.
for the second order models of traffic flow. Such situa-
tion is more complex and was considered by Dubois
and Le Floche in [4] using the Riemann problem
method. In case of scalar equation, their boundary
conditions are equivalent to the BLN conditions. An-
other technique based on the asymptotic analysis of a
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solution to the appropriate viscous system in a bound-
ary layer, similar to the original method of Bardos,
Leroux and Nédélec was used in [5] and [12].

In the present paper the BLN condition in the spe-
cific context of the LWR model for a traffic flow is an-
alyzed and given a meaning.

Remark 2: Before completing this section it should be
stressed that the traces r(0, t) and r(l, t) are to be under-
stood as r( , )0+ t and r( , )l t- respectively. On the other
hand, a(t) and b(t) can, in some loose sense, be seen as
r( , )0- t and r( , )l t+ .

2 ANALYSIS OF BLN CONDITIONS IN
CASE OF LWR MODEL

The meaning of such boundary conditions written
in the form of variation inequalities (9) and (10) is un-
clear. A simple analysis allows their notation in a dif-
ferent way that will help understand their meaning in a
real-life situation.

First, left-hand boundary x = 0 is dealt with:
(i) Suppose that the boundary value a t c( )£ r . If

r( , ) ( )0 t a t< then the function q increases on

[ ( , ), ( )]r 0 t a t and
q t q k

t k
( ( , )) ( )

( , )
r

r

0
0

0
-

-
<

for k t a tÎ[ ( , ), ( )]r 0 . Thus (9) is violated meaning
that necessarily r( , ) ( )0 t a t³ . Let the number
a t c*( )³ r be denoted by a*(t) such that
q a t q a t( ( )) ( *( ))= .

Now, if a t t a t( ) ( , ) *( )< <r 0 , then q k q t( ) ( ( , ))£ r 0
for any k a t tÎ[ ( ), ( , )]r 0 and (9) is again violated.
Finally, if r( , ) *( )0 t a t³ then q k q t( ) ( ( , ))³ r 0 for
any k a t tÎ[ ( ), ( , )]r 0 so that (9) holds. Thus the
only two possibilities are:
either r( , ) ( )0 t a t= or r( , ) *( )0 t a t³ (11)
This condition can be equivalently written as:

either r( , ) ( )0 t a t= or

r r

r( , ))

( , )

( ( ))

0

0

t

t q a t

c>

£

ì

í
ï

î
ï

and

q(

(12)

(ii)The second case is a t c( )> r . If r( , ) ( )0 t a t> func-
tion q decreases on [r(0, t), a(t)] and (9) is auto-

matically fulfilled. If r( , ) ( )0 t a t£ the condition (9)
is fulfilled as long as r r( , )0 t c³ and it does not
hold otherwise. Thus the BLN condition (9) is re-
duced to

r r( , )0 t c³ (13)

Such condition has nothing to do with the actual
value of a(t).

Thus, on the right-hand boundary x = 0, the BLN
boundary condition (9) is reduced to conditions (12)
and (13).

In case of the right-hand boundary x = l, arguing
in the same way the following form of the BLN bound-
ary conditions is obtained:

(i) If b t c( )³ r then the BLN boundary condition can
be written in the form

either r( , ) ( )l t b t= or r( , ) *( )l t b t£ ,

with b t c*( )< r chosen such that q b t( ( ))=
= q b t( *( )), or equivalently

either r( , ) ( )l t b t= or
r r

r( , ))

( , )

( ( ))

l t

l t q b t

c<

£

ì
í
ï

îï
and

q(
. (14)

(ii)In case b t c( )< r we can only impose:

r r( , )0 t c£ . (15)

A closer look at (9) shows that the entering density
can be (eventually) prescribed only if the value that is
to be imposed is smaller than or equal to optimal den-
sity rc i. e. if the corresponding traffic is light. On the
other hand (10) says that the exiting density could be
prescribed only if it is larger than or equal to rc , i. e. if
the traffic is heavy. More precisely, it can only be said
that the entering density either takes some prescribed
value r r( , ) ( )0 t a t c= £ or it is high (>rc) and the cor-
responding flow q(r(0, t)) is smaller than q(a(t)), but
we can neither prescribe its exact high value nor can
we say for which t it is assumed (without solving the
mixed problem (4), (5), (9) and (10)). A similar discus-
sion holds for the exiting density.

We can also have the one-point boundary. Such
problem is called a semi-infinite highway problem (see
[3], [6]). The space domain is[ ,0 ¥ and the value of the
density at the entry x = 0 is prescribed. The same
problem as before appears and such value can be pre-
scribed only in the BLN sense, i. e. (9) can be imposed.
So, the entry density can be (eventually) prescribed
only if it is suboptimal (i. e.£ rc).

Finally, we can prescribe the value of flow q on the
boundary. In the case of two-point boundary value
problem, it can be done but it necessarily creates a
shock wave. In case of the semi-infinite highway prob-
lem such problem is also well-posed. It also has a clear
physical sense because it is natural to prescribe the cu-
mulative flow wishing to enter upstream.
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3 ANALYSIS OF CHARACTERISTICS

The purpose of this section is to give some simple
arguments in favor of the BLN boundary conditions
and to illustrate them by a typical example.

The characteristic for equation (4) is the line in (x,
t) plane on which the solution retains a constant value.
Its slope is given by 1/q’(r). If a characteristic passes
through a point (x, 0) then the value of the solution on
it equals r0(x). If the characteristic intersects with line
x = 0 then the above argument contradicts the bound-
ary condition r(0, t) = a(t), unless a(t) = r0(x), which
is unlikely.

In case the characteristics have a negative slope (i.
e. q’ < 0) at point x = 0 the boundary condition (7)
cannot be imposed. This is in accordance with the
BLN condition (12).

The same argument shows that the boundary con-
dition (8) cannot be imposed if the characteristics at
point x = l have a positive slope (i. e. q’ > 0). This cor-
responds to the right BLN condition (14).

Example 1: Suppose that there is a green traffic light at
the entry and that the cars are moving at a maximal flow
(i. e. the road capacity). On the exit, there is a red traffic
light, i. e. the density is maximal. Then the following is
imposed

r r( , )0 t c= , r r( , ) maxl t = and

r
r
r( , ) for /

for /max
x x l

l x l
c0 0 2

2=
< <

£ <
ì
í
î

.

It may be noticed that the given data are continuous
in the sense r0(0+) = a(0+). However, such a situation
will necessarily create shock wave propagating at nega-
tive speed

q c

c

( )

max

r

r r-
.

This shock wave will reach the entry at time

t
q

lc

c
*

( )
max=

-r r

r2
.

Thus, the left boundary value of r can be prescribed only
before the shock reaches the boundary, i. e.

r r( , )0 t c= , t t< * .

After the shock hits the boundary, r takes the high
value rmax, which is the second alternative from the BLN

condition (12). On the other hand, at the exit there is the
Dirichiet’s condition

r r( , ) maxl t = , t > 0
as long as there is red light at the exit. Of course this
feature has a clear explanation. If the exit is closed
long enough and there is a constant inflow, this will
eventually lead to a congested road with bumper-to-
-bumper density along its entire length.

One can decide to change the entering traffic light
to red after some interval ô > 0, i. e.

If ô > t* it would be pointless, because the road is al-
ready congested and there is still r(0, t) = rmax.

If ô > t*, then r(0, t) = a(t) can be imposed which,
after time

t
l

q
c c

c
0 2

=
-

+
æ

è
çç

ö

ø
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r r

r

r

r
tmax

max ( )
,

leads to the polarized situation

r

r r

r

r

r
t

r
( , )

( )max

max max
max

x t for x
l q

otherwise

c c
=

<
-

-0
2

ì

í
ï

îï
.

There is the stationary shock at

x x
l qc c= =

-
-0 2

r r

r

r

r
tmax

max max

( )
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which does not touch the boundary x = 0 and the
Dirichiet ‘s condition remains valid. This situation is in
accordance with expectations. All the cars that entered
the part of the road 0, l , before the traffic light at the en-
try turns red at time ô, went for the exit and they are wait-
ing for the exit traffic light to turn green. They occupy the
part x l0 , while the part 0 0, x remains void. The time
when such polarized situation occurs can be computed
and equals t0.

4 COMPATIBILITY BETWEEN THE
INITIAL AND THE BOUNDARY
CONDITION

For this purpose the Riemann problem approach
of Dubois and Le Floche [4] is briefly described.

The focus is on the left boundary and the Riemann
problem is considered.
¶

¶
+

¶

¶
=

u
t

q u
x
( )

0 , x Î R , t > 0 (16)

u x a for x
for x( , )0 0

00
=

<
>

ì
í
îr , x Î R (17)

The solution of such problem depends only on
variable x/t and it is composed of two constant states
separated by an elementary wave. In this case of scalar
conservation law with strictly concave nonlinearity,
the only possible elementary waves are shock and rar-
efaction waves. That solution is usually denoted as
u w x t a= ( / , , )r0 . From the beginning it is supposed
that a < rc. Again, a* > rc is defined such that q(a) =
q(a*).

If r0 > a* does not develop shock wave in the right
quadrant x > 0 but in the left one x <0. Thus, in the
right quadrant the solution equals r0 and it is com-
pletely determined by the initial condition r0 while a
has no impact on it. It should be stressed that the
boundary value equals r(0, t) = r0 > a*.

On the other hand, if r0 < a* then the solution has,
either a shock (in case a < r0 < rc) or a rarefaction
wave (in case r0 < a < rc) in the right quadrant. Thus,
the solution u(x, t) takes both values a as well as r0 in
the right quadrant. In either case the boundary condi-
tion u(0, t) = a is fulfilled.

The above example gives us some hint about the
meaning of two alternatives in the BLN condition
(12). If we neglect the left quadrant and take only the
right one, then u(x, t) is an entropy solution of equa-
tion (16) with initial condition

u x( , )0 0= r

and the boundary condition
u t a( , )0 = (18)
understood in the BLN sense. Thus, if r0 < a*, then
the boundary condition (18) is satisfied in the usual
way (i. e. the first alternative from (12) is valid). On

the other hand, if r0 ³ a* then we only have( , ) *0 t a³
(indeed, since u(0, t) = r0), i. e. the second alternative
from (12) takes place. So, if we want to impose the
density a on the boundary, literary and not in the BLN
sense, the initial density r0 must not be larger than a*.
By the way, the above example shows that the values
a c> r would give the characteristics pointing to the
left quadrant, i. e. with no effect on the solution in the
right quadrant. This explains why such boundary val-
ues are not admissible.

Remark 3: As can be seen from the above discussion, the
BLN condition (9) can be equivalently written as

r n r( , ) ( ( )) { ( , ( ), ) ; }max0 0 0t a t w a t k kÎ = + £ £ .
This result is due to Dubois and Le Floche [4], where

its rigorous proof can be found, and more general results
for the hyperbolic systems.

Let us now go back to the original problem. Ap-
plying locally the above analysis at some vicinity of the
origin, the objective is to find the compatibility condi-
tion that a(t) and r0(x) need to satisfy if the boundary
condition is to be imposed
r( , ) ( )0 t a t= (19)
as well as the initial condition

r r( , ) ( )x x0 0=

least during a short period of time. In the study it is as-
sumed that both functions a(t) and r0(x) are continu-
ous in some vicinity of 0 so that the behaviour of these
two functions in the vicinity of origin is similar to the
one in the origin itself. First of all, as known from sec-
tion 2, only a t c( )£ r can be considered. Secondly, as
learned from the Riemann problem (16)-(17), if the
value on the boundary is to be imposed, (i. e. the first
alternative from the BLN condition (12) is to happen),
we need to suppose that
r0 0 0( ) *( )< a (20)
where a*(t) > rc is defined from a(t) in a way that
q(a(t)) = q(a*(t)).

Condition (20) is the compatibility condition be-
tween the initial and the boundary value that must
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hold if the Dirichiet boundary condition (19) is to be
imposed, at least for a while. Of course, far from the
origin the initial condition can take a value larger than
a* causing a shock that, after some time interval [0, t*[
(that can be very short or infinitely long) reaches the
boundary x = 0, and forces one to choose the other al-
ternative from (12), i. e. to impose only r(0, t) > a*(t).
It means that, for t > t* the boundary condition (19) is
actually no longer valid, as depicted below. The same
effect can be produced, not only by growing initial
density but also by the other boundary condition at x =
l.

Similar analysis can be done for the right boundary
condition

r( , ) ( )l t b t=

leading to the compatibility condition
r0 0( ) *( )l b> . (21)

5 FURTHER DISCUSSION OF BLN
CONDITIONS FOR LWR MODEL

The key argument that will be used to explain the
BLN boundary conditions in real life is that high traf-
fic density (at least in the LWR model) at some point
of road is always caused by the traffic ahead of that
point, while low density can only be consequence of
the traffic behind the point in consideration. Let this
phenomenon be analyzed in more details.

5.1 The entry

At point x = 0 (the entry), according to [2], the
value of density r cannot be prescribed if that value is
larger than rc . Why is that so? Because it is not possi-
ble to prescribe the precise boundary value that will
lead to heavy traffic. Indeed, as noticed in Remark 2,
the value a(t) can be seen as r( , )0- t , i. e. as the value
of the density for x < 0. Since heavy traffic at point
x = 0 is, in general, caused by the traffic conditions
ahead of it (e. g. congested road), the high entry den-

sity cannot be created only by a huge inflow independ-
ently of the conditions ahead. For instance, if the den-
sity for x < 0 is as high as possible2 (i. e. rmax) and the
road is empty (or almost empty) in front of x = 0 (i. e. r

is small for x > 0), there will be the maximal flow, i. e.
the optimal density at x = 0, corresponding to the
boundary condition

r r( , )0 t c= .
On the contrary, if the initial density r0 satisfies the

compatibility condition (20), the value a t c( )£ r , can
be prescribed at least for a small interval of time, be-
cause light traffic at point x = 0 can be caused by a
small inflow. Obviously, if there are not enough cars
entering the road that would lead to small density on
the observed part of the road (unless the traffic on it
was initially very heavy in the sense that the compati-
bility condition was violated). As in Example 1 and
Figure 2 high density at x = l can create a shock that
reaches the boundary x = 0 at some time t* and
changes the boundary condition to r( , ) *( )0 t a t³ .
The same kind of effect can be caused by the initial
density. If the solution does not develop shocks, then
the value of the density a remains prescribed. If a > rc,
as noticed before, prescribing the exact heavy traffic
density would mean to presume the density in the part
0, l (possibly) contradicting the conservation law. We

can only prescribe that r(0, t) > rc.
Of course, if the initial density was high near the

entry x = 0, and high means higher than a*(t), then the
boundary condition at x = 0 has no influence on the
solution regardless of its value.

5.2 The exit

The situation at the exit x = l is the opposite. In-
deed, one can prescribe high density at the end of the
road (assuming that the initial density satisfies the
compatibility condition (21)). An example of situation
that would cause heavy traffic at point x = l is the red
traffic light at x = l . In that case there would be r(l, t)
= rmax. Of course, if low density is prescribed at the
entry and high at the exit, then there is necessarily the
shock wave. Unlike the previous case, the exact low
density at the exit cannot be prescribed. That seems to
be in consistency with real life. Indeed, there is no de-
vice that can be placed at the exit to guarantee the pre-
scribed low density. Low density at x = l can only be
created by light traffic regime at the considered inter-
val 0, l which is governed by the equation and it can-
not be prescribed.

Finally, the meaning of the compatibility condi-
tions (20) and (21) can be commented. What they
mean is rather simple. Low density at the entry of the
road cannot be prescribed if the initial density was
high. The same goes for the exit, where high density
cannot be imposed if the initial density was low. But
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(20) and (21) tell us more than that. They actually
yield formulas to compute the precise values that
guarantee the balance between the initial and the
boundary condition and make the model feasible.

6 BOUNDARY CONDITIONS ON THE
FLOW

It should be emphasized that the relation between
r and q is not a one-to-one3 relation. Indeed, each
value of q q cÎ[ , ( ))0 r is assumed by two densities
r and r* , one lower and the other higher than
rc. Therefore, prescribing the flow is not equivalent
to prescribing the density. Using that fact one can
prescribe the flow at the point x = 0 by prescrib-
ing the appropriate density r rentry ct( )£ . Let
q t qentry c( ) [ , ( )]Î 0 r . We choose r rentry ct( )£ such
that q t q tentry entry( ( )) ( )r = . Then the condition
r r( , ) ( )0 t tentry= (22)
implies the condition
q t q tentry( , ) ( )0 = (23)
in the BLN sense. In case of boundary condition for
flow the BLN version of the condition (23) in fact
means that
q t q tentry( , ) ( )0 £ . (24)

Due to the choice of rentry the equation (4) for t > 0
and x > 0 , with initial condition (5) and boundary con-
dition (22), understood in the BLN sense, (i. e. the
semi-infinite highway problem) has a unique entropy
solution. Furthermore, that solution satisfies the in-
flow condition (24) at the entry of the highway x = 0
only in the BLN sense. Indeed, the initial value r0 can
be chosen such that the shock develops and reaches
boundary x = 0 at some instant t*, after which the
boundary value can no longer be prescribed (as de-
picted in Figure 2). At least for a while. During that
period its upper bound can be merely prescribed, as
written in (24).

The same thing could be tried with the two-point
boundary value problem (i. e. with the three-detector
problem). In that case for the given qentry, qexit the
r rentry c£ and r rexit c³ would have to be chosen
such that

q qentry entry( )r = , q qexit exit( )r =

The exit condition, understood in the BLN sense,
reduces to the inequality
q l t q texit( , ) ( )£ (25)

Then the problem (4), (5) with boundary condi-
tions

r r( , ) ( )0 t tentry= , r r( , ) ( )l t texit=

in the BLN sense (i. e. with conditions (24) and (25)),
has a unique entropy solution. However, (unless qentry
= qexit = rc) there is qentry < qexit and such a solution

will necessarily develop shock waves that would, even-
tually, hit the boundary at some time t*. After that
time one can only impose the upper bound for the
density on the boundary. Therefore, the LWR prob-
lem with an inflow and an outflow condition

q t qentry( , )0 = , q l t qexit( , )=

in the BLN sense, has an entropy solution but it can-
not be smooth unless both qentry and qexit are equal to
the road capacity.

The problems arising in the implementation of a fi-
nite-difference scheme when the flow boundary con-
dition is imposed for the LWR model (and also for
some second order models), was considered before by
H. M. Zhang in [14]. He studied the flux condition di-
rectly using the Lebacque’s demand and supply func-
tions ([8]) and then proposed a simpler approach to
prescribe the flow by prescribing the density, as done
here. He obtained the correct boundary condition by
considering the Riemann problem approach of
Dubois and Le Floche , in each time step. This ap-
proach is, of course, equivalent to the BLN conditions
(9)-(10) but more suitable for numerical computa-
tions.

7 CONCLUSION

This paper analyzes some choices of physically rel-
evant and mathematically feasible boundary condi-
tions for the standard LWR model of the traffic flow.
The Dirichiet’s conditions, namely, for the density (or
velocity) and for the flow, in case of the bounded part
of the road [0, l] or semi-infinite road [ ,0 +¥ are dis-
cussed.

It has been shown that the value a(t) of the vehicle
density r(x, t) can he prescribed at the entry x = 0 only
if it is smaller than the optimal density rc. while the
density at the exit x = l can be prescribed only if it is
larger than rc . Furthermore, if the boundary condi-
tions are to be imposed, the initial and the boundary
densities r0(x), a(t) and b(t) must satisfy the compati-
bility conditions (20) and (21).

Both boundary conditions can be prescribed only
in the BLN sense (see (12)-(1.5)). It means that, in
case the initial density r0(x) is not too large in the vi-
cinity of the entry (not too small in the vicinity of the
exit) , one can prescribe the value of the density on the
boundary x = 0 (x = l) for some period of time but it
remains prescribed only until the shock wave develops
(if it develops) and reaches the boundary. After the
shock hits the entry (the exit) one can only ask for the
density r to satisfy the inequalities

r r( , )0 t c> plus q t q a t( ( , )) ( ( ))r 0 £
( r r( , )l t c< plus q l t q b t( ( , )) ( ( ))r £ ).

Unlike the density, any physically reasonable value
of the flow can be prescribed at the ends of the road, of
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course, only in the BLN sense. The BLN boundary
condition for the flow means that the value of the flow
is prescribed until the shock reaches the boundary and
only the upper bounds for the entering and the exiting
flow after the shock arrives.

An interpretation of BLN conditions in the context
of traffic flow is given.

The results of this paper can be used for practical
computations in real life. To simulate a situation on a
crowded highway, with some actual data, one first
needs to find out whether the LWR model can be ap-
plied. This can be found by verifying the compatibility
conditions, that have been derived. If the LWR model
is applicable, the numerical simulations can be per-
formed. To do so it is necessary to find a way how to
prescribe the boundary conditions at the ends of the
road, i. e. how to impose the given values of the traffic
density or the traffic flow on the boundary. This
method is described here in detail and an interpreta-
tion is given for each step.

SANJA MARUŠIÆ, Ph.D.
University of Zagreb,
Faculty of Transport and Traffic Sciences
Vukeliæeva 4, HR-10000 Zagreb, Republic of Croatia

SAÃETAK

U ovom radu prouèavamo rubne uvjete za standardni
LWR model za opisivanje prometnog toka. Opæenito opisuje-
mo rubne uvjete u BLN smislu (Bardos, Leroux i Nédélec). U
kontekstu prometnog toka BLN uvjeti imaju prirodnu interpre-
taciju. Razmatramo rubne uvjete za gustoæu i za tok te njihovo
znaèenje u stvarnoj situaciji.

KLJUÈNE RIJEÈI

LWR model, prometni tok, hiperbolièki zakon saèuvanja, rub-
ni uvjeti

REFERENCES

1 see [3] for precise defnition
2 such situation can be created by the red traffic light at

the entry

3 except for the California model
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